NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
|
|
- Klára Konečná
- před 6 lety
- Počet zobrazení:
Transkript
1 NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce / 15 14
2 NP-úplné problémy Seznámíme se s následujícími pojmy: složitost problému, polynomiálně / exponenciálně složité problémy, třída složitosti P, rozhodovací / optimalizační varianta problému nedeterministický algoritmus, polynomiálně omezený nedeterministický algoritmus, třída složitosti NP, NP-úplné problémy Skripta kap. 9, str Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
3 Členění problémů podle složitosti řešení problémy řešitelné neřešitelné snadno hůře... těžko VELMI těžko Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
4 (Výpočetní) složitost problémů jedná se o problémy, nikoliv o algoritmy zajímají nás nejlepší možné algoritmy jejich řešení časová / paměťová složitost O(n k ) polynomiálně složité (snadné, zvládnutelné) O(e n ) exponenciálně složité (těžké, nezvládnutelné) Příklad: 1. Součet dvou binárních čísel x 1 x 2 x 3... x n a y 1 y 2 y 3... y m počet základních operací je O(n+m) ~ snadný problém 2. Rozklad binárního čísla x 1 x 2 x 3... x n na prvočinitele předpokládaná exponenciální složitost ~ těžký problém Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
5 (Výpočetní) složitost problémů Hledání prvočíselného dělitele čísla N (hrubou silou): 1. k= celá část( N) 2. for (i=2; i<=k; i++) { if (N % i == 0) return i; } Počet základních operací ~ N, tedy pro n-bitové číslo N ~ 2 n, N ~ 2 n/2 ~ e n.ln2/2 exponenciální složitost? Existuje O(n k ) algoritmus??je polynomiální složitost "lepší" než exponenciální? n 1000 :: e n... exponenciální je "lepší" pro n<9500 Třída složitosti P obsahuje problémy, pro které existuje O(n k ) složitý algoritmus řešení Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
6 "Velmi těžko" řešitelné problémy Plnění krabic Máme krabice s jednotkovým objemem a n předmětů s objemem s 1, s 2, s 3,..., s n. Rozhodovací úloha: Pro dané k určit, zda lze těchto n předmětů uložit do k krabic. Problém batohu Máme batoh s kapacitou K a n předmětů o velikosti s 1, s 2, s 3,..., s n a ceně c 1, c 2, c 3,..., c n (vše kladná celáčísla). Rozhodovací úloha: Pro dané (kladné celé) k určit, zda lze do batohu uložit nějakou podmnožinou předmětů v ceně přesně k. Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
7 "Velmi těžko" řešitelné problémy Součet podmnožiny Máme n předmětů s objemem s 1, s 2, s 3,..., s n (kladná celáčísla). Rozhodovací úloha: Pro dané k určit, zda existuje podmnožina předmětů s objemem přesně k. Rozhodovací úloha obarvení grafu Pro daný (obyčejný) graf G = H,U a kladné celéčíslo k určit, zda existuje obarvení grafu G pomocí k barev. Rozhodovací úloha o Hamiltonovské kružnici grafu Pro daný (obyčejný) graf G = H,U určit, zda v něm existuje Hamiltonovská kružnice (ta prochází všemi uzly). (podobně pro Hamiltonovskou cestu) Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
8 "Velmi těžko" řešitelné problémy Problém obchodního cestujícího Pro daný (obyčejný) graf G = H,U s ohodnocením hran w: H R + a danéčíslo k určit, zda v něm existuje Hamiltonovská kružnice s ohodnocením nejvýše rovným k. Splnitelnost logických formulí Literál logická proměnná nebo její negace Klausule logický součet libovolného počtu literálů Konjunktivní normální forma (CNF) logický součin libovolného počtu klausulí Rozhodovací úloha Pro logickou formuli ϕ danou pomocí CNF určit, zda existuje přiřazení true/false hodnot proměnným této formule, které dá celé formuli hodnotu true. Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
9 "Velmi těžko" řešitelné problémy Uvedené úlohy mají i své optimalizační varianty, např. Problém obchodního cestujícího Pro daný (obyčejný) graf G = H,U s ohodnocením hran w: H R + určit Hamiltonovskou kružnici s minimálním ohodnocením. Co mají tyto úlohy společného? Umíme je řešit, ale není znám polynomiálně složitý algoritmus, NICMÉNĚ není vyloučeno, že existuje... Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
10 "Velmi těžko" řešitelné problémy Co kdybychom řešení uměli uhádnout? (např. pro součet podmnožiny bychom dodali vybrané prvky) Pak už jen stačí ověřit, že jejich součet je opravdu roven k Takové "řešení" lze použít pro každou z uvedených úloh, přitom ověření lze vždy zajistit v polynomiálním čase. Tyto úlohy tedy mají nedeterministické polynomiálně (NP) složité řešení Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
11 Nedeterministický algoritmus Nedeterministický algoritmus pro rozhodovací úlohy má následující dvě fáze: 1. nedeterministická fáze do paměti se zapíše nějaký řetěz znaků (uhádnuté řešení) 2. deterministická fáze použije se deterministický algoritmus pro určení, zda řetěz představuje opravdu řešení zadané úlohy Nedeterministický algoritmus je polynomiálné omezený, pokud existuje konstanta k tak, že pro lib. vstup délky n, pro který je výsledek ANO, existuje výpočet délky O(n k ) s výsledkem ANO. Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
12 Třída složitosti NP Třída složitosti NP - množina rozhodovacích úloh, pro které existuje polynomiálně omezený nedeterministický algoritmus řešení. Všechny dříve uvedené úlohy (plnění krabic, problém batohu, součet podmnožiny, obarvení grafu, Hamiltonovská kružnice/cesta, problém obchodního cetsujícího, splnitelnost CNF (SAT) patří do třídy NP. P NP (jasné) P NP nebo P = NP??? (problém století) Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
13 Třída složitosti NP Princip redukovatelnosti P1 P2 umíme řešit úlohu P2 umíme polynomiálně převést úlohu P1 na P2 NP-úplná úloha je taková úloha P NP, pro kterou je každá úloha Q NP redukovatelná na P. Věta (Cook 71): Problém splnitelnosti logických formulí je NP-úplný. P P=NP NP-úplné NP Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
14 INFORMACE KE ZKOUŠKÁM PŘEDTERMÍN - bohu(-žel/-dík) žádný nebude TERMÍNY ŘÁDNÉ :00-10:00, T9:105a :00-16:00, T9:105a :30-16:30, T9:155a TERMÍNY OPRAVNÉ - bude aspoň jeden v červnu - někdy v září bude další opravný termín Doc. Josef Kolář (ČVUT) NP-úplné Prohledávání problémy grafů GRA, LS 2010/11, Lekce // 15 14
Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost
1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Složitost. Teoretická informatika Tomáš Foltýnek
Složitost Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika 2 Opakování z minulé přednášky Co říká Churchova teze? Jak lze kódovat Turingův stroj? Co je to Univerzální
TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší
4. NP-úplné (NPC) a NP-těžké (NPH) problémy
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
TGH12 - Problém za milion dolarů
TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Aproximativní algoritmy UIN009 Efektivní algoritmy 1
Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška jedenáctá Miroslav Kolařík Zpracováno dle P. Martinek: Základy teoretické informatiky, http://phoenix.inf.upol.cz/esf/ucebni/zti.pdf Obsah 1 Složitost algoritmu 2 Třídy složitostí
Problémy třídy Pa N P, převody problémů
Problémy třídy Pa N P, převody problémů Cvičení 1. Rozhodněte o příslušnosti následujících problémů do tříd Pa N P(N PCověříme později): a)jedanýgrafsouvislý? danýproblémjeztřídy P,řešíhonapř.algoritmyDFS,BFS.
PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
PLANARITA A TOKY V SÍTÍCH
PLANARITA A TOKY V SÍTÍCH Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 9 Evropský sociální fond Praha & EU: Investujeme
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.
9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující
Složitost a moderní kryptografie
Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie
Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31
Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu
Od Turingových strojů k P=NP
Složitost Od Turingových strojů k P=NP Zbyněk Konečný Zimnění 2011 12. 16.2.2011 Kondr (Než vám klesnou víčka 2011) Složitost 12. 16.2.2011 1 / 24 O čem to dnes bude? 1 Co to je složitost 2 Výpočetní modely
NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32
NP-úplnost M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května 2007 1/ 32 Rozhodovací problémy Definice Rozhodovací problém je takový, kde je množina možných výstupů dvouprvková
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Výpočetní složitost algoritmů
Výpočetní složitost algoritmů Slajdy pro výuku na KS Ondřej Čepek Sylabus 1. Definice časové a prostorové složitosti algoritmů. Příklady na konkrétních algoritmech. Prostředky pro popis výpočetní složitosti
TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TURINGOVY STROJE Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 12 Evropský sociální fond Praha & EU: Investujeme do vaší
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
YZTI - poznámky ke složitosti
YZTI - poznámky ke složitosti LS 2018 Abstrakt Poznámky k přednášce YZTI zabývající se složitostí algoritmických problémů a teorií NP-úplnosti. Složitost algoritmu a problému Zabýváme se už pouze rekurzivními
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
Ekvivalence. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5 Evropský sociální fond.
Z. Sawa (VŠB-TUO) Teoretická informatika 18. prosince / 67
Další třídy složitosti Z. Sawa (VŠB-TUO) Teoretická informatika 18. prosince 018 1/ 67 Další třídy složitosti Pro libovolnou funkci f : N R + definujme následující třídy: DTIME(f(n)) třída všech rozhodovacích
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
Cvičení MI-PRC I. Šimeček
Cvičení MI-PRC I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PRC, LS2010/11, Cv.1-6 Příprava studijního programu Informatika
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
GRAFOVÉ MODELY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 1
GRAFOVÉ MODELY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 1 Evropský sociální fond. Praha & EU: Investujeme do vaší
Databáze, sítě a techniky programování X33DSP
Databáze, sítě a techniky programování X33DSP Anotace: Náplní předmětu jsou některé techniky a metody používané ve výpočetních systémech zaměřených na biomedicínské inženýrství. Cílem je položit jednotný
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Další NP-úplné problémy
Další NP-úplné problémy Známe SAT, CNF, 3CNF, k-klika... a ještě následující easy NP-úplný problém: Existence Certifikátu (CERT ) Instance: M, x, t, kde M je DTS, x je řetězec, t číslo zakódované jako
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST
11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST Na první přednášce jsme si neformálně zavedli pojmy problém a algoritmus pro jeho řešení, které jsme na počítači vykonávali pomocí programů. Jako příklad uveďme
9.Cosipočítstěžkýmproblémem
9.Cosipočítstěžkýmproblémem V předchozí kapitole jsme zjistili, že leckteré rozhodovací problémy jsou NPúplné.Ztohoplyne,žejsouekvivalentní,alebohuželtaké,žeanijedenznichzatím neumíme vyřešit v polynomiálním
Cvičení z logiky II.
Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Řešení rekurentních rovnic 2. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 11
Řešení rekurentních rovnic 2 doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
Centrální plánování cest pro mnoho agentů Centralized Multi-agent Path Planning
Centrální plánování cest pro mnoho agentů Centralized Multi-agent Path Planning RNDr. Pavel Surynek, Ph.D. KTIML Matematicko-fyzikální fakulta Univerzita Karlova v Praze Motivace (1) Přesouvání kontejnerů
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
STROMY A KOSTRY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 6
STROMY A KOSTRY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 6 Evropský sociální fond Praha & EU: Investujeme do vaší
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
efektivně řešit, jde mezi nimi nalézt zajímavé vztahy a pomocí nich obtížnost
1. Tì¾ké problémy Ohlédněme se za předchozími kapitolami: pokaždé, když jsme potkali nějakou úlohu, dovedli jsme ji vyřešit algoritmem s polynomiální časovou složitostí, tedy O(n k ) pro pevné k. V prvním
1. Pøevody problémù a NP-úplnost
1. Pøevody problémù a NP-úplnost Všechny úlohy, které jsme zatím potkali, jsme uměli vyřešit algoritmem s polynomiální časovou složitostí. V prvním přiblížení můžeme říci, že polynomialita docela dobře
ale je tam plno nadchodů a podchodů. Naším cílem je najít okružní cestu ze startovního místa zpátky na start, abychom
Těžké problémy Představme si, že jsme v bludišti a hledáme (náš algoritmus hledá) nejkratší cestu ven. Rychle nás napadne, že bychom mohli použít prohledávání do šířky a cestu najít v čase lineárním ku
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina
Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41
Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby
Rezoluce ve výrokové logice
Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.
Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.
Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,
Výpočetní složitost I
Výpočetní složitost I prooborlogikanaffuk Petr Savický 1 Úvod Složitostí algoritmické úlohy se rozumí především její časová a paměťová náročnost při řešení na počítači. Časová náročnost se měří počtem
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Časová složitost / Time complexity
Časová složitost / Time complexity Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 24 Složitost algoritmů Algorithm complexity Časová a paměťová složitost Trvání výpočtu v závislosti
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
TGH05 - Problém za milion dolarů.
TGH05 - Problém za milion dolarů. Jan Březina Technical University of Liberec 20. března 2012 Časová složitost algoritmu Závislost doby běhu programu T na velikosti vstupních dat n. O(n) notace, standardní
Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka
Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B
Historie matematiky a informatiky Cvičení 1
Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí
Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
12. Aproximační algoritmy
12. Aproximační algoritmy (F.Haško,J.enda,.areš, ichal Kozák, Vojta Tůma) Na minulých přednáškách jsme se zabývali různými těžkými rozhodovacími problémy. Tato se zabývá postupy, jak se v praxi vypořádat
ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094
10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)
Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Úvod stránky předmětu: https://cw.felk.cvut.cz/doku.php/courses/a4b33alg/start cíle předmětu Cílem je schopnost samostatné implementace různých variant základních
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
8. Převody problémů a NP-úplnost
8. Převody problémů a NP-úplnost Všechny úlohy, které jsme zatím potkali, jsme uměli vyřešit algoritmem s polynomiální časovou složitostí. V prvním přiblížení můžeme říci, že polynomialita doceladobřevystihujepraktickoupoužitelnostalgoritmu.
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
Výroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
NP-úplnost a další. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
NP-úplnost a další Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018 Datové struktury a algoritmy, B6B36DSA 01/2018, Lekce 13
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.
7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další
Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace
Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní
NP-úplnost problému SAT
Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Základy algoritmizace, návrh algoritmu
Základy algoritmizace, návrh algoritmu Algoritmus Předpoklady automatického výpočtu: předem stanovit (rozmyslet) přesný postup během opakovaného provádění postupu již nepřemýšlet a postupovat mechanicky
Úvod do kvantového počítání
Osnova Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 10. března 2005 O přednáškách Osnova Přehled k přednáškám Proč kvantové počítání a počítače 1 Úvod do kvantového počítaní
Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]
Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Systém přirozené dedukce výrokové logiky
Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému
Další partie teorie složitosti. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 30. května / 51
Další partie teorie složitosti M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 30. května 007 1/ 51 Řešení těžkých problémů Pro mnoho důležitých problémů nejsou známy efektivní algoritmy.
3.10 Rezoluční metoda ve výrokové logice
3.10. Rezoluční metoda ve výrokové logice [070405-1102 ] 27 3.10 Rezoluční metoda ve výrokové logice Rezoluční metoda rozhoduje, zda daná množina klausulí je splnitelná nebo je nesplnitelná. Tím je také
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
Pozn.MinulejsmesekPSPACEnedostali,protojezdepřekryvstextemzminula.
Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Pozn.MinulejsmesekPSPACEnedostali,protojezdepřekryvstextemzminula. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,