Osnova. Základní vlastnosti biologických membrán Transport látek přes membránu
|
|
- Jaroslav Jaroš
- před 10 lety
- Počet zobrazení:
Transkript
1
2 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
3 Membrány obsahují 1. sensory které umožňují reakci buňky na podněty z okolí 2. pumpy, přenašeče a kanály pro transport látek skrz. Mechanické vlastnosti membrán jsou obdivuhodné (např. Schopnost růstu a změny tvaru bez ztráty integrity
4 Membrány = lipidová dvojvrstva + proteiny
5 Model membrány jako fludní mozaiky
6 Lipidová dvouvrstva je složením ASYMETRICKÁ! Nové membr. lipidy vznikají v ER, např PC a spol na cytosolické straně - flipasy Glykolipidy dosyntetizovány v Golgi, pouze na vnější straně (žádné flipasy) Intracellular signal transduction
7 Transmembránové proteiny
8 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
9 Co prochází membránou? Runar P. Collander ( ) membránová permeabilita buněk Chara sp. (30. léta)
10 Co prochází membránou samo od sebe? koef. membr. permeability P s = k*v/t 0.5 A objem poločas dosažení rovnováhy povrch - nenabité molekuly!
11 Can I get through please? Depends 12_02_diffusion_rate.jpg YES YES Who are you? How big are you? Are you charged? NO NO
12 Membránový tranport Tvorba turgoru (většinou K+) Příjem minerálů a živin Vyloučení odpadních produktů Vyloučení toxických látek Distribuce metabolitů Kompartmentalizace metabolitů Přenos energie Přenos signálů
13 Membránové transportery obecně: Pumpy pohon ATP, PP Primární aktivní tranport Přenašeče (Carriers) pohon gradienty na membráně (pmf) Sekundární aktivní transport Pasivní transport (usnadněná difuze) Kanály pohon gradienty na membráně Pasivní transport (usnadněná difuze)
14 Kapacita membránových transportů Pumpy: kovalentní reakce 10 2 s -1 Přenašeče: změny konformace 10 3 s -1 Kanály: ani jedno z toho s srovnej zastoupení v buňkách
15 Animal vs Plant cells 12_18_solute_transport.jpg
16 Membránové ATPázy typické pro rostliny
17 Membránový potenciál Vm je rozdíl elektrických potenciálů dvou vodných roztoků iontů oddělených membránou. plasmalema = -150 mv tonoplast = -20 mv
18 Dominantním zdrojem membránového potenciálu Vm rostlin jsou protonové pumpy. Proto jsou protonové pumpy elektrogenní.
19 Membránový potenciál vytvářený protonovou pumpou je součástí tzv. proton-motivní síly (pmf), jejímž zdrojem je také koncentrační rozdíl protonů. Vm a pmf jsou klíčovou složkou všech transportních dějů na membráně.
20 Protože platí, že 1 stupňový rozdíl ph odpovídá asi 59mV, lze vyjádřit netermodynamicky pmf=59.1x(ph o -ph c )+Vm při průměrném Vm -120 až -150 mv a rozdílu ph ve stěně (ph5) a v cytoplasmě (ph7) vychází pak pmf rost. b. až -268mV.
21 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
22 Membránové transportery konkrétně: Pumpy pohon ATP, PP pro rostliny typické H+ pumpy plasmalemmy, tonoplastu Přenašeče Kanály
23 Plasmalemma: P H+-ATPáza Arabidopsis: genová rodina AHA (11 genů!)
24 Proč má Arabidopsis tolik AHA genů? housekeeping AHA1 (shoots), AHA2 (roots) všude, ale málo (regulace podmínkami?) část. orgán. specif. prašníky a pyl AHA5 AHA3 (floem), AHA11 (list), AHA4 (kořen) AHA6, AHA7,AHA8,AHA9 obal semene AHA10 esenciální mutantní fenotyp
25 ( Myc-tag ) AHA3 exprese ve floému
26 Posttranslační regulace P-ATPázy: fosforylace a protein (transkripční regulace existuje také, ale nevýrazná!)
27 Agonista P H+-ATPázy ( ireversibilní ) fusicoccin z houby Fusicoccum amygdali působí trvalé otevření průduchů a uschnutí. Inhibitorem všech! ATPáz P- typu je ortovanadát
28 možný mechanismus působení fusicoccinu
29 Fyziologické signály regulující fosforylaci? Blue light - phytotropin - aktivace ATPázy- (otevření průduchů špenátu) inaktivace ATPázy - (snížení turgoru - pohyb listů fazolu) Sucho - ABA - defosforylace - inaktivace ATPázy- (zavření průduchů) též odpověď na cukry... v růz. systémech
30 Lokalizace H-ATPasy v pylové láčce tabáku
31 Gradienty ph v rostoucích buňkách: příklad pyl. láček a koř. vlásků
32 + tip growth + plant movements + osmotolerance + acid growth
33 Ca- ATPasa Ca2+ Ca2+ Ca2+ (další pumpa P- ( typu Ca2+
34 Dva typy rostlinných Ca2+ pump 1.IIB (ACA) - v PM, ale i ER, plastidu a tonoplast.mají autoinhibiční regulační doménu (fosforylace, vazba CaM). Obě jsou P-typu, tedy inhibovány ortovanadátem. 2.IIA (ECA) - v ER, není aktivována CaM.
35 V-H+ATPasa
36 Připomeňme si: obrátíme-li elektromotor, dostaneme dynamo. F o F 1 ATP synthasa V - ATPasa
37 Specifické inhibitory V H+ATPázy Streptomyces Concanamycin A (váže se na Vo podjednotku c)
38 det/cop mutanti Dark Light Dark Light Wild Type det Mutant det3 je mutant C podjednotky V-H+-ATPázy
39 V-H+ATPasa mutace letální pro pyl 13 podjednotek, 27 genů... kolik kombinací?? Rozdíly isoforem: např. regulace podmínkami např. exprese E podjednotky je indukovaná stresem
40 V-ATPasa Jméno je trochu zavádějící... Funkce ve vakuole není esenciální (díky PPase) Nezbytná pro strukturu a funkci Golgiho aparátu a TGN Zásadní pro správnou funkci endocytotického systému a traffickingu obecně
41 V-H+-PPasa (membránová pyrofosfatáza) rostlinná specialita v tonoplastu užívá jako zdroj energie pyrofosfát PPi ("odpad" při polymeraci DNA,RNA a biosyntetických proc. např. ADPG či UDPG) příbuzné pumpy ale i v membránách bakterií, hmyzu a parazitů 2 TYPY liší se regulací vápníkem Typ I závislý na cytosolickém K + středně inhibovány Ca 2+ Typ II K + insenzitivní extrémně Ca 2+ senzitivní
42 Evoluce rostlinné vakuoly je těsně spojena s evolucí V H+-PPasy, která je nutnou součástí funkčního tonoplastu (minoritně je ovšem lokalizována i do PM) za normálních podmínek i ve stresu. AVP1 - vak. Ppasa typ I overexprese zvyšuje rezistenci k sol. stresu...
43 ABC transportery (ATP Binding Cassette) (také známy jako MDR nebo ( PGP fungují nejen jako na ATP závislé pumpy, ale také jako iontové kanály, či jejich regulátory.
44 ATP vazebná místa. Mnoho genů = mnoho substrátů ABC transportery jsou klíčové pro řadu detoxifikačních transportů zvl. do vakuoly.
45 ABC a kutikula: CER5 kóduje ABC transp. wt cer5
46 Membránové transportery konkrétně : Pumpy Přenašeče saturovatelné, poháněny gradienty (pmf) Kanály
47 Two forces may be at work in passive transport - if we are dealing with a charged solute across the membrane. 1) Koncentrace 2) Membánový potenciál (mohou fungovat synergicky nebo protichůdně)
48 Přenašeče Hlavní anorganické živiny (NH4+, NO3-, Pi, K+, SO42- Uptake dalších iontů (Cl-) Organické látky (cukry (mono- a di-), aa, baze)
49 Model obecného přenašeče
50 Saturační kinetika přenašeče
51 Typy přenašečů uniport symport antiport Pasivní transport Sekundární aktivní transport Uniport Symport Antiport A A B A B
52 Struktura obecného přenašeče (Major facilitator superfamily)
53 Jak studovat transportní procesy? Heterologní exprese: oocyty, kvasinky
54 H+ symport převažující mechanismus
55 Symport H+/cukry při plnění floemu sucrose-h+ symporters
56 Často různé přenašeče téhož iontu? Proč? Jemné ladění! Regulace aktivity přenašečů: Transkripční (pravděpodobně převládající) Posttranlační - (transinhibice)
57 Jsou i výjimky z pohonu H+ Na + NO 3 - coupling
58 ( IAA ) Přenašeče auxinu ABC transportery (MDR, PGP) PIN AUX/LAX
59 Kudy auxin teče? Přenašeče (influx a efflux carriers): AUX1/LAX1 PINs inhibice fytotropiny (NPA)
60 IAA influx: AUX1 Swarup et al. 2001
61 PIN přenašeče Fenotyp: jako inhibice transportu (efflux) auxinu působením NPA! pin1 mutant
62 PIN proteiny
63 Lokalizace členů PIN rodiny (I. Billou, K. Palme, J. Friml et al.)
64 ABC a transport IAA
65 Modely transportu auxinu Klasicky: přenašeče PIN a AUX/LAX
66 Co pohání transport auxinu???? (Samozřejmě) žádá funkční membránu Interakce s řadou proteinů možná role ABC transportérů (PGP) K+ kanálů (TRH1) Ppasa (AtVP1) a dalších...
67 Membránové transportery konkrétně : Pumpy Přenašeče Kanály řádově vyšší propustnost! tedy je jich málo, biochemie nemusí být dost citlivá... elektrofyziologie!
68
69
70 Další možnost: Planární lipidové dvojvrstvy
71 Patch-clamp techniky mohou měřit i 1 kanál (1 molekulu) Závislost membránového potenciálu na čase I-V křivky
72 I-V křivky
73 I-V křivky (měřený) kationty ven anionty dovnitř anionty ven kationty dovnitř (vložený na membránu)
74 Měření selektivity kanálů - závislost I/V na složení média K+ eflux outside-out patch 100 mm KCl (in and out) 100 mm KCl in 10 mm KCl out K+ influx
75 Co můžeme měřit - shrnutí Recordings of K+ currents in whole cells and in single K+-selective channels of guard cell protoplasts. (1) K+ currents recorded in the whole-cell configuration (see Web Figure 6.2.B) when the membrane potential is clamped at different values. Upward deflections show outward currents; downward deflections show inward currents. K+ concentrations were 105 mm in the pipette and cytoplasm, and 11 mm in the bathing solution outside the cell. (2) Data from the same experiment plotted as an I/V (current/voltage) curve, before and after the addition of Ba2+, an ion that blocks K+ channels. (3) Inward K+ current through a single channel in a membrane patch. (From Schroeder et al )
76 Různé způsoby regulace otvírání a zavírání kanálů 12_24_Gated _ion_chan.jpg
77 Může být i regulace ligandem (ligand gated) nebo obojím Iontové kanály plasmalemmy: ( gated regulace napětím (voltage I křivky whole cell I-V
78 K+ kanály v Arabidopsis K až 10 % sušiny rostlin 35 genů pro K+ transportní systém 15 kanálů Plasmalema (shaker, TPK4) Tonoplast ( ostatní TPK, Kir)
79 inward rectifying K+ kanál aktivován při hyperpolarizaci membrány (Vm < -120mV) ve svěracích buňkách regulován G proteiny a fosforylací inhibován zvýšenými konc cytosolického Ca2+ inhibitor - tetraethylammonium
80 ( rectifying K+ kanály typu shaker (inward Tetramer! + regulační podjednotky! + fosforylace!! (ABA sig.?)
81 KAT1 K+ kanály typu shaker AKT1
82 GORK (guard cell outward rectifying K+ channel, ( shaker (exprese v oocytech)
83 typ KCO1 (outward rectifying K+) TPK regulace Ca2 +! aktivován při depolarizaci membrány
84 Funkce K+ kanálů in planta
85 Ca2+ kanály plasmalemy obecně má transport vápníku přes membrány převážně regulační funkce (na rozdíl od H+ a K+) (wheat root plasma membrane, aktivace depolarizací)
86 Ca2+ kanály plasmalemy aktivované hyperpolarizací (HACC) regulovány ROS, fosforylací selektivnější (Ca; Ca, K; Ca, Ba) aktivované depolarizací (DACC) (např. DAC, rca) různě selektivní (Ca; Ca, K; Ca, Ba, Sr, Mg; maxication Rb až Mn) mechanosensitivní (MCC) aktivované cyklickými nukleotidy (CNGC) 20x v At glutamate receptor-like (GRL) 20x v At
87 ... ale buňka má vápníkových kanálů mnohem víc, a k tomu ještě pumpy... (i na vakuole a ER)
88 Verret et al. 2010, New Phytologist, 187:23-43
89 Iontové kanály tonoplastu a dalších endomembrán
90 Tonoplastový kanál pro jednomocné kationty (K+): regulace ph a Ca 2+ FV fast vacuolar channel: aktivace ph, inhibice Ca2+ VK vacuolar K+: inhibice ph, aktivace Ca2+, nezávislé na napětí (zřejmě TPK1)
91 Vápníkové kanály tonoplastu a dalších endomembrán tonoplastový, aktivace IP3, IP6 tonoplastový, aktivace cadpr voltage-activated, Ca2+ insensitive (VVCa) voltage-activated Ca2+ sensitive (SV, slow vacuolar, TPC1)
92 CICR calcium induced calcium release Ca2+ stimuluje SV (TPC1) calcium channel
93 ( VMAL ) Tonoplastové kanály pro malát Rostlinná specialita! malát 10 mm 20 mm 50 mm 100 mm
94 Tonoplastové kanály pro malát (VMAL) (pohon H+ gradientem)
95 Kanály v regulaci vývojových dějů Příklad: vrcholový růst Zygota Fucus - relokalizace Ca2+ kanálů jako 1. krok
96 Gradienty Ca2+ a ph při vrcholovém růstu 100 nm Ca Fucus rhizoid 450 nm Ca... dtto kořenové vlásky... pylová láčka Ca2+ - CNGC18 - GLR H+ - HATPase
97 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
98 Transport vody přes membrány: aquaporiny
99 ... ale musí to jít rychle!
100 Akvaporiny Patří do rodiny MIP (Major Instristic Proteins)
101
102
103 Akvaporiny u rostlin Arabidopis - 35 MIP genů 4 podrodiny Plasmatická membrána (PIPs) Tonoplast (TIPs) Small basic intristic proteins (SIPs) nodulin26-like intristic proteins (NIPs)
104 K čemu jsou akvaporiny? SPH simple permeability hypothesis regulace buněčného objemu (jsou nutné?) homeostáze objemu cytoplasmy (model??) zprostředkování pohybu vody... radiálně kořenem Vnímání a regulace osmotického (turgorového) tlaku? Úloha v transportu živin? Akvaporiny přenášejí i NH3 a CO2 a H2O2 (a bór a křemík a...)
105 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
106 Stomatologie
107 Průduchy: integrace transportních systémů
108
109 Přenašeče, pumpy a kanály - Integrace
110 Otvírání H+ ATPasy (p) pmf hyperpolarizace K+ uptake přes inward rectifier (k) Cl- uptake (asi symportem s H+) (t) a NO3- uptake (symport s H+) (t) produkce malátu (fotosyntesa) pmf na tonoplastu (H+ ATPasa, PPasa (p) Cl- do vakuoly po spádu (k) malát do vakuoly (k, t) H+/K+ antiport (t) voda jde za solemi do vakuoly zvýšení objemu (vakuola) OTEVŘENÍ pumpa, tranporter, kanál
111 Zavírání výtok K+ z vakuoly po spádu a depolarizace (k) výtok Cl- po spádu (k, t) otevření aniont. kanálů depolarizuje plasmalemu (k) aktivace outward rectifying K+ kanálu (k) voda následuje (vytéká ven) snížení objemu ZAVŘENÍ pumpa, tranporter, kanál
112 Membránový tranport ve svěracích buňkách od funkce ke genu
113 Signalizace a regulace ABA, modré světlo, CO 2 zprostředkování změnami v ph a Ca 2+ Signální molekuly - ROS, NO, sfingosin-1- fosfát a další fosfolipidy
114 Signalizace a regulace
115 The Clickable Guard Cell: Electronically linked Model of Guard Cell Signal Transduction Pathways
Membránové transportery - pokračování:
Membránové transportery - Pumpy pohon ATP, PP pokračování: pro rostliny typické H+ pumpy plasmalemmy, tonoplastu Přenašeče Kanály Plasmalemma: P H+-ATPáza Arabidopsis: genová rodina AHA (11 genů!) Gradienty
Membrány obsahují 1. sensory které umožňují reakci buňky na podněty z okolí 2. pumpy, přenašeče a kanály protransport látek skrz.
Membrány obsahují 1. sensory které umožňují reakci buňky na podněty z okolí 2. pumpy, přenašeče a kanály protransport látek skrz. Mechanické vlastnosti membrán jsou obdivuhodné (např. Schopnost růstu a
Osnova. Základní vlastnosti biologických membrán Transport látek přes membránu
Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk Membrány
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA 1 VÝZNAM TRANSPORTU PŘES MEMBRÁNY V MEDICÍNĚ Příklad: Membránový transportér: CFTR (cystic fibrosis transmembrane regulator) Onemocnění: cystická fibróza
3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek
MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných
3) Membránový transport
MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných
d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů
MBR2 2016 2) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů d) Kanály Rostliny: iontové kanály a akvaporiny
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK
Rostlinná cytologie MB130P30 Přednášející: RNDr. Kateřina Schwarzerová,PhD. RNDr. Jindřiška Fišerová, Ph.D. Přijďte na katedru experimentální biologie rostlin vypracovat svou bakalářskou nebo diplomovou
Průduchy regulace příjmu CO 2
Průduchy regulace příjmu CO 2 Průduchy: regulace transpiračního proudu / výměny plynů transpiration photosynthesis eartamerica.com Průduchy svěrací buňky - zavírání při ztrátě vody (poklesu turgoru) -
Vodní režim rostlin. Transport kapalné vody
Vodní režim rostlin Transport kapalné vody Transport vody přes membránu Příjem vody kořenem Radiální transport vody v kořenech Kořenový vztlak Příjem vody nadzemníčástí Základní charakteristiky transportu
Úvod do biologie rostlin Transport látek TRANSPORT. Krátké, střední, dlouhé vzdálenosti
Slide 1a TRANSPORT Krátké, střední, dlouhé vzdálenosti Slide 1b TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Slide 1c TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Kapalin,
5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku
5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování
10. Minerální výživa rostlin na extrémních půdách
10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin
Transport živin do rostliny. Radiální a xylémový transport. Mimokořenová výživa rostlin.
Transport živin do rostliny Radiální a xylémový transport. Mimokořenová výživa rostlin. Zóny podél kořene, jejich vztah s anatomií a příjmem živin Transport iontů na střední vzdálenosti Radiální transport
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
Příběh pátý: Auxinová signalisace
Příběh pátý: Auxinová signalisace Co je auxin? Derivát tryptofanu Příbuzný serotoninu a melatoninu Všechny deriváty přítomny jak u živočichů, tak u rostlin IAA Serotonin Serotonin: antagonista auxinu Přítomen
Auxin - nejdéle a nejlépe známý fytohormon
Auxin - nejdéle a nejlépe známý fytohormon Auxin je nejdéle známým fytohormonem s mnoha popsanými fyziologickými účinky Darwin 1880, Went 1928 pokusy s koleoptilemi trav a obilovin prokázali existenci
5. Lipidy a biomembrány
5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
Síra. Deficience síry: řepka. - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH
Síra řepka - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH - toxicita není příliščastá (nad 4000 mg SO 4 2- l -1 ), poškození může vyvolat SO 2 (nad 1-1,5 mg m 3 1 ) fazol Deficience síry:
Tělesné kompartmenty tekutin. Tělesné kompartmenty tekutin. Obecná patofyziologie hospodaření s vodou a elektrolyty.
Obecná patofyziologie hospodaření s vodou a elektrolyty. 2. 4. 2008 Tělesné kompartmenty tekutin Voda je v organismu kompartmentalizovaná do několika oddílů. Intracelulární tekutina (ICF) zahrnuje 2/3
Membránové potenciály
Membránové potenciály Vznik a podstata membránového potenciálu vzniká v důsledku nerovnoměrného rozdělení fyziologických iontů po obou stranách membrány nestejná propustnost membrány pro různé ionty různá
Vnitřní prostředí organismu. Procento vody v organismu
Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí organismu Obsah vody v různých tkáních % VODY KREV 83% SVALY 76% KŮŽE 72% KOSTI 22% TUKY 10% ZUBNÍ SKLOVINA 2% 3 Vnitřní prostředí
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Rostlinná buňka jako osmotický systém
Rostlinná buňka jako osmotický systém Voda se do rostlinné buňky i z ní pohybuje pouze pasivně, difusí. Hnací silou difuse vody jsou rozdíly tzv. vodního potenciálu ( ). Vodní potenciál je chemický potenciál
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
7) Dormance a klíčení semen
2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive
Minerální výživa na extrémních půdách. Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů
Minerální výživa na extrémních půdách Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů Procesy vedoucí k acidifikaci půd Zvětrávání hornin s následným vymýváním kationtů (draslík,
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA
Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide
TRANSPORT PŘES BUNEČNÉ MEMBRÁNY
TRANSPORT PŘES BUNEČNÉ MEMBRÁNY Plasmatická membrána - selektivně permeabilní bariera: esenciální molekuly (cukry, AA, lipidy.) vstupují do bunky; metabolické intermediáty zustávají v bunce; odpadní látky
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 4. Membránové proteiny Ivo Frébort Lipidová dvojvrstva Biologické membrány Integrální membránové proteiny Transmembránové proteiny Kovalentně ukotvené membránové
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u
Dusík. - nejdůležitější minerální živina (2-5% SH)
Dusík - nejdůležitější minerální živina (2-5% SH) - dostupnost dusíku ovlivňuje: - produkci biomasy a její distribuci - ontogenetický vývoj - hormonální rovnováhu (cytokininy, ABA) - rychlost fotosyntézy
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
Biologie 31 Příjem a výdej, minerální výživa, způsob výživy, vodní režim
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 31 Příjem a výdej, minerální výživa, způsob výživy, vodní režim Ročník
4) Reakce rostlin k modrému světlu
SFZR 1 2015 4) Reakce rostlin k modrému světlu a) Fotobiologie reakcí zprostředkovaných modrým světlem Whitelam GC, Halliday KJ (eds) (2007) Light and Plant Development Blackwell Publishing Briggs WR,
MEMBRÁNOVÝ TRANSPORT
MEMBRÁNOVÝ TRANSPORT Membránový transport Soubor procesů umožňujících látkám různého typu překonat barieru biologické membrány. Buněčné membrány jsou polopropustné (semipermeabilní) Volný přístup přes
6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin
1. Základní úvod do problematiky Historie studia minerální výživy rostlin, obecné mechanismy příjmu minerálních živin, transportní procesy na membránách. 2. Příjem minerálních živin kořeny rostlin a jejich
Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich
Vakuola Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich objemu. Je ohraničená na svém povrchu membránou zvanou tonoplast. Tonoplast je součástí endomembránového systému buňky
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz
FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.
2 Iontové kanály a vedení signálů
2 Iontové kanály a vedení signálů Elektrické signály, které jsou pro nervové funkce nezbytné, zprostředkovává iontový tok přes vodné (hydrofilní) póry v membráně nervové buňky. Tyto póry jsou tvořeny transmembránovými
Biologické membrány a bioelektrické jevy
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
Transport přes membránu
Transport přes membránu Datum: 30. 12. 2012 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_262 Škola: Akademie - VOŠ,
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Dynamický fluidní model membrány 2008/11
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Rozšiřuje přednášky: Stavba cytoplazmatické membrány Membránový
Farmakologie. -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem
Farmakologie -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem Léky co v organismu ovlivňují? Většina léků působí přes vazbu na proteiny u nichž
4) Reakce rostlin k abiotickému stresu
2010 4) Reakce rostlin k abiotickému stresu a) Vodní deficit b) Zasolení a osmotické přizpůsobení a jeho role v toleranci k suchu a zasolení 1 Jenks M et al. (2005) Plant Abiotic Stress. Blackwell Publishing
FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ
FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ Petr Soudek Ústav experimentální botaniky Akademie věd ČR Centralizovaný rozvojový projekt MŠMT č. C29: Integrovaný systém vzdělávání v oblasti výskytu a eliminace
Vápník. Deficience vápníku: - 0,4-1,5% DW. - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM)
Vápník - 0,4-1,5% DW - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM) - stavební, signální funkce, stabilizace membrán - vápnomilné x vápnostřežné druhy Deficience vápníku: - poškození meristemů,
Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky Reakce průduchů na světlo
Vodní režim rostlin Mechanizmy pohybu průduchů Obecné charakteristiky Reakce průduchů na světlo Reakce průduchů na vodní stres Reakce průduchů na vlhkost vzduchu Reakce průduchů na CO 2 Reakce průduchů
Lipidy a biologické membrány
Lipidy a biologické membrány Rozdělení a struktura lipidů Biologické membrány - lipidové složení Membránové proteiny Transport látek přes membrány Přenos informace přes membrány Lipidy Nesourodá skupina
Schéma epitelu a jeho základní složky
Schéma epitelu a jeho základní složky Těsný spoj Bazální membrána Transcelulární tok Paracelulární tok LIS - Laterální intercelulární prostor Spojovací komplexy epiteliálních buněk Spojovací komplexy epiteliálních
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Půda - 4 složky: minerálníčástice organickéčástice voda vzduch
Půda - 4 složky: minerálníčástice organickéčástice voda vzduch kameny a štěrk písek (částice o velikosti 2-0,05mm) prachovéčástice (0,05-0,002mm) jílovéčástice (méně než 0,002mm) F t = F m + F d F d =
Stomatální vodivost a transpirace
Vodní režim rostlin Stomatální vodivost a transpirace Vliv faktorů prostředí - obecně Změny během dne Interakce různých faktorů Aklimace Adaxiální a abaxiální epidermis Ontogeneze Matematické modelování
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
Transport v rostlinách. Kateřina Schwarzerová Olga Votrubová
Transport v rostlinách Kateřina Schwarzerová Olga Votrubová Transport v rostlinách Rostlinou jsou transportovány především následující látky: Voda: přijímána většinou kořeny Minerální látky: obvykle přijímány
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc 2008/11. *Ivana FELLNEROVÁ, PřF UP Olomouc*
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc 2008/11 Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Rozšiřuje přednášky: Stavba cytoplazmatické membrány
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, Přírodovědecká fakulta UP
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, Přírodovědecká fakulta UP Funkce cytoplazmatické membrány Cytoplazmatická membrána odděluje vnitřní obsah buňky od vnějšího prostředí. Pro většinu látek
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Obsah vody v rostlinách
Transpirace 1/39 Obsah vody v rostlinách Obsah vody v protoplazmě (její hydratace) je nezbytný pro normální průběh životních funkcí buňky. Snížení obsahu vody má za následek i omezení životních dějů (pozorovatelné
in Cl - Δµ s = RTln(C si /C so ) + zf(e i - E o ) MBR ) Membránový transport
MBR1 2016 3) Membránový transport d) Kanály e) Přenašeče a cotransportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů g) Sekreční dráha proteinů h) Rozpad proteinu
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
MBRO ) Membránový transport
MBRO1 2018 3) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů g) Sekreční dráha proteinů h) Rozpad
VAKUOLY - voda v rostlinné buňce
VAKUOLY - voda v rostlinné buňce Úvod: O vakuole: Vakuola je membránová struktura, která je součástí většiny rostlinných buněk. Může zaujímat 30-90% objemu buňky. Vakuola plní v rostlinné buňce mnoho důležitých
Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické.
Vodní režim rostlin Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho komponenty: charakteristika,
Schéma rostlinné buňky
Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř
5) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy
SFZR 1 2014 5) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy a) Auxinový receptor TIR1 b) Auxinový receptor ABP1 c) Kooperace receptorů TIR1 a ABP1 Estelle M et al. (2011) Auxin Signaling:
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK Fyziologie srdce Akční potenciál v srdci (pracovní myokard) Automacie srdeční aktivity a převodní systém Mechanismus
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
RVR e) Fotobiologie reakcí zprostředkovaných modrým světlem f) Fotoreceptory g) Přenos signálu
1 2015 9) Fotomorfogeneze e) Fotobiologie reakcí zprostředkovaných modrým světlem f) Fotoreceptory g) Přenos signálu Briggs WR, Spudich JL (eds) (2005) Handbook of Photosensory Receptors, Wiley-VCH Schäfer
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)
BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger
Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1.
Milada Roštejnská Buňka Helena Klímová Ledviny Pankreas Mozek Kost Srdce Sval Krev Spermie Vajíčko Obr. 1. Různé typy buněk (1. část) Typy buněk Prokaryotní buňka Eukaryotní buňka Jádro, jadérko a jaderná
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana
Úloha 5 k zápočtu z přednášky B130P16 (praktické základy vědecké práce)
Úloha 5 k zápočtu z přednášky B130P16 (praktické základy vědecké práce) Úkol: Sepište krátký rukopis vědeckého původního článku na téma "Směrovaný transport auxinu přes plazmatickou membránu hraje úlohu
Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3
Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
CZ.1.07/2.2.00/ Obecný metabolismus. Membránové kanály a pumpy (12).
mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus Membránové kanály a pumpy (12). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie, Přírodovědecká
kvasinky x plísně (mikromycety)
Mikroskopické houby o eukaryotické organizmy o hlavně plísně a kvasinky o jedno-, dvou-, vícejaderné o jedno-, vícebuněčné o kromě zygot jsou haploidní o heterotrofní, symbiotické, saprofytické, parazitické
Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky. Reakce průduchů na vlhkost vzduchu. Reakce průduchů na vodní stres
Vodní režim rostlin Mechanizmy pohybu průduchů Obecné charakteristiky Reakce průduchů na světlo Reakce průduchů na vodní stres Reakce průduchů na vlhkost vzduchu Reakce průduchů na CO 2 Reakce průduchů
Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci
TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického
PŘENOS SIGNÁLU V BUŇCE. Nela Pavlíková
PŘENOS SIGNÁLU V BUŇCE Nela Pavlíková nela.pavlikova@lf3.cuni.cz Odpovědi na otázky Co za ligand aktivuje receptor spřažený s G-proteinem obsahující podjednotku α T? Opsin. Co prochází otevřenými CNGC
MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK
MitoSeminář II: Trochu výpočtů v bioenergetice MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK (se zahrnutím cenných připomínek, kterými přispěl prof. MUDr. Jiří Kraml, DrSc.) 1 Dýchacířet etězec
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Difuze Vyrovnávání koncentrací látek na základě náhodného pohybu Osmóza (difuze rozpouštědla) Dva roztoky o rúzné koncentraci oddělené
a) pevná fáze půdy jíl, humusové částice vážou na svém povrchu živiny v podobě iontů
Otázka: Minerální výživa rostlin Předmět: Biologie Přidal(a): teriiiiis MINERÁLNÍ VÝŽIVA ROSTLIN - zahrnuje procesy příjmu, vedení a využití minerálních živin - nezbytná pro život rostlin Jednobuněčné
BIOMEMBRÁNY. Sára Jechová, leden 2014
BIOMEMBRÁNY Sára Jechová, leden 2014 zajišťují ohraničení buněk- plasmatické membrány- okolo buněčné protoplazmy, bariéra v udržování rozdílů mezi prostředím uvnitř buňky a okolím a organel= intercelulární
Endosomy, vakuola a ti druzí
Endocytóza Endosomy, vakuola a ti druzí Endocytické váčky mají clathrinový obal Various receptors and clathrin protein coats recognize vesicle types, and these are delivered (along cytoskeleton pathways?)
10) Reakce rostlin k abiotickému stresu
2015 10) Reakce rostlin k abiotickému stresu a) Vodní deficit b) Zasolení a osmotické přizpůsobení a jeho role v toleranci k suchu a zasolení c) Vliv vodního deficitu a zasolení na membránový transport
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
Intracelulární Ca 2+ signalizace
Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární
MEMBRÁNOVÝ PRINCIP BUŇKY
MEMBRÁNOVÝ PRINCIP BUŇKY Gorila východní horská Gorilla beringei beringei Uganda, 2018 jen cca 880 ex. Biologie 9, 2018/2019, Ivan Literák MEMBRÁNOVÝ PRINCIP BUŇKY MEMBRÁNOVÝ PRINCIP BUŇKY živá buňka =