Problémy třídy Pa N P, převody problémů

Rozměr: px
Začít zobrazení ze stránky:

Download "Problémy třídy Pa N P, převody problémů"

Transkript

1 Problémy třídy Pa N P, převody problémů Cvičení 1. Rozhodněte o příslušnosti následujících problémů do tříd Pa N P(N PCověříme později): a)jedanýgrafsouvislý? danýproblémjeztřídy P,řešíhonapř.algoritmyDFS,BFS. b) Jedanýgrafrovinný? danýproblémjeztřídy P,jeznámalgoritmuspracujícívčase O(n 2 ). c) Obsahuje daný graf hamiltonovskou kružnici? N P, dokonce N PC. Dokážeme převodem Hamilton. cyklu(hc) p HK. d) Je dané přirozené číslo číslem složeným? N P, dokonce do P(netriviální důkaz). e) Lze batoh o dané kapacitě zaplnit některými z daných předmětů, aby nepřekročil zadanou váhu a současněmělminimálnícenu? NP,dokonce NPC.DokážemepřevodemSubSetSum p BATOH. e) DNF-SAT. P(stačí splnit jedinou klauzuli, tedy každou závorku otestujeme, zda obsahuje kontradikci, pokud ne, je formule splnitelná). Řešení a návody Chceme-li dokázat, zda daný problém náleží do třídy P(resp. N P), musíme podle definice najít deterministický(resp. nedeterministický) TM, který rozhoduje daný problém v polynomiálním čase. Je to cesta, ale pro některé problémy komplikovaná. Zkusme proto použít analogii v algoritmech(ke každému TM rozhodujícím v polynomiálním čase najdeme algoritmus, který řeší stejný problém také v polynomiálním čase. Něco podobného jste si dokazovali na přednášce u RAM): Třída P :Podaří-lisenámnajítpolynomiálníalgoritmus,takjetodostatečnýdůkaz,žeúlohajezetřídy P. Třída NP : PopsatNTMmůžebýttakéobtížné,atakseznovuzkusímeopřítoalgoritmus,tentokrátnedeterministický. Na přednášce jste měli popis průběhu nedet. algoritmu(1.8.7): Nedeterministický algoritmus pracuje ve dvou fázích: 1. Algoritmus náhodně vygeneruje řetězec s. 2. Deterministický algoritmus(turingův stroj, program pro RAM) na základě vstupu a řetězce s dá odpověď ANO nebo NEVIM. Jaktotopomůžeprotřídu NP?Pokudbynámněkdosdělil(poradil,tipl)řešení(fáze1.),amyho dokázali polynomiálně a deterministicky ověřit(fáze 2.), tak máme vlastnost třídy N P. Navíc tuto vlastnost nemá žádná jiná třída problémů, než právě třída N P. Například ve cvičení d) by řešení vypadalo takto: Kdyby Vám někdo prozradil dělitele zadaného čísla(vygenerovat např. náhodně číslo zabere konstantní čas), tak rychle(myšleno polynomiálně a deterministicky)ověříte,zdatotočíslodělízadanébezezbytku tedymátesplněnyfáze1.a2.,atedy problémje NP. Třída NPC :Chceme-lioproblémudokázat,ženáležítřídě NPC,musímeukázat: 1. je N P (tj. máme-li řešení, ověříme v polynomiálním čase a deterministicky, že je skutečně řešením), 2. lze na tento problém polynomiálně redukovat nějaký již známý problém z N PC.

2 Řešení: Problém HK: Obsahuje daný graf hamiltonovskou kružnici? N P, dokonce N PC. Dokážeme převodemhc p HK. 1)HKje NP,protožeprovybranoukružnicisnadnootestujeme,zdasejednáokružnici,azda obsahuje všechny vrcholy(projdeme posloupnost uzlů a hran v kružnici a kontrolujeeme počet uzlů a incidenci). 2) Problém HK je podobný problému existence Hamiltonovskému cyklu(hc), o kterém víme, že je NPC. ZkusmetedynajítpolynomiálníredukciHCnaHK(HC p HK).Nejdříveřádně zformulujeme oba problémy: HK Vstup: Je dán neorientovaný graf G. Otázka: Existuje v tomto grafu kružnice přes všechny uzly?(hamiltonovská kružnice) HC Vstup: Je dán orientovaný graf G. Otázka: Existuje v tomto grafu cyklus(orient. kružnice) přes všechny uzly?(hamiltonovský cyklus) 2)Hamiltonovskýcyklus(HC) p Hamiltonovskákružnice(HK). G(V,E) G (V,E ) V V :=V V (druhoukopiikaždéhouzluvodlišímejako v) E E := {{u,v }, {v,v} prokaždouhranu(u,v) EvpůvodnímgrafuG} Konstrukci na příkladu ukazuje následující obrázek: Nyní ukážeme, že instance HC je splněná právě tehdy když je splněna instance HK. Chcemeukázat, žepokudmámeanoinstanciham. cyklu, tedyexistujeham. cyklus C = v 1 e 1 v 2...v n e n v 1, takexistujehamiltonovskákružnice C. Evidentnětatokružnicemápodobu C= v 1 e 1 v 2 e 1v 2...v n e n v ne n v 1 e 0v 1,obsahujevšechnyuzly V. Nyní chceme ukázat naopak, že pokud máme nějako uham. kružnici C, tak v původním grafu muselbýtham.cyklus:označmesikružnici C= v 1 e 1v 2e 1 v 2...v ne nv n e n v 1e 1 v 1.Paksousedníuzly musínutněbýtvajehokopiev,nebov aw(alepakpředv muselobýtv),protožejedinéhrany v novém grafu sjou střídavě mezi očárkovaným a neočárkovaným uzlem. Je-li tedy ham. kružnice vg,máprávěuvedenýtvaraznípakmámvypuštěnímočárkovanýchuzlůahranham. cyklusv původním grafu. Tedy HC existuje. Tento převod(vytvoření instance pro HK z HC) lze realizovat deterministicky v polynomiálním čase

3 (hodnoty v i jen2xzkopírujemedonovéhografu,taktéžhrany).hkjetedy NPC. Problém BATOH: 1)BATOHje NP,protožeprovybranépředmětysnadnootestujeme,zdasedobatohuvejdou (sečtemeváhy v i aporovnámesv)azdamajícenualespoň C(sečtemeceny c i aporovnáme s C). 2)ProblémBATOHjepodobnýproblémuSubSetSum,okterémvíme,žeje NPC.Zkusmetedy najít polynomiální redukci SubSetSum na BATOH. Nejdříve řádně zformulujeme oba problémy: BATOH Vstup: npředmětů,knimzadanádvěčísla: c i cenapředmětu, v i váhapředmětu, i=1,2,...,n. Dáledvěpřirozenáčísla nosnostbatohu V acena C. Otázka: Lze z těchto předmětů vybrat nějaké tak, aby se vešly do batohu(nepřekročili nosnost, tedy vi V)asoučasněmělyminimálněhodnotu C(tedy c i C)? SubSetSum Vstup: přirozenáčísla a 1,...,a m,číslo K. Otázka:Lzevybratněkteréztěchtočíseltak,abyjejichsoučetbylprávě K(tedy a i = K))? Polynomiální redukce: Musíme instanci(vstup) SubSetSum převést na instanci BATOH a splnit přitom dvě kritéria: Je-li řešitelná instance SubSetSum, musí mít řešení i navržená instance BATOHu. Současně ale pokud není řešitelná instance SubSetSum, nesmí být řešitelná ani ta BATOHu. Zkusme tedypomocí a i ačíslakdefinovatbatohnásledujícímzpůsobem: SubSetSum a 1,...,a n K BATOH c i := a i, i=1,2...,n; n=m v i := a i N:=K C:=K Existuje A {a 1,...,a m } Existuje P {(c 1,v 1 ),...,(c n,v n )} tž. a i A a i= K? tž. c i P c i Cazároveň v i P v i N? Ukážeme, že námi zvolená instance pro BATOH splňuje obě podmínky, je-li řešitelný problém SubSet- Sum. Stačí vzít stejnou podmnožinu předmětů, tedy P:= A(resp. dvě kopie A). Nyní ukážeme, že instance BATOHu je splněná právě tehdy když je splněna instance SubSetSum. Chcemeukázat,žepokudmámeANOinstanciSubSetSum,tedyexistujevýběrAtž. a i A a i= K, tak existuje výběr i pro BATOH: c i = a i = K C, c i P tedy požadavek na cenu je splněn. Ještě váha: je splněna i tato podmínka. v i P a i A v i = a i = K V, A i A

4 Nyní chceme ukázat naopak, že pokud máme ANO instanci BATOHu, tak pomocí redukce existuje výběr pro SubSetSum: a i = c i C= K, a i A c i P tedymáme,že a a i A i K.Tonestačí,mypotřebujemerovnost.Mámealeještěváhu: a i = v i V= K, a i A v i P tedymáme,že a a i A i K. Podmínkacenyaváhymábýtalesplněnasoučasně,tedymáme podmínku, a i K a i K, a i A a i A ale to je podmínka existence řešení pro SubSetSum. Tento převod(vytvoření instance pro BATOH ze SubSetSum) lze realizovat deterministicky v polynomiálnímčase(hodnoty a i jenzkopírujemedocen,vahakzkopírujemedocav).batohjetedy NPC. U následujících problémů nám pomůže přehled přednáškových N PCproblémů. (CNF) SAT Splnitelnost formule výrokové logiky ϕ. Vstup: Formule varphi Otázka: Existuje ohodnocení, v kterém je ϕpravdivá? 3(CNF)SAT Spl.fle,kdevkaždéklauzulijsoumax.3literály. Vstup: Formule varphi Otázka: Existuje ohodnocení, v kterém je ϕpravdivá? 3-COLOR Obarvení grafu 3 barvami. Vstup: graf G Otázka: Jde graf obarvit 3 barvami tak, aby žádné 2 sousední vrcholy neměly stejnou bravu? K-klika Nalezení největší kliky v grafu. Vstup: Graf G, přirozené číslo K Otázka: Existuje v grafu úplný pograf(klika) o alespoň K vrcholech? ILP Lineární programování.

5 VP Vrcholové pokrytí grafu. Vstup: Graf G, přirozené číslo K Otázka: Existuje množina velikosti najvýše K, která pokryje HRANY grafu? NEZ Nezávislá množina. Vstup: Graf G, přirozené číslo K Otázka:ExistujemnožinavrcholůNEZ, NEZ K,tž.žádnédvazNEZnejsouspojenyhranou? SubSetSum Výběr podmnožiny s daným součtem z množiny čísel. Vstup: n přirozených čísel a přirozené číslo K Otázka:Existujevýběrztěchtočíseltak,abysoučetbylK? Partition dělení kořisti(dva loupežníci) Vstup: n předmětů dané ceny Otázka: Existuje výběr z těchto předmětů tak, aby součet cen byl polovina loupeže? TSP Obchodní cestující. HK Hamiltonovská kružnice v grafu. Vstup: Graf G Otázka: Existuje v grafu kružnice přes všechny vrholy? HC hamiltonovský cyklus v grafu. Vstup: Graf G Otázka: Existuje v grafu cyklus přes všechny vrcholy? NDC Nejdelšícestavgrafu. Vstup: Graf G s ohodnocením hran reálnými čísly, reálné číslo K Otázka: Existuje v grafu cesta ceny nejvýše K? NKC Nejkratšícestavgrafu. Vstup: Graf G s ohodnocením hran reálnými čísly, reálné číslo K Otázka: Existuje v grafu cesta ceny alespoň K? Cvičení 2. Problém NDC(nejdelší cesta) vstup:grafgsohodnocenímhran(vzdálenosti) a:e R +,nezápornéčíslo K otázka:existujecestacenyalespoň K?HCnaNDC nejdelsicestajen-1, V =n 1) Máme-li cestu, snadno ověříme, zda je ceny alespoň K. 2)Hamiltonovskácesta(HC) p NDC. HC NDC a(e):=1 K:= V 1 Existuje-li v grafu HC, je řešitelný i problém NDC. Není-li řešitelný HC, není řešitelný ani NDC. Tento převod lze realizovat v polynomiálním čase. NDC je tedy N PC.

6 Cvičení 3. Problém NKC(nejkratší cesta) vstup:grafgsohodnocenímhran(vzdálenosti) a:e R,reálnéčíslo k otázka:existujecestacenynejvýše k?ncnankc otocimcenuhrannazaporne 1) Máme-li cestu, snadno ověříme, zda je délky nejvýše k. 2)NC p NKC. NC NKC a(e) a(e ):= a(e) K k:= K Je-livgrafuGnejdelšícestadélkyalespoňK,jevG cestadélkynejvýšek.anaopak. Tento převod lze realizovat v polynomiálním čase. NKC je tedy N PC. Cvičení 4. Problém DOM(dominantní množina) Vstup: graf G, přirozené číslo k Otázka: Existuje dominantní množina D velikosti nejvýše k? (množinavrcholůdjedominantní,pokud {d,u} E,prokaždývrchol u V\D,d D) 1) Máme-li množinu D, snadno ověříme, zda je velikosti k a zda její vrcholy jsou dominantní. 2)Vrcholovépokrytí(VP) p DOM. VP DOM K k:= K existuje P V, P K, D:=P, D =k, tž.každáhranamájeden tž.každývrcholzv /Dje vrcholvp? spojenhranousvrcholemzd Má-li VP řešení, pak má řešení i DOM.(Každé vrcholové pokrytí je současně dominantní množinou) Naopak,máme-likaždývrcholzV /DspojenhranousvrcholemzD,pakmusíkaždáhranamít jedenvrcholvp??? (CohranamezidvěmauzlymimoP,kteréjsouobaspojenisvrcholyvP?pak nemusíme mít pokrytí!)... asi to nebude dobrá redukce. Ještě promyslím. Tento převod lze realizovat v polynomiálním čase. DOM je tedy N PC. Pozn.:LzetakérealizovatpřevodemMnožinovépokrytí p DOM ( set) Cvičení 5. Problém NK(nejdelší kružnice) Vstup: graf G, přirozené číslo k Otázka: existuje kružnice délky alespoň k? 1) Máme-li kružnici, snadno ověříme, zda je délky alespoň k. 2)Hamiltonovskákružnice(HK) p NK. HK NK

7 k:= V Existuje-livgrafuHC,existujeiNKvgrafuG.Anaopak. Tentopřevodlzerealizovatvpolynomiálnímčase.NKjetedy NPC.

4. NP-úplné (NPC) a NP-těžké (NPH) problémy

4. NP-úplné (NPC) a NP-těžké (NPH) problémy Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce

Více

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do

Více

Další NP-úplné problémy

Další NP-úplné problémy Další NP-úplné problémy Známe SAT, CNF, 3CNF, k-klika... a ještě následující easy NP-úplný problém: Existence Certifikátu (CERT ) Instance: M, x, t, kde M je DTS, x je řetězec, t číslo zakódované jako

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31

Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31 Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška jedenáctá Miroslav Kolařík Zpracováno dle P. Martinek: Základy teoretické informatiky, http://phoenix.inf.upol.cz/esf/ucebni/zti.pdf Obsah 1 Složitost algoritmu 2 Třídy složitostí

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

Od Turingových strojů k P=NP

Od Turingových strojů k P=NP Složitost Od Turingových strojů k P=NP Zbyněk Konečný Zimnění 2011 12. 16.2.2011 Kondr (Než vám klesnou víčka 2011) Složitost 12. 16.2.2011 1 / 24 O čem to dnes bude? 1 Co to je složitost 2 Výpočetní modely

Více

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost 1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32

NP-úplnost. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května / 32 NP-úplnost M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 23. května 2007 1/ 32 Rozhodovací problémy Definice Rozhodovací problém je takový, kde je množina možných výstupů dvouprvková

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Výpočetní složitost algoritmů

Výpočetní složitost algoritmů Výpočetní složitost algoritmů Slajdy pro výuku na KS Ondřej Čepek Sylabus 1. Definice časové a prostorové složitosti algoritmů. Příklady na konkrétních algoritmech. Prostředky pro popis výpočetní složitosti

Více

Složitost. Teoretická informatika Tomáš Foltýnek

Složitost. Teoretická informatika Tomáš Foltýnek Složitost Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika 2 Opakování z minulé přednášky Co říká Churchova teze? Jak lze kódovat Turingův stroj? Co je to Univerzální

Více

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. 9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující

Více

Vrcholová barevnost grafu

Vrcholová barevnost grafu Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie

Více

YZTI - poznámky ke složitosti

YZTI - poznámky ke složitosti YZTI - poznámky ke složitosti LS 2018 Abstrakt Poznámky k přednášce YZTI zabývající se složitostí algoritmických problémů a teorií NP-úplnosti. Složitost algoritmu a problému Zabýváme se už pouze rekurzivními

Více

Systém přirozené dedukce výrokové logiky

Systém přirozené dedukce výrokové logiky Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

Převoditelnost problémů nezávislé množiny na problém hamiltonovského cyklu () IS HC 1/10

Převoditelnost problémů nezávislé množiny na problém hamiltonovského cyklu () IS HC 1/10 Převoditelnost problémů nezávislé množiny na problém hamiltonovského cyklu () IS C 1/10 Cíle prezentace seznámit s problémem nezávislé množiny seznámit s problémem hamiltonovského cyklu seznámitspřevodemproblémup1naproblémp2(p1

Více

9.Cosipočítstěžkýmproblémem

9.Cosipočítstěžkýmproblémem 9.Cosipočítstěžkýmproblémem V předchozí kapitole jsme zjistili, že leckteré rozhodovací problémy jsou NPúplné.Ztohoplyne,žejsouekvivalentní,alebohuželtaké,žeanijedenznichzatím neumíme vyřešit v polynomiálním

Více

8 Přednáška z

8 Přednáška z 8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)

Více

Aproximativní algoritmy UIN009 Efektivní algoritmy 1

Aproximativní algoritmy UIN009 Efektivní algoritmy 1 Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data

Více

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa Tomáš Foltýnek foltynek@pef.mendelu.cz Barvení grafů Platónská tělesa strana 2 Opakování z minulé přednášky Co je to prohledávání grafu? Jaké způsoby prohledávání grafu známe? Jak nalézt východ z bludiště?

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

Z. Sawa (VŠB-TUO) Teoretická informatika 18. prosince / 67

Z. Sawa (VŠB-TUO) Teoretická informatika 18. prosince / 67 Další třídy složitosti Z. Sawa (VŠB-TUO) Teoretická informatika 18. prosince 018 1/ 67 Další třídy složitosti Pro libovolnou funkci f : N R + definujme následující třídy: DTIME(f(n)) třída všech rozhodovacích

Více

Kreslení grafů na plochy Tomáš Novotný

Kreslení grafů na plochy Tomáš Novotný Kreslení grafů na plochy Tomáš Novotný Úvod Abstrakt. V první části příspěvku si vysvětlíme základní pojmy týkající se ploch. Dále si ukážeme a procvičíme možné způsoby jejich zobrazování do roviny, abychom

Více

Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda

Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Zdeněk Dvořák 12. prosince 2017 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení

Více

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu?

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV L KH ROBLÉM ČTYŘ BAREV Vytvoříme graf Kraje = vrcholy

Více

1 Pravdivost formulí v interpretaci a daném ohodnocení

1 Pravdivost formulí v interpretaci a daném ohodnocení 1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří

Více

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení. 7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

12. Globální metody MI-PAA

12. Globální metody MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Výpočetní složitost I

Výpočetní složitost I Výpočetní složitost I prooborlogikanaffuk Petr Savický 1 Úvod Složitostí algoritmické úlohy se rozumí především její časová a paměťová náročnost při řešení na počítači. Časová náročnost se měří počtem

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,

Více

Vybíravost grafů, Nullstellensatz, jádra

Vybíravost grafů, Nullstellensatz, jádra Vybíravost grafů, Nullstellensatz, jádra Zdeněk Dvořák 10. prosince 2018 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení je dobré obarvení

Více

10 Podgrafy, isomorfismus grafů

10 Podgrafy, isomorfismus grafů Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší

Více

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé

Více

12. Aproximační algoritmy

12. Aproximační algoritmy 12. Aproximační algoritmy (F.Haško,J.enda,.areš, ichal Kozák, Vojta Tůma) Na minulých přednáškách jsme se zabývali různými těžkými rozhodovacími problémy. Tato se zabývá postupy, jak se v praxi vypořádat

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

Definice 1 eulerovský Definice 2 poloeulerovský

Definice 1 eulerovský Definice 2 poloeulerovský Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá

Více

10. Vektorové podprostory

10. Vektorové podprostory Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Dynamické programování

Dynamické programování ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

ale je tam plno nadchodů a podchodů. Naším cílem je najít okružní cestu ze startovního místa zpátky na start, abychom

ale je tam plno nadchodů a podchodů. Naším cílem je najít okružní cestu ze startovního místa zpátky na start, abychom Těžké problémy Představme si, že jsme v bludišti a hledáme (náš algoritmus hledá) nejkratší cestu ven. Rychle nás napadne, že bychom mohli použít prohledávání do šířky a cestu najít v čase lineárním ku

Více

Další partie teorie složitosti. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 30. května / 51

Další partie teorie složitosti. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 30. května / 51 Další partie teorie složitosti M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 30. května 007 1/ 51 Řešení těžkých problémů Pro mnoho důležitých problémů nejsou známy efektivní algoritmy.

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Paralelní grafové algoritmy

Paralelní grafové algoritmy Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u

Více

1. Toky, řezy a Fordův-Fulkersonův algoritmus

1. Toky, řezy a Fordův-Fulkersonův algoritmus 1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,

Více

Teorie grafů. Teoretická informatika Tomáš Foltýnek

Teorie grafů. Teoretická informatika Tomáš Foltýnek Teorie grafů Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Opakování z minulé přednášky Co je to složitostní třída? Jaké složitostní třídy známe? Kde leží hranice mezi problémy řešitelnými

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

PQ-stromy a rozpoznávání intervalových grafů v lineárním čase

PQ-stromy a rozpoznávání intervalových grafů v lineárním čase -stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Úvod do kvantového počítání

Úvod do kvantového počítání Osnova Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 10. března 2005 O přednáškách Osnova Přehled k přednáškám Proč kvantové počítání a počítače 1 Úvod do kvantového počítaní

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Cvičení MI-PRC I. Šimeček

Cvičení MI-PRC I. Šimeček Cvičení MI-PRC I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PRC, LS2010/11, Cv.1-6 Příprava studijního programu Informatika

Více

Třída PTIME a třída NPTIME. NP-úplnost.

Třída PTIME a třída NPTIME. NP-úplnost. VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. 6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje

Více

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu... Písemný test MA010 Grafy: 17.1. 2007, var A... 1). Vašim úkolem je sestrojit všechny neisomorfní jednoduché souvislé grafy na 6 vrcholech mající posloupnost stupňů 1,2,2,2,2,3. Zároveň zdůvodněte, proč

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Řešení rekurentních rovnic 2. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 11

Řešení rekurentních rovnic 2. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 11 Řešení rekurentních rovnic 2 doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce

Více

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je

doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je 28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

TGH09 - Barvení grafů

TGH09 - Barvení grafů TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít

Více

Operační výzkum. Síťová analýza. Metoda CPM.

Operační výzkum. Síťová analýza. Metoda CPM. Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Úvod do teorie grafů

Úvod do teorie grafů Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí

Více

Řešení problému vážené splnitelnosti booleovské formule pokročilou iterativní metodou

Řešení problému vážené splnitelnosti booleovské formule pokročilou iterativní metodou Řešení problému vážené splnitelnosti booleovské formule pokročilou iterativní metodou 1 SPECIFIKACE ÚLOHY Cílem této úlohy bylo použít vybranou pokročilou iterativní metodou pro řešení problému vážené

Více

11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST

11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST 11 VYPOČITATELNOST A VÝPOČTOVÁ SLOŽITOST Na první přednášce jsme si neformálně zavedli pojmy problém a algoritmus pro jeho řešení, které jsme na počítači vykonávali pomocí programů. Jako příklad uveďme

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Inference v deskripčních logikách

Inference v deskripčních logikách Inference v deskripčních logikách Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Inference v deskripčních logikách 53 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické

Více

efektivně řešit, jde mezi nimi nalézt zajímavé vztahy a pomocí nich obtížnost

efektivně řešit, jde mezi nimi nalézt zajímavé vztahy a pomocí nich obtížnost 1. Tì¾ké problémy Ohlédněme se za předchozími kapitolami: pokaždé, když jsme potkali nějakou úlohu, dovedli jsme ji vyřešit algoritmem s polynomiální časovou složitostí, tedy O(n k ) pro pevné k. V prvním

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

H {{u, v} : u,v U u v }

H {{u, v} : u,v U u v } Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018 67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud

Více

Barevnost grafů MFF UK

Barevnost grafů MFF UK Barevnost grafů Z. Dvořák MFF UK Plán vztah mezi barevností a maximálním stupněm (Brooksova věta) hranová barevnost (Vizingova věta) příště: vztah mezi barevností a klikovostí, perfektní grafy Barevnost

Více

Složitost Filip Hlásek

Složitost Filip Hlásek Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,

Více