MEMBRÁNOVÝ TRANSPORT

Rozměr: px
Začít zobrazení ze stránky:

Download "MEMBRÁNOVÝ TRANSPORT"

Transkript

1 MEMBRÁNOVÝ TRANSPORT

2 Membránový transport Soubor procesů umožňujících látkám různého typu překonat barieru biologické membrány. Buněčné membrány jsou polopropustné (semipermeabilní) Volný přístup přes fosfolipidovou dvouvrstvu má v podstatě voda a jen některé jiné nepolární a malé molekuly. Přenos přes lipidovou dvojvrstvu je zajištěn tzv. membránovými transportními proteiny (pumpami, přenašeči a kanály). Jsou různým stupněm specializovány pro transport specifických molekul.

3 Propustnost lipidové dvojvrstvy Velikost molekul: Malé molekuly jako voda, kyslík, kysličník uhličitý mohou volně procházet přes membrány, na rozdíl od většiny větších molekul Rozpustnost v tucích: Látky rozpustné v tucích (nepolární, hydrofóbní)procházejí přes membrány snadno glycerol, mastné kyseliny malé hydrofobní molekuly malé nenabité polární molekuly větší nenabité polární molekuly O 2 CO 2 N 2 benzen H 2 O glycerol ethanol Aminokyseliny Glukosa Nukleotidy Náboj: Fosfolipidová dvojvrstva je pro veškeré nabité částice (ionty) nepropustná. Ionty H +,Na + HCO 3-,K + Ca 2+, Cl - Mg 2+ dvojná vrstva lipidů

4 Typy transportů Klasifikace z hlediska fyzikálního 1. Transport přímo přes membránu Difůze Osmóza 2. Transport prostřednictvím specializovaných membránových proteinů Kanály Přenašeče 3. Transport prostřednictvím membránových váčků Endocytóza Exocytóza

5 Typy transportů

6 Klasifikace typů transportů Klasifikace na základě energetických požadavků 1. Pasivní transport Osmosa Prostá difůze (látky rozpustné v lipidech, malé neutrální molekuly) Usnadněná difůze (transport polárních látek, např. glukosa)

7 Klasifikace typů transportů Klasifikace na základě energetických požadavků 1. Aktivní transport Primární aktivní transport Nutný přísun ATP Proti elektrochemickému potenciálu, př. Na + -K + pumpa a) Uniport b) Spřažený transport o o Symport Antiport Sekundární aktivní transport (spřažený transport) Sám o sobě pasivní, spřažen s jiným systémem spotřebovávajícím energii př. symport glukoza/na + (Na + -K + ATPasa), antiport Na + /K +

8 Klasifikace typů transportů 2. Aktivní transport Transport prostřednictvím membránových váčků Endocytóza o o Transport větších molekul (proteiny, cholesterol) do buňky Vchlípení membrány dovnitř a její následné zaškrcení (vezikuly) a) Fagocytóza b) Pinocytóza Exocytóza o Transport větších molekul (hormony) z buňky prostřednictvím váčků (vezikulů)

9 Klasifikace typů transportů

10 Klasifikace typů transportů

11 Klasifikace typů transportů

12 Klasifikace typů transportů

13 Pasivní transport difůze = pohyb molekul z místa vyšší koncentrace do místa nižší koncentrace Látky rozpustné v lipidech (malé neutální molekuly - O 2, CO 2, H 2 O) Volný prostor lipidovou membránou Koncentrační spád (gradient) - rozdíl mezi koncentracemi obou složek Molekuly obou složek se mísí dokud nenastane rovnováha Samovolný proces nevyžaduje přísun energie z jiného zdroje

14 Pasivní transport difůze Rychlost difůze je přímo úměrná teplotě (při vyšší teplotě je difůze rychlejší) je nepřímo úměrná velikosti molekul (větší molekuly difundují pomaleji) je nepřímo úměrná tloušťce membrány je přímo úměrná ploše membrány závisí na rozpustnosti molekul v membránových lipidech

15 Pasivní transport - osmóza Osmóza je specifickým příkladem difuze je typ pasivního transportu, při kterém přestupuje rozpouštědlo (nejčastěji voda) přes polopropustnou membránu z prostoru s méně koncentrovaným roztokem do prostoru s více koncentrovaným roztokem.

16 Pasivní transport - osmóza Semipermeabilní membrána je propustná pro vodu ale ne pro rozpuštěnou látku.

17 Osmoza

18 Klasifikace transportních proteinů Klasifikace enzymů (6 tříd, označení EC) tranportních proteinů (9 tříd označení TC Transport Classication) 1. Číslo označuje třídu transportních proteinů 2. Písmeno podtřída Obě číslo (1 a 2) se vztahují k mechanismu translokace nebo zdroji energie 3. Číslo označuje rodinu transportního proteinu 4. Číslo podrodinu Obě čísla (3 a 4) jsou dány primární strukturou proteinu 5. Číslo konkrétního proteinu

19 Typy transportních proteinů 1. Póry a kanály 1.A a-helikální kanály ve všech buňkách, pohyb ve směru koncentračního, potenciálového spádu (př. 1.A čichový, mechanicky regulovaný kanál pro Ca 2+ ), a-šroubovice 1B b-hřebenové poriny na energii nezávislý průchod, Skládaný list, tvorba b-soudků 1C Toxiny tvořící póry peptidy, proteiny produkované jednou buňkou a pronikající do jiné buňky kde způsobují perforaci 1D Kanály syntetizované mimo ribosomy řetězce L- a D- aminokyselin a z laktátu a β-hydroxybutyrátu

20 Typy transportních proteinů 2. Transportéry poháněné elektrochemickým potenciálem Systémy na bázi uniportu, symportu a antiportu bez využití energie chemické vazby. 3. Primární aktivní transportéry Přenašeče poháněné hydrolýzou vazeb P-P Transportní systémy těžící z volné energie disfosfátové vazby Transport látek proti jejich koncentračnímu nebo elektrochemickému spádu. Některé proteiny jsou během transportního cyklu přechodně fosforylovány Tyto přenašeče se vyskytují ve všech doménách organismů. Transportéry poháněné dekarboxylací Málo početné prokaryotní systémy využívající volnou energii dekarboxylace oxokyselin k transportu Na +.

21 Typy transportních proteinů Transportéry poháněné přenosem methylové skupiny Je známa jediná rodina takových přenašečů, a to z archebakterií. Transportéry poháněné oxidoredukcí Systémy, kde zdrojem energie pro transport je oxidace redukovaného substrátu zprostředkovaná tokem elektronů. Vyskytují se ve všech doménách organismů. Světlem poháněné transportéry Tato podtřída zahrnuje jedinou rodinu archebakterilních proteinů. Homologní proteiny obsahující retinal se však vyskytují u plísní, kde mohou fungovat jako proteiny teplotního šoku, popřípadě jako molekulové chaperony.

22 4. Skupinové translokátory Fosfotransferasové systémy Typy transportních proteinů V této podtřídě jsou zahrnuty systémy, které katalyzují vektoriální enzymové reakce, kdy substrát je na startovní straně membrány a produkt, odlišný od substrátu, na cílové straně membrány. 5. Transmembránové přenašeče elektronů Nově objevená skupina několika proteinů, které přenášejí elektrony pro udržení cysteinových zbytků v redukované formě, popřípadě fungují v součinnosti s oxidasami tvořícími superoxidy. Dvouelektronové transportéry Jednoelektronové transportéry

23 Typy transportních proteinů Skupiny 6 a 7 prozatím nepoužité 8. Přídatné faktory v transportních pochodech Pomocné transportní proteiny Zahrnuje proteiny usnadňující transport přes biomembrány bez přímé účasti na transportu. Jedná se o tvorbu membránového komplexu, o pomoc při využití energie, nebo regulaci transportu. 9. Neúplně charakterizované transportní systémy Transportéry s nejistou klasifikací Systémy, jejichž specifita je známa, ale není známo jejich zařazení podle mechanismu transportu, resp. spřažení se zdrojem energie.

24 SCHEMA PROSTÉ A USNADNĚNÉ DIFŮZE Transport molekul, které nejsou propustné přes plasmatickou membránu je zajišťován dvěmi hlavními třídami membránových transportních proteinů: kanálky a mobilními přenašeči

25 Kanály a přenašeče Přenašeče usnadněná difůze, aktivní transport Nespojují přímo vnější a vnitřní prostředí buňky Kanály prostá difůze Spojují přímo vnější a vnitřní prostředí buňky Transportují malé molekuly, především ioty a vodu Transport probíhá velmi rychle Vyskytují se ve dvou konformacích - jsou otevřeny buď ven z buňky nebo dovnitř buňky Transportují větší molekuly (glukóza, nukleotidy) Transport je pomalejší, ale vysoce selektivní

26 Dvě třídy transportportních proteinů Konformační změna přenese molekulu přes membránu. Vodní pór umožňuje průchod molekul přes membránu.

27 Koncentrace iontů uvnitř a vně buňky se mohou lišit

28 Otevřené kanály Umožňují volný pohyb iontů oběma směry. Nazývají se póry. Akvaporiny - otevřené kanály pro transport vody. Vrátkové kanály Součástí kanálu jsou tzv. vrátka speciální proteinová oblast, která uzavírá vstup do kanálu. Otvírání vrátek je vyvoláno specifickými podněty a tím je regulován pohyb částic kanálem. Kanálky

29 Kanálky Otevřené kanály Akvaporiny hydrofilní pory propouštějící vodu Intenzivní výskyt v erytrocytech a v ledvinách

30 Řízené iontové (vrátkové) kanály Otevírání vrátek je regulováno Elektrickým signálem (napětím). Vazbou chemického mediátoru (intracelulárně nebo extracelulárně) Fyzikálními vlivy (teplota, tlak)

31 Kanálky - membránové proteiny Transport určitého typu molekul Kanálky po směru koncentračního gradientu po směru elektrochemického potenciálu Nevyžaduje pro svou práci ATP Většina kanálů jsou tzv. iontové kanály o Transportují výhradně anorganické ionty, především Na +, K +, Cl - a Ca 2+. o Na zlomky sekund se otvírají a umožní tak transport iontů, pro které je jinak membrána nepropustná

32 Kanálky o Kanálem mohou být transportovány pouze ionty, pro které je daný kanál specifický. o Selektivita závisí na průměru, tvaru a typu aminokyselin ve vnitřní části kanálu o Selektivita např. kanálky pro K + propustí na iontů K + pouze 1 Na + o Struktura symetrická prstenčitá, 4-6 tvarově podobných domén, každá 2-6 a-helixů

33 Úloha K + při tvorbě membránového potenciálu Jak může K + kanál rozlišit mezi K + and Na + když oba mají stejný náboj a Na + je menší K +? Odpověď: Při průchodu iontu přes selekční filtr, se iont musí zbavit vodního obalu. Molekuly kyslíku z karboxylových skupin mají částečný záporný náboj a mohou nahradit molekuly vody u K +, ale Na + je příliš malý. Tudíž Na + zůstává přednostně asociován s vodou a hydratovaný iont je příliš veliký pro průchod selekčním filtrem.

34 Potenciálem řízené iontové kanál Změna propustnosti membrány pro ionty v důsledku změny konformace molekuly proteinu Silný negativní náboj na vnitřní straně buněčné membrány vede k uzavření kanálu. Když negativní náboj začíná klesat na vnitřní straně membrány dojde k otevření iontového kanálu.

35 Potenciálem řízené iontové kanál Na + kanál 3 stavový (klidový aktivovaný inaktivovaný) K + kanál 2 stavový (klidový aktivovaný) Ca 2+ kanál 3 typy : L (v srdeční a kosterní svalovině a umožňuje svalový stah), N (v srdci, na sympatických neuronech a na synaptických knoflících CNS, podílí se na vylučování neurotransmiterů ), T (podílí na excitaci neuronů) Vápníkové ionty, které po otevření buněčných kanálů začnou téci z cytosolu do buňky, nebo např. ven z mitochondrie (po koncentračním spádu), mohou mít v buňce důležitou signální funkci (a často pracují jako tzv. druzí poslové). složen z mnoha podjednotek, na mnohé z nich je přitom možné zacílit různé blokátory s léčebnými účinky

36 Potenciálem řízené iontové kanál Napěťově ovládané Na + iontové kanály jsou klíčové pro vznik a šíření akčního potenciálu.

37 Úloha K + při tvobě membránového potenciálu

38 Chemicky řízené iontové kanálky Otevírání a uzavírání je dáno vazbou ligandu, zde acetylcholinem

39 Chemicky regulované kanály - neurotransmitery Neurotransmitery jsou malé molekuly, které přenáší nervové impulsy na chemických synapsích

40 Příklady chemicky řízených kanálů 1. Kanály řízené acetylcholinem - kationtový kanál, váže se na postsynaptické membráně nikotinové synapse 2. Kanály řízené excitačními aminokyselinami - L-glutamová a L-asparagová kyselina 3. Kanály řízené G-proteiny Nepřímý účinek přes druhé posly (camp, cgmp) Přímý účinek - působení na vápenaté, sodné a draselné kanálky 4. Chloridové kanály - inhibici chloridového kanálu způsobují dvě aminokyseliny. Kyselina γ-aminomáselná (GABA) a glycin. 5. IP3 řízené kanály - otevření Ca 2+ kanálů

41 Pasivní transport usnadněná difůze Přenašečové proteiny Transport větších molekul Transport po koncentrační gradientu

42 Analogie s aktivační energií u chemických reakcí a jejím snížením působením enzymů Podstata usnadnění difůze

43 Enzym Kinetika transportu usnadněná difůze Vazebná místa pro substrát Chemicky modifikuje substrát Rychlost reakce je saturována při vysoké koncentraci substrátu Přenašečový protein Vazebná místa pro transportované molekuly Transportuje molekuly Rychlost transportu je saturována při vysoké koncentraci přenášené látky

44 Kinetika transportu usnadněná difůze Obdoba kinetiky enzymů u zprostředkovaného transportu

45 Transport glukosy usnadněná difůze zprostředkovaná mobilním přenašečem specificita

46 Aktivní transport Aktivní transport - energie dodávána zvenčí primární - spřaženou chemickou reakcí (ATPasa, oxidoredukce) sekundární - spřaženým exergonickým transportem jiné látky

47 Aktivní transport Transportní ATPasa iontová pumpa Ca 2+ ATPasa Čerpá Ca 2+ uvolněné při vyvolání kontrakce z cytoplazmy do sarkoplazmatického retikula

48 Sodno-draselná pumpa (Na + /K + ATPasa)

49 Sodno-draselná pumpa (Na + /K + ATPasa) Transmembránový protein pracující jako buněčná pumpa. Spotřebovává ATP, načež několikrát mění svou konformaci Přesouvá ionty sodíku a draslíku přes buněčnou membránu, a to proti koncentračnímu gradientu Sodík je tedy transportován ven z buňky, draslík je naopak pumpován dovnitř.

50 Sodno-draselná pumpa (Na + /K + ATPasa) Funkce Udržování intracelulárně K + ( ), Na + ( ) extracelulárně K + ( ), Na + ( ) Udržování klidového a akčního potenciálu Důležitá pro transport glukozy a aminokyselin (hnací síla) Inhibice srdečními glykosidy (digoxin, ouabain) Kontraktilita srdce blokování sodno-draselné pumpy silnější kontrakce

51 Sodno-draselná pumpa Kotransport - přenáší zároveň dvě substance. Za každé dva ionty draslíku přesunuté dovnitř buňky přenese tři ionty sodíku. V důsledku toho se mimochodem vytváří v buňce záporný potenciál a považuje se tedy za elektrogenní

52 Sodno-draselná pumpa Pracuje v určitém cyklu, trvajícím asi 10 milisekund. 1. Po vazbě tři iontů sodíku na vnitřní straně membrány se aktivuje ATPasová činnost enzymu, dojde k fosforylaci pumpy za spotřeby ATP. 2. Následně celá molekula změní konformaci a uvolní sodík ven z buňky na opačné straně membrány. 3. Tím se také uvolní místo pro ionty draslíku, přítomné v extracelulární tekutině. 4. Dva draselné ionty se navážou na sodno-draselnou pumpu, načež se sodno-draselná pumpa defosforyluje (odebere se fosfát z dříve navázaného ATP). 5. Po této defosforylaci se opět změní prostorové uspořádání molekuly, draslík je uvolněn do vnitřního prostoru buňky, čímž je umožněno navázat se třem iontům sodíku a celý cyklus se dostává na začátek.

53 Model čerpacího cyklu sodno-draselné pumpy

54 Model čerpacího cyklu sodno-draselné pumpy Klidový membránový potenciál eukaryotických buněk je výsledkem koordinované činnosti přenašečových proteinů a iontových kanálů. 1. Sodno-draselná pumpa koncentruje K + uvnitř buňky a Na + vně buňky (aktivní transport). 2. K + výtokové kanály umožňují K + difundovat ven z buňky po svém koncentračním gradientu (pasivní transport). 3. Negativní náboj zanechaný v cytoplasmě však brání odtoku K +, takže pouze velmi malé množství (1/100,000) K + se dostane ven z buňky. 4. Odtok malého množství K + je dostatečný k vytvoření membránového potenciálu (-70 mv) positivní vně a negativní uvnitř.

55 Uniport-symport-antiport

56 Symport pohon aktivního transportu druhé molekuly Na + gradient vytvořený Na + /K + ATPasou pohání transport glukózy do buňky pomocí Na + -poháněného glukózového symporteru. Energeticky příznivý pohyb Na + po svém elektrochemickém gradientu je spřažen s energeticky nepříznivým transportem glukózy proti svému koncentračnímu gradientu. Na + a glukosa se dobře vážou na přenašeč jen pokud jsou spolu Přenos glukosy a Na + do buňky

57 Na + -glukosový symport

58 Na + -glukosový symport Využití gradientu iontů pro sekundární transport Sodno draselná pumpa a symport Na-glukosa

59 Na + -glukosový symport AKTIVNÍ TRANSPORT - PRIMÁRNÍ A SEKUNDÁRNÍ Na + /K + -ATPasa a přenašeč glukozy symportem s Na +

60 Přenos glukosy přes střevní epitel Aktivní transport glukosový symport poháněný Na + (glukosa do buňky) Pasivní transport uniport (glukosa z buňky)

61 Přenos glukosy přes střevní epitel

62 Transport HCl do žaludku

63 Transport HCl do žaludku

64 Výměna ATP-ADP Mitochondriální transport

65 Mitochondriální transport - přenos citrátu

66 Oxidoredukční člunky Problém oxidace cytosolického NADH Glycerolfosfátový člunek Ztráta (FADH 2 místo NADH) rychlost Létací svaly hmyzu

67 Malát-aspartátový člunek Oxidoredukční člunky

68 Rostlinná vs. živočišná buňka

69 Transport přes membránu

70 Transport přes membránu

71 Transport přes membránu

72 Příklady přenašečových proteinů

73

74 Příklady přenašečových proteinů Pasivní transport Aktivní transport Přímo přes membránu Prostá difůze (kanály) Usnadněná difůze (přenašeče) Uniport Spřažený transport (symport, antiport) Sekundární transport Memb. váčky O 2, CO 2 mastné kyseliny glycerol močovina xxx xxx xxx xxx voda xxx xxx ionty (Na+, K+, H+, Ca+) xxx xxx xxx glukóza xxx xxx xxx xxx nukleotidy aminokyseliny proteiny cholesterol neuromediátory xxx xxx xxx xxx xxx

75 Transport membránových veziklů Schéma exo- a endocytozy

76 Transport membránových veziklů Schéma endocytozy

77 Fagocytóza Fagocytóza je endocytotický proces pohlcování pevných částic z okolního prostředí buňkami. Buňky se schopností fagocytózy mají na povrchu jen tenkou plazmalemu, mohou měnit svůj tvar a vytvářejí tzv. panožky, což jsou výběžky jejich těla. Panožkami částici obalí, vytvoří z plazmalemy váček vakuoly a vtáhnou ho do sebe. Do váčku vyloučí enzymy a částici stráví.

78 Pinocytóza druh endocytózy Buňka přijímá malé částice. Pinocytóza Absorbci mimobuněčných tekutiny Někdy jsou takto přepravovány i plyny např. kyslík a oxid uhličitý Není zaměřena na přepravovu specifických látek. Buňka přijímá okolní tekutinu včetně látek v ní rozpuštěných Proces pinocytózy vyžaduje adenosintrifosfát (ATP) Oproti fagocytóze se při pinocytóze vytváří velmi malé váčky Velikost obvykle 5 20 nanometrů..

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA 1 VÝZNAM TRANSPORTU PŘES MEMBRÁNY V MEDICÍNĚ Příklad: Membránový transportér: CFTR (cystic fibrosis transmembrane regulator) Onemocnění: cystická fibróza

Více

Vnitřní prostředí organismu. Procento vody v organismu

Vnitřní prostředí organismu. Procento vody v organismu Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí organismu Obsah vody v různých tkáních % VODY KREV 83% SVALY 76% KŮŽE 72% KOSTI 22% TUKY 10% ZUBNÍ SKLOVINA 2% 3 Vnitřní prostředí

Více

5. Lipidy a biomembrány

5. Lipidy a biomembrány 5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě

Více

RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, Přírodovědecká fakulta UP

RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, Přírodovědecká fakulta UP RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, Přírodovědecká fakulta UP Funkce cytoplazmatické membrány Cytoplazmatická membrána odděluje vnitřní obsah buňky od vnějšího prostředí. Pro většinu látek

Více

pátek, 24. července 15 BUŇKA

pátek, 24. července 15 BUŇKA BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné

Více

Lékařská chemie přednáška č. 3

Lékařská chemie přednáška č. 3 Lékařská chemie přednáška č. 3 vnitřní prostředí organismu transport látek v membráně Václav Babuška Vaclav.Babuska@lfp.cuni.cz Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí

Více

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ

BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za

Více

Membránové potenciály

Membránové potenciály Membránové potenciály Vznik a podstata membránového potenciálu vzniká v důsledku nerovnoměrného rozdělení fyziologických iontů po obou stranách membrány nestejná propustnost membrány pro různé ionty různá

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D. Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 4. Membránové proteiny Ivo Frébort Lipidová dvojvrstva Biologické membrány Integrální membránové proteiny Transmembránové proteiny Kovalentně ukotvené membránové

Více

Membránový transport příručka pro učitele

Membránový transport příručka pro učitele Obecné informace Membránový transport příručka pro učitele Téma membránový transport při sdělení základních informací nepřesahuje rámec jedné vyučovací hodiny. (Upozornění: Osmóza je uvedena podrobněji

Více

Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně

Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých

Více

Biologické membrány a bioelektrické jevy

Biologické membrány a bioelektrické jevy Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých

Více

Mendělejevova tabulka prvků

Mendělejevova tabulka prvků Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých

Více

Bunka a bunecné interakce v patogeneze tkánového poškození

Bunka a bunecné interakce v patogeneze tkánového poškození Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

MEMBRÁNOVÝ PRINCIP BUŇKY

MEMBRÁNOVÝ PRINCIP BUŇKY MEMBRÁNOVÝ PRINCIP BUŇKY Gorila východní horská Gorilla beringei beringei Uganda, 2018 jen cca 880 ex. Biologie 9, 2018/2019, Ivan Literák MEMBRÁNOVÝ PRINCIP BUŇKY MEMBRÁNOVÝ PRINCIP BUŇKY živá buňka =

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce

Více

Tělesné kompartmenty tekutin. Tělesné kompartmenty tekutin. Obecná patofyziologie hospodaření s vodou a elektrolyty.

Tělesné kompartmenty tekutin. Tělesné kompartmenty tekutin. Obecná patofyziologie hospodaření s vodou a elektrolyty. Obecná patofyziologie hospodaření s vodou a elektrolyty. 2. 4. 2008 Tělesné kompartmenty tekutin Voda je v organismu kompartmentalizovaná do několika oddílů. Intracelulární tekutina (ICF) zahrnuje 2/3

Více

FYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA

FYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA FYZIOLOGIE BUŇKY BUŇKA - nejmenší samostatná morfologická a funkční jednotka živého organismu, schopná nezávislé existence buňky tkáně orgány organismus - fyziologie orgánů a systémů založena na komplexní

Více

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc* Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická

Více

Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1.

Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1. Milada Roštejnská Buňka Helena Klímová Ledviny Pankreas Mozek Kost Srdce Sval Krev Spermie Vajíčko Obr. 1. Různé typy buněk (1. část) Typy buněk Prokaryotní buňka Eukaryotní buňka Jádro, jadérko a jaderná

Více

3) Membránový transport

3) Membránový transport MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných

Více

Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Dynamický fluidní model membrány 2008/11

Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Dynamický fluidní model membrány 2008/11 RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Rozšiřuje přednášky: Stavba cytoplazmatické membrány Membránový

Více

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek

3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných

Více

BIOMEMBRÁNY. Sára Jechová, leden 2014

BIOMEMBRÁNY. Sára Jechová, leden 2014 BIOMEMBRÁNY Sára Jechová, leden 2014 zajišťují ohraničení buněk- plasmatické membrány- okolo buněčné protoplazmy, bariéra v udržování rozdílů mezi prostředím uvnitř buňky a okolím a organel= intercelulární

Více

Nervová soustává č love ká, neuron r es ení

Nervová soustává č love ká, neuron r es ení Nervová soustává č love ká, neuron r es ení Pracovní list Olga Gardašová VY_32_INOVACE_Bi3r0110 Nervová soustava člověka je pravděpodobně nejsložitěji organizovaná hmota na Zemi. 1 cm 2 obsahuje 50 miliónů

Více

RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc 2008/11. *Ivana FELLNEROVÁ, PřF UP Olomouc*

RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc 2008/11. *Ivana FELLNEROVÁ, PřF UP Olomouc* RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc 2008/11 Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Rozšiřuje přednášky: Stavba cytoplazmatické membrány

Více

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Buňka Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,

Více

CZ.1.07/2.2.00/ Obecný metabolismus. Membránové kanály a pumpy (12).

CZ.1.07/2.2.00/ Obecný metabolismus. Membránové kanály a pumpy (12). mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus Membránové kanály a pumpy (12). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie, Přírodovědecká

Více

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)

Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,

Více

Úvod do biologie rostlin Transport látek TRANSPORT. Krátké, střední, dlouhé vzdálenosti

Úvod do biologie rostlin Transport látek TRANSPORT. Krátké, střední, dlouhé vzdálenosti Slide 1a TRANSPORT Krátké, střední, dlouhé vzdálenosti Slide 1b TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Slide 1c TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Kapalin,

Více

Bp1252 Biochemie. #11 Biochemie svalů

Bp1252 Biochemie. #11 Biochemie svalů Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické

Více

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii

Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.

Více

BIOLOGICKÉ ÚVOD ZÁKLADY MOLEKULÁRN RNÍ BIOLOGIE

BIOLOGICKÉ ÚVOD ZÁKLADY MOLEKULÁRN RNÍ BIOLOGIE BIOLOGICKÉ VĚDY ÚVOD ZÁKLADY MOLEKULÁRN RNÍ BIOLOGIE DOPORUČEN ENÁ LITERATURA Jan Šmarda BIOLOGIE PRO PSYCOLOGY A PEDAGOGY Jan Šmarda ZÁKLADY BIOLOGIE A ANATOMIE PRO STUDUJÍCÍ PSYCOLOGIE Zdeněk Wilhelm

Více

Úvod do buněčné a obecné fyziologie. Michal Procházka KTL 2. LF UK a FNM

Úvod do buněčné a obecné fyziologie. Michal Procházka KTL 2. LF UK a FNM Úvod do buněčné a obecné fyziologie Michal Procházka KTL 2. LF UK a FNM Buňka základní prvek živého organismu nejmenší entita, která může být označena jako živá membránou ohraničená jednotka naplněná koncentrovaným

Více

Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách

Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Difuze Vyrovnávání koncentrací látek na základě náhodného pohybu Osmóza (difuze rozpouštědla) Dva roztoky o rúzné koncentraci oddělené

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Biomembrány

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Biomembrány Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Biomembrány Biomembrány polopropustné membrány rozhraní, oddělující dvě kapalná (nebo plynná, ne v biochemii) prostředí, prostupné jenom

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace

Více

Lipidy a biologické membrány

Lipidy a biologické membrány Lipidy a biologické membrány Rozdělení a struktura lipidů Biologické membrány - lipidové složení Membránové proteiny Transport látek přes membrány Přenos informace přes membrány Lipidy Nesourodá skupina

Více

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů

d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů MBR2 2016 2) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů d) Kanály Rostliny: iontové kanály a akvaporiny

Více

Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK

Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK Fyziologie srdce Akční potenciál v srdci (pracovní myokard) Automacie srdeční aktivity a převodní systém Mechanismus

Více

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)

BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER) BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická Odborná biologie, část biologie - Společná pro

Více

Intermediární metabolismus. Vladimíra Kvasnicová

Intermediární metabolismus. Vladimíra Kvasnicová Intermediární metabolismus Vladimíra Kvasnicová Vztahy v intermediárním metabolismu (sacharidy, lipidy, proteiny) 1. po jídle (přísun energie z vnějšku) oxidace CO 2, H 2 O, urea + ATP tvorba zásob glykogen,

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová

(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová (VIII.) Časová a prostorová sumace u kosterního svalu Fyziologický ústav LF MU, 2016 Jana Svačinová Kontrakce příčně pruhovaného kosterního svalu Myografie metoda umožňující registraci kontrakce svalů

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

- je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného dělení)

- je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného dělení) FYZIOLOGIE BUŇKY Buňka -základní stavební a funkční jednotka těla - je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného

Více

Anorganické látky v buňkách - seminář. Petr Tůma některé slidy převzaty od V. Kvasnicové

Anorganické látky v buňkách - seminář. Petr Tůma některé slidy převzaty od V. Kvasnicové Anorganické látky v buňkách - seminář Petr Tůma některé slidy převzaty od V. Kvasnicové Zastoupení prvků v přírodě anorganická hmota kyslík (O) 50% křemík (Si) 25% hliník (Al) 7% železo (Fe) 5% vápník

Více

*Ivana FELLNEROVÁ, PřF UP Olomouc*

*Ivana FELLNEROVÁ, PřF UP Olomouc* Faktory ovlivňující transport přes membrány Velikost molekul: Malé molekuly jako voda, kyslík, kysličník uhličitý mohou volně procházet přes membrány, na rozdíl od většiny větších molekul. Rozpustnost

Více

9. Léčiva CNS - úvod (1)

9. Léčiva CNS - úvod (1) 9. Léčiva CNS - úvod (1) se se souhlasem souhlasem autora autora ál školy koly -techlogic techlogické Jeho Jeho žit bez bez souhlasu souhlasu autora autora je je ázá Nervová soustava: Centrální nervový

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce

Více

Mitochondrie Buněčné transporty Cytoskelet

Mitochondrie Buněčné transporty Cytoskelet Přípravný kurz z biologie Mitochondrie Buněčné transporty Cytoskelet 5. 11. 2011 Mgr. Kateřina Caltová Mitochondrie Mitochondrie semiautonomní organely vlastní mtdna, vlastní proteosyntetický aparát a

Více

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako

Více

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku

Hořčík. Příjem, metabolismus, funkce, projevy nedostatku Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán

Více

TRANSPORT PŘES BUNEČNÉ MEMBRÁNY

TRANSPORT PŘES BUNEČNÉ MEMBRÁNY TRANSPORT PŘES BUNEČNÉ MEMBRÁNY Plasmatická membrána - selektivně permeabilní bariera: esenciální molekuly (cukry, AA, lipidy.) vstupují do bunky; metabolické intermediáty zustávají v bunce; odpadní látky

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

Lipidy. biomembrány a membránový transport

Lipidy. biomembrány a membránový transport Lipidy biomembrány a membránový transport - velmi nesourodá skupina Lipidy - def. podle fyzikálních vlastností - rozpustné v nepolárních a nerozpustné v polárních rozpouštědlech -jednoduché lipidy - acylglyceroly

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Metabolismus bílkovin. Václav Pelouch

Metabolismus bílkovin. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)

Více

Transport přes membránu

Transport přes membránu Transport přes membránu Datum: 30. 12. 2012 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_262 Škola: Akademie - VOŠ,

Více

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý

TUKY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2013. Ročník: devátý TUKY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 15. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s lipidy. V rámci tohoto

Více

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)

Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard) Fyziologie svalstva Svalstvo patří ke vzrušivým tkáním schopnost kontrakce a relaxace veškerá aktivní tenze a aktivní pohyb (cirkulace krve, transport tráveniny, řeč, mimika, lidská práce) 40% tělesné

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy

Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy Dýchací řetězec, oxidativní fosforylace, mitochondriální transportní systémy JAN ILLNER Dýchací řetězec & oxidativní fosforylace Tvorba energie v živých systémech ATP zdroj E pro biochemické procesy Tvorba

Více

Regulace metabolických drah na úrovni buňky

Regulace metabolických drah na úrovni buňky Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace

Více

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY

PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování

Více

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI

METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie

Více

Funkční anatomie ledvin Clearance

Funkční anatomie ledvin Clearance Funkční anatomie ledvin Clearance doc. MUDr. Markéta Bébarová, Ph.D. Fyziologický ústav Lékařská fakulta Masarykovy univerzity Tato prezentace obsahuje pouze stručný výtah nejdůležitějších pojmů a faktů.

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Nervová soustava Společná pro celou sadu oblast

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Lékařská chemie a biochemie modelový vstupní test ke zkoušce

Lékařská chemie a biochemie modelový vstupní test ke zkoušce Lékařská chemie a biochemie modelový vstupní test ke zkoušce 1. Máte pufr připravený smísením 150 ml CH3COOH o c = 0,2 mol/l a 100 ml CH3COONa o c = 0,25 mol/l. Jaké bude ph pufru, pokud přidáme 10 ml

Více

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus

Více

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz)

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Biochemie Napsal uživatel Marie Havlová dne 8. Únor 2012-0:00. Sylabus předmětu Biochemie, Všeobecné lékařství, 2.

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Katabolismus - jak budeme postupovat

Katabolismus - jak budeme postupovat Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 2. PLASMATICKÁ MEMBRÁNA

LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 2. PLASMATICKÁ MEMBRÁNA LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 2. PLASMATICKÁ MEMBRÁNA TEORETICKÝ ÚVOD: Cytoplasmatická membrána je lipidová dvouvrstva o tloušťce asi 5 nm oddělující buňku od okolního prostředí. Nejvíce jsou v

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Základní stavební kameny buňky Kurz 1 Struktura -7

Základní stavební kameny buňky Kurz 1 Struktura -7 Základní stavební kameny buňky Kurz 1 Struktura -7 vladimira.kvasnicova@lf3.cuni.cz Oddělení biochemie - 4. patro pracovna 411 Doporučená literatura kapitoly z biochemie http://neoluxor.cz (10% sleva přes

Více

B4, 2007/2008, I. Literák

B4, 2007/2008, I. Literák B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované

Více

Schéma epitelu a jeho základní složky

Schéma epitelu a jeho základní složky Schéma epitelu a jeho základní složky Těsný spoj Bazální membrána Transcelulární tok Paracelulární tok LIS - Laterální intercelulární prostor Spojovací komplexy epiteliálních buněk Spojovací komplexy epiteliálních

Více

Intracelulární Ca 2+ signalizace

Intracelulární Ca 2+ signalizace Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární

Více

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY

Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Plasma a většina extracelulární

Plasma a většina extracelulární Acidobazická rovnováha Tato prezentace je přístupná online Fyziologické ph Plasma a většina extracelulární tekutiny ph = 7,40 ± 0,02 Význam stálého ph Na ph závisí vlastnosti bílkovin aktivita enzymů struktura

Více

Testové úlohy aminokyseliny, proteiny. post test

Testové úlohy aminokyseliny, proteiny. post test Testové úlohy aminokyseliny, proteiny post test 1. Které aminokyseliny byste hledali na povrchu proteinů umístěných uvnitř fosfolipidových membrán a které na povrchu proteinů vyskytujících se ve vodném

Více

OXIDATIVNÍ FOSFORYLACE

OXIDATIVNÍ FOSFORYLACE OXIDATIVNÍ FOSFORYLACE OBSAH Mitochondrie Elektronový transport Oxidativní fosforylace Kontrolní systém oxidativního metabolismu. Oxidace a syntéza ATP jsou spojeny transmembránovým tokem protonů Dýchací

Více

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu

>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metabolusmus lipidů - katabolismus Trávení, aktivace a transport tuků Oxidace mastných kyselin Ketonové látky Úvod Oxidace MK je centrální

Více

Energetika a metabolismus buňky

Energetika a metabolismus buňky Předmět: KBB/BB1P Energetika a metabolismus buňky Cíl přednášky: seznámit posluchače s tím, jak buňky získávají energii k životu a jak s ní hospodaří Klíčová slova: energetika buňky, volná energie, enzymy,

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více