Osnova. Základní vlastnosti biologických membrán Transport látek přes membránu
|
|
- Tomáš Procházka
- před 8 lety
- Počet zobrazení:
Transkript
1
2 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
3 Membrány obsahují 1. sensory které umožňují reakci buňky na podněty z okolí 2. pumpy, přenašeče a kanály pro transport látek skrz. Mechanické vlastnosti membrán jsou obdivuhodné (např. Schopnost růstu a změny tvaru bez ztráty integrity
4 Membrány = lipidová dvojvrstva + proteiny
5 Self-sealing property volné konce jsou rychle odstraněny energeticky nevýhodné (kontakt hydrofobníchčástí s vodou) The lipids will spontaneously seal and will always form a closed compartment. A small tear will be repaired. A larger tear may lead to the break up of the membrane into separate vesicles.
6 Model membrány jako fludní mozaiky
7 3 základní stavební kameny lipidových dvouvrstev
8 Steroly se vmezeřují do prostor mezi fosfolipidy zvyšují tuhost dvouvrstvy, snižují fluiditu a permeabilitu.
9 Lipidová dvouvrstva je složením ASYMETRICKÁ! Nové membr. lipidy vznikají v ER, např PC a spol na cytosolické straně - flipasy Glykolipidy dosyntetizovány v Golgi, pouze na vnější straně (žádné flipasy) Intracellular signal transduction
10 Transmembránové proteiny
11 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
12 Co prochází membránou? Runar P. Collander ( ) membránová permeabilita buněk Chara sp. (30. léta)
13 Co prochází membránou samo od sebe? koef. membr. permeability P s = k*v/t 0.5 A objem poločas dosažení rovnováhy povrch - nenabité molekuly!
14 Can I get through please? Depends 12_02_diffusion_rate.jpg YES YES Who are you? How big are you? Are you charged? NO NO
15 Membránový tranport Tvorba turgoru (většinou K+) Příjem minerálů a živin Vyloučení odpadních produktů Vyloučení toxických látek Distribuce metabolitů Kompartmentalizace metabolitů Přenos energie Přenos signálů
16 Membránové transportery obecně: Pumpy pohon ATP, PP Primární aktivní tranport Přenašeče (Carriers) pohon gradienty na membráně (pmf) Sekundární aktivní transport Pasivní transport (usnadněná difuze) Kanály pohon gradienty na membráně Pasivní transport (usnadněná difuze)
17 Kapacita membránových transportů Pumpy: kovalentní reakce 10 2 s -1 Přenašeče: změny konformace 10 3 s -1 Kanály: ani jedno z toho s srv. zastoupení v buňkách
18 Animal vs Plant cells 12_18_solute_transport.jpg
19 Membránové ATPázy typické pro rostliny
20 Membránový potenciál Vm je rozdíl elektrických potenciálů dvou vodných roztoků iontů oddělených membránou. plasmalema = -150 mv tonoplast = -20 mv
21 Dominantním zdrojem membránového potenciálu Vm rostlin jsou protonové pumpy. Proto jsou protonové pumpy elektrogenní.
22 Membránový potenciál vytvářený protonovou pumpou je součástí tzv. proton-motivní síly (pmf), jejímž zdrojem je také koncentrační rozdíl protonů. Vm a pmf jsou klíčovou složkou všech transportních dějů na membráně.
23 Protože platí, že 1 stupňový rozdíl ph odpovídá asi 59mV, lze vyjádřit netermodynamicky pmf=59.1x(ph o -ph c )+Vm při průměrném Vm -120 až -150 mv a rozdílu ph ve stěně (ph5) a v cytoplasmě (ph7) vychází pak pmf rost. b. až -268mV.
24 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
25 Membránové transportery konkrétně: Pumpy pohon ATP, PP pro rostliny typické H+ pumpy plasmalemmy, tonoplastu Přenašeče Kanály
26 Plasmalemma: P H+-ATPáza Arabidopsis: genová rodina AHA (11 genů!)
27
28 Proč má Arabidopsis tolik AHA genů? housekeeping AHA1 (shoots), AHA2 (roots) všude, ale málo (regulace podmínkami?) část. orgán. specif. prašníky a pyl AHA5 AHA3 (floem), AHA11 (list), AHA4 (kořen) AHA6, AHA7,AHA8,AHA9 obal semene AHA10 esenciální mutantní fenotyp (AHA4 dominant. alela: salt sens., aha10: transparent testa) v DRMs ( raftech ) (Gaxiola et al., FEBS Lett. 2007)
29 AHA3 exprese ve floému (Myc-tag)
30 AHA10 v semeni GUS reporter.
31 Posttranslační regulace P-ATPázy: fosforylace a protein (transkripční regulace je, ale nevýrazná!)
32 Agonista P H+-ATPázy fusicoccin (ireversibilní) z houby Fusicoccum amygdali působí trvalé otevření průduchů a uschnutí. Inhibitorem všech! ATPáz P- typu je ortovanadát
33 možný mechanismus působení fusicoccinu
34 Fyziologické signály regulující fosforylaci? Blue light - phytotropin - aktivace ATPázy- (otevření průduchů špenátu) inaktivace ATPázy - (snížení turgoru - pohyb listů fazolu) Sucho - ABA - defosforylace - inaktivace ATPázy- (zavření průduchů) též odpověď na cukry... v růz. systémech - kontext ovlivňuje výsledek!
35 Lokalizace H-ATPasy v pylové láčce tabáku
36 Gradienty ph v rostoucích buňkách: příklad pyl. láček a koř. vlásků
37
38 Ca- ATPasa Ca2+ Ca2+ Ca2+ (další pumpa P- typu)
39 Dva typy rostlinných Ca2+ pump 1. IIB (ACA) - v PM, ale i ER, plastidu a tonoplast.mají autoinhibiční regulační doménu (fosforylace, vazba CaM). Obě jsou P-typu, tedy inhibovány ortovanadátem. 2. IIA (ECA) - v ER, není aktivována CaM.
40 V-H+ATPasa
41
42 Připomeňme si: obrátíme-li elektromotor, dostaneme dynamo. F o F 1 ATP synthasa V - ATPasa
43 Specifické inhibitory V H+ATPázy Streptomyces Concanamycin A (váže se na Vo podjednotku c)
44 det/cop mutanti Dark Light Dark Light Wild Type det Mutant
45 det3 je mutant C podjednotky V-H+-ATPázy
46 V-H+ATPasa mutace letální pro pyl 13 podjednotek, 27 genů... kolik kombinací??
47 NaCl Rozdíly isoforem: např. regulace podmínkami E-subunit induk. stresem
48 Další možné role? kvasinky - homotypic vacuole fusion Drosophila - synaptic vesicle fusion savci - A4 jako ph sensor Arabidopsis - VHA-B1 v Glu signalling!! (Cho, Yoo, Sheen 2006)
49 V-H+-PPasa (membránová pyrofosfatáza) rostlinná specialita v tonoplastu užívá jako zdroj energie pyrofosfát PPi ("odpad" při polymeraci DNA,RNA a biosyntetických proc. např. ADPG či UDPG) příbuzné pumpy ale i v membránách bakterií, hmyzu a parazitů
50 2 typy PPasy Typ I závislý na cytosolickém K + středně inhibovány Ca 2+ Typ II K + insenzitivní extrémně Ca 2+ senzitivní
51 Evoluce rostlinné vakuoly je těsně spojena s evolucí V H+-PPasy, která je nutnou součástí funkčního tonoplastu (minoritně je ovšem lokalizována i do PM) za normálních podmínek i ve stresu.
52 AVP1 - vak. Ppasa typ I část proteinu v plasmalemě role v transportu auxinu? overexprese zvyšuje rezistenci k sol. stresu...
53 ABC transportery (ATP Binding Cassette) fungují nejen jako na ATP závislé pumpy, ale také jako iontové kanály, či jejich regulátory.
54 ATP vazebná místa.
55 Fungují jako pumpy (tj prochází substrát hydrofilní doménou uvnitř ABC) či "flipázy" (substrát je během přenosu překlopen )? jejich specifita kolísá a jsou klíčové pro řadu detoxifikačních transportů zvl. do vakuoly.
56 ABC a kutikula: CER5 kóduje ABC transp. wt cer5
57 ABC a transport IAA
58 Modely transportu auxinu Klasicky: přenašeče PIN a AUX/LAX
59 Co dělají PGP (ABC) transportery?
60 ABC a IAA "fenotypy" jen malé
61 Lokalizace klasických PIN IAA výtokových přenašečů není narušena
62 PGP1 je nepolárně lokalizován v mladých pletivech, ale polárně v diferencovaných b.kořene (f). Jeho exprese je aktivována IAA
63 Membránové transportery konkrétně : Pumpy Přenašeče saturovatelné, poháněny gradienty (pmf) Kanály
64 Two forces may be at work in passive transport - if we are dealing with a charged solute across the membrane. 12_08_electroch_gradient.jpg 1) CONCENTRATION 2) MEMBRANE POTENTIAL
65 Přenašeče Hlavní anorganické živiny (NH4+, NO3-, Pi, K+, SO42- Uptake dalších iontů (Cl-) Organické látky (cukry (mono- a di-), aa, baze)
66 Saturační kinetika přenašeče
67 Model obecného přenašeče
68 Typy přenašečů uniport symport antiport Pasivní transport Sekundární aktivní transport Uniport Symport Antiport A A B A B
69 Struktura obecného přenašeče (Major facilitator superfamily)
70 Jak studovat transportní procesy?
71 Heterologní exprese: oocyty, kvasinky
72 Animal vs Plant cells 12_18_solute_transport.jpg
73 Symport H+/cukry při plnění floemu sucrose-h+ symporters
74 Arabidopsis SUC2 v průvodních buňkách
75 Bramborový SUT1 v sítkovicích
76 Proč různé přenašeče téhož iontu? Jemné ladění! Regulace aktivity přenašečů: Transkripční (pravděpodobně převládající) Posttranlační - (transinhibice)
77 Jsou i výjimky z pohonu H+ Na + NO 3- coupling
78 Přenašeče auxinu (IAA) ABC transportery (MDR, PGP) PIN AUX/LAX
79 Kudy auxin teče? Přenašeče (efflux carriers): AUX1/LAX1 PINs inhibice fytotropiny (NPA)
80 IAA influx: AUX1 Swarup et al. 2001
81 PIN přenašeče Fenotyp: jako inhibice transportu (efflux) auxinu působením NPA! pin1 mutant
82 PIN proteiny
83 Lokalizacečlenů PIN rodiny (I. Billou, K. Palme, J. Friml et al.)
84 Co pohání transport auxinu???? (Samozřejmě) žádá funkční membránu Interakce s řadou proteinů možná role ABC transportérů (PGP) K+ kanálů (TRH1) Ppasa (AtVP1) a dalších...
85 Membránové transportery konkrétně : Pumpy Přenašeče Kanály řádově vyšší propustnost! tedy je jich málo, biochemie nemusí být dost citlivá... elektrofyziologie!
86
87 Patch-clamp
88 Micrograph of a patch pipette attached to the surface of a barley aleurone cell protoplast. (Photo courtesy of J. Schroeder and D. Bush.)
89 Další možnosti: Voltage clamp Planární lipidové dvojvrstvy
90 Patch-clamp techniky mohou Závislost membránového potenciálu na čase I-V křivky měřit i 1 kanál
91 I-V křivky
92 I-V křivky (měřený) kationty ven anionty dovnitř anionty ven kationty dovnitř (vložený na membránu)
93 Měření selektivity kanálů - závislost I/V na složení média outside-out patch 100 mm KCl (in and out) 100 mm KCl in 10 mm KCl out
94 Měření selektivity kanálů - závislost I/V na složení média (outside-out patch)
95 Co můžeme měřit - shrnutí Recordings of K+ currents in whole cells and in single K+-selective channels of guard cell protoplasts. (1) K+ currents recorded in the whole-cell configuration (see Web Figure 6.2.B) when the membrane potential is clamped at different values. Upward deflections show outward currents; downward deflections show inward currents. K+ concentrations were 105 mm in the pipette and cytoplasm, and 11 mm in the bathing solution outside the cell. (2) Data from the same experiment plotted as an I/V (current/voltage) curve, before and after the addition of Ba2+, an ion that blocks K+ channels. (3) Inward K+ current through a single channel in a membrane patch. (From Schroeder et al )
96 Různé způsoby regulace otvírání a zavírání kanálů 12_24_Gated _ion_chan.jpg
97 Iontové kanály plasmalemmy: regulace napětím (voltage gated) I křivky whole cell I-V Může být i regulace ligandem (ligand gated) nebo obojím
98 Závislost otvírání obec. kanálu na napětí
99 K+ kanály v Arabidopsis K až 10 % sušiny rostlin 35 genů pro K+ transportní systém 15 kanálů Plasmalema (shaker, TPK4) Tonoplast ( ostatní TPK, Kir)
100 inward rectifying K+ kanál aktivován při hyperpolarizaci membrány (Vm < -120mV) ve svěracích buňkách regulován G proteiny a fosforylací inhibován zvýšenými konc cytosolického Ca2+ inhibitor - tetraethylammonium
101 K+ kanály typu shaker (inward rectifying) Tetramer! + regulační podjednotky! + fosforylace!! (ABA sig.?)
102 KAT1 K+ kanály typu shaker (inward rectifying) AKT1
103 KCO1 (outward rectifying K+) regulace Ca2 +! aktivován při depolarizaci membrány inhibice Ba2+, vápník snižuje prahové napětí pro aktivaci
104 GORK (guard cell outward rectifying K+ channel, shaker) (exprese v oocytech)
105 Funkce K+ kanálů in planta
106 Na napětí nezávislý (a méně selektivní) Na+ kanál příjem sodíku??
107 Ca2+ kanály plasmalemy aktivované hyperpolarizací mechanosenzitivní nebo induk. elicitory (ROS!) selektivnější (Ca; Ca, K; Ca, Ba) aktivované depolarizací (např. DAC, rca) různě selektivní (Ca; Ca, K; Ca, Ba, Sr, Mg; maxi-cation Rb až Mn) nezávislé na napětí
108 Ca2+ kanály plasmalemy (wheat root plasma membrane, aktivace depolarizací)
109 ... ale buňka má vápníkových kanálů mnohem víc, a k tomu ještě pumpy... (i na vakuole)
110 Iontové kanály tonoplastu a dalších endomembrán
111 Tonoplastový kanál pro jednomocné kationty (K+): regulace ph a Ca 2+ FV fast vacuolar channel: aktivace ph, inhibice Ca2+ VK vacuolar K+: inhibice ph, aktivace Ca2+ (zřejmě TPK1)
112 Vápníkové kanály tonoplastu a dalších endomembrán tonoplastový, aktivace IP3 tonoplastový, aktivace cadpr ( ryanodin. receptor ) voltage-activated, Ca2+ insensitive voltage-activated Ca2+ sensitive (SV, slow vacuolar, TPC1)
113 CICR calcium induced calcium release Ca2+ stimuluje SV calcium channel
114 Aniontové kanály (Cl-) plasmalemmy (svěracích buněk) rychlý (R) pomalý (S) aktivace Ca2+!
115 Tonoplastové kanály pro malát (VMAL) Rostlinná specialita! CAM rostliny! (Kalanchoe) malát 10 mm 20 mm 50 mm 100 mm
116 Tonoplastové kanály pro malát (VMAL) (pohon H+ gradientem)
117 Kanály v regulaci vývojových dějů Příklad: vrcholový růst Zygota Fucus - relokalizace Ca2+ kanálů jako 1. krok
118 Gradienty Ca2+ a ph při vrcholovém růstu 100 nm Ca 450 nm Ca Fucus rhizoid... dtto kořenové vlásky... pylová láčka (Feijo et al.)
119 Obecný rys vrcholového růstu?... dále sekreční dráha a cytoskelet... (také TRH1 K+ transporter)
120 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
121 Transport vody přes membrány: aquaporiny
122 ... ale musí to jít rychle!
123 změny osmolarity Měření transportu vody
124 Jak měřit turgor?
125
126 Tonoplast Intrinsic Proteins různé TIPs v různých typech vakuol! Arabidopsis: 35 genů, 10 prot. ve vakuole, kolik kombinací?
127 K čemu jsou akvaporiny? SPH simple permeability hypothesis regulace buněčného objemu (jsou nutné?) homeostáze objemu cytoplasmy (model??) zprostředkování pohybu vody... radiálně kořenem (ALE antisense PIP mutanti?) Vnímání a regulace osmotického (turgorového) tlaku TIPs přenášejí i NH3! (Hill et al. 2004, Martinoia et al. 2007)
128 Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk
129 Stomatologie
130 Průduchy: integrace transportních systémů
131
132 Přenašeče, pumpy a kanály - Integrace
133 Otvírání H+ ATPasy (p) pmf hyperpolarizace K+ uptake přes inward rectifier (k) Cl- uptake (asi symportem s H+) (t) a NO3- uptake (symport s H+) (t) produkce malátu (fotosyntesa) pmf na tonoplastu (H+ ATPasa, Ppasa p) Cl- do vakuoly po spádu (k) malát do vakuoly (k, t) H+/K+ antiport (t) voda jde za solemi do vakuoly zvýšení objemu (vakuola) OTEVŘENÍ pumpa, tranporter, kanál
134 Zavírání výtok K+ z vakuoly po spádu a depolarizace (k) výtok Cl- po spádu (k, t) otevření aniont. kanálů depolarizuje plasmalemu (k) aktivace outward rectifying K+ kanálu (k) voda následuje (vytéká ven) snížení objemu ZAVŘENÍ pumpa, tranporter, kanál
135 Signalizace a regulace ABA, modré světlo, CO 2 zprostředkování změnami v ph a Ca 2+ Signální molekuly - ROS, NO, sfingosin-1- fosfát a další fosfolipidy
136 The Clickable Guard Cell: Electronically linked Model of Guard Cell Signal Transduction Pathways
Membránové transportery - pokračování:
Membránové transportery - Pumpy pohon ATP, PP pokračování: pro rostliny typické H+ pumpy plasmalemmy, tonoplastu Přenašeče Kanály Plasmalemma: P H+-ATPáza Arabidopsis: genová rodina AHA (11 genů!) Gradienty
Membrány obsahují 1. sensory které umožňují reakci buňky na podněty z okolí 2. pumpy, přenašeče a kanály protransport látek skrz.
Membrány obsahují 1. sensory které umožňují reakci buňky na podněty z okolí 2. pumpy, přenašeče a kanály protransport látek skrz. Mechanické vlastnosti membrán jsou obdivuhodné (např. Schopnost růstu a
Osnova. Základní vlastnosti biologických membrán Transport látek přes membránu
Osnova Základní vlastnosti biologických membrán Transport látek přes membránu úvod pumpy přenašeče kanály transport vody Membránový transport v praxi regulace otevírání a zavírání svěracích buněk Membrány
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA 1 VÝZNAM TRANSPORTU PŘES MEMBRÁNY V MEDICÍNĚ Příklad: Membránový transportér: CFTR (cystic fibrosis transmembrane regulator) Onemocnění: cystická fibróza
3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek
MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných
3) Membránový transport
MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných
d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů
MBR2 2016 2) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů d) Kanály Rostliny: iontové kanály a akvaporiny
Rostlinná cytologie. Přednášející: RNDr. Jindřiška Fišerová, Ph.D. Rostlinná cytologie, Katedra experimentální biologie rostlin PřF UK
Rostlinná cytologie MB130P30 Přednášející: RNDr. Kateřina Schwarzerová,PhD. RNDr. Jindřiška Fišerová, Ph.D. Přijďte na katedru experimentální biologie rostlin vypracovat svou bakalářskou nebo diplomovou
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Průduchy regulace příjmu CO 2
Průduchy regulace příjmu CO 2 Průduchy: regulace transpiračního proudu / výměny plynů transpiration photosynthesis eartamerica.com Průduchy svěrací buňky - zavírání při ztrátě vody (poklesu turgoru) -
Vodní režim rostlin. Transport kapalné vody
Vodní režim rostlin Transport kapalné vody Transport vody přes membránu Příjem vody kořenem Radiální transport vody v kořenech Kořenový vztlak Příjem vody nadzemníčástí Základní charakteristiky transportu
5. Lipidy a biomembrány
5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě
Úvod do biologie rostlin Transport látek TRANSPORT. Krátké, střední, dlouhé vzdálenosti
Slide 1a TRANSPORT Krátké, střední, dlouhé vzdálenosti Slide 1b TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Slide 1c TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Kapalin,
Transport živin do rostliny. Radiální a xylémový transport. Mimokořenová výživa rostlin.
Transport živin do rostliny Radiální a xylémový transport. Mimokořenová výživa rostlin. Zóny podél kořene, jejich vztah s anatomií a příjmem živin Transport iontů na střední vzdálenosti Radiální transport
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku
5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování
Příběh pátý: Auxinová signalisace
Příběh pátý: Auxinová signalisace Co je auxin? Derivát tryptofanu Příbuzný serotoninu a melatoninu Všechny deriváty přítomny jak u živočichů, tak u rostlin IAA Serotonin Serotonin: antagonista auxinu Přítomen
Vnitřní prostředí organismu. Procento vody v organismu
Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí organismu Obsah vody v různých tkáních % VODY KREV 83% SVALY 76% KŮŽE 72% KOSTI 22% TUKY 10% ZUBNÍ SKLOVINA 2% 3 Vnitřní prostředí
10. Minerální výživa rostlin na extrémních půdách
10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin
Auxin - nejdéle a nejlépe známý fytohormon
Auxin - nejdéle a nejlépe známý fytohormon Auxin je nejdéle známým fytohormonem s mnoha popsanými fyziologickými účinky Darwin 1880, Went 1928 pokusy s koleoptilemi trav a obilovin prokázali existenci
Membránové potenciály
Membránové potenciály Vznik a podstata membránového potenciálu vzniká v důsledku nerovnoměrného rozdělení fyziologických iontů po obou stranách membrány nestejná propustnost membrány pro různé ionty různá
Síra. Deficience síry: řepka. - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH
Síra řepka - 0,2-0,5% SH, nedostatek při poklesu obsahu síranů pod 0,01% SH - toxicita není příliščastá (nad 4000 mg SO 4 2- l -1 ), poškození může vyvolat SO 2 (nad 1-1,5 mg m 3 1 ) fazol Deficience síry:
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
Tělesné kompartmenty tekutin. Tělesné kompartmenty tekutin. Obecná patofyziologie hospodaření s vodou a elektrolyty.
Obecná patofyziologie hospodaření s vodou a elektrolyty. 2. 4. 2008 Tělesné kompartmenty tekutin Voda je v organismu kompartmentalizovaná do několika oddílů. Intracelulární tekutina (ICF) zahrnuje 2/3
4) Reakce rostlin k modrému světlu
SFZR 1 2015 4) Reakce rostlin k modrému světlu a) Fotobiologie reakcí zprostředkovaných modrým světlem Whitelam GC, Halliday KJ (eds) (2007) Light and Plant Development Blackwell Publishing Briggs WR,
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
Úvod do biologie rostlin Buňka ROSTLINNÁ BUŇKA
Slide 1a ROSTLINNÁ BUŇKA Slide 1b Specifické součásti ROSTLINNÁ BUŇKA Slide 1c Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna Slide 1d Specifické součásti ROSTLINNÁ BUŇKA buněčná stěna plasmodesmy Slide
Rostlinná buňka jako osmotický systém
Rostlinná buňka jako osmotický systém Voda se do rostlinné buňky i z ní pohybuje pouze pasivně, difusí. Hnací silou difuse vody jsou rozdíly tzv. vodního potenciálu ( ). Vodní potenciál je chemický potenciál
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
TRANSPORT PŘES BUNEČNÉ MEMBRÁNY
TRANSPORT PŘES BUNEČNÉ MEMBRÁNY Plasmatická membrána - selektivně permeabilní bariera: esenciální molekuly (cukry, AA, lipidy.) vstupují do bunky; metabolické intermediáty zustávají v bunce; odpadní látky
Lipidy a biologické membrány
Lipidy a biologické membrány Rozdělení a struktura lipidů Biologické membrány - lipidové složení Membránové proteiny Transport látek přes membrány Přenos informace přes membrány Lipidy Nesourodá skupina
7) Dormance a klíčení semen
2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive
Dusík. - nejdůležitější minerální živina (2-5% SH)
Dusík - nejdůležitější minerální živina (2-5% SH) - dostupnost dusíku ovlivňuje: - produkci biomasy a její distribuci - ontogenetický vývoj - hormonální rovnováhu (cytokininy, ABA) - rychlost fotosyntézy
Vakuola. Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich
Vakuola Dutina uvnitř protoplastu, která u dospělých buněk zaujímá 30 až 90 % jejich objemu. Je ohraničená na svém povrchu membránou zvanou tonoplast. Tonoplast je součástí endomembránového systému buňky
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 4. Membránové proteiny Ivo Frébort Lipidová dvojvrstva Biologické membrány Integrální membránové proteiny Transmembránové proteiny Kovalentně ukotvené membránové
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Dynamický fluidní model membrány 2008/11
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Rozšiřuje přednášky: Stavba cytoplazmatické membrány Membránový
Růst a vývoj rostlin - praktikum MB130C78
Růst a vývoj rostlin - praktikum MB130C78 Blok 3 Role aktinového cytoskeletu v morfogenezi rostlinných buněk - analýza fenotypu Úlohy: 1. Kvantifikace počtu zkroucených a správně tvarovaných trichomů u
FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz
FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.
Endosomy, vakuola a ti druzí
Endocytóza Endosomy, vakuola a ti druzí Endocytické váčky mají clathrinový obal Various receptors and clathrin protein coats recognize vesicle types, and these are delivered (along cytoskeleton pathways?)
Biologie 31 Příjem a výdej, minerální výživa, způsob výživy, vodní režim
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 31 Příjem a výdej, minerální výživa, způsob výživy, vodní režim Ročník
Transport přes membránu
Transport přes membránu Datum: 30. 12. 2012 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_262 Škola: Akademie - VOŠ,
6. Mikroelementy a benefiční prvky. 7. Toxické prvky Al a těžké kovy, mechanismy účinku, obranné mechanismy rostlin
1. Základní úvod do problematiky Historie studia minerální výživy rostlin, obecné mechanismy příjmu minerálních živin, transportní procesy na membránách. 2. Příjem minerálních živin kořeny rostlin a jejich
5) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy
SFZR 1 2014 5) Fyziologie rostlinných hormonů auxinů: receptory a signální dráhy a) Auxinový receptor TIR1 b) Auxinový receptor ABP1 c) Kooperace receptorů TIR1 a ABP1 Estelle M et al. (2011) Auxin Signaling:
Biologické membrány a bioelektrické jevy
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky Reakce průduchů na světlo
Vodní režim rostlin Mechanizmy pohybu průduchů Obecné charakteristiky Reakce průduchů na světlo Reakce průduchů na vodní stres Reakce průduchů na vlhkost vzduchu Reakce průduchů na CO 2 Reakce průduchů
Transport v rostlinách. Kateřina Schwarzerová Olga Votrubová
Transport v rostlinách Kateřina Schwarzerová Olga Votrubová Transport v rostlinách Rostlinou jsou transportovány především následující látky: Voda: přijímána většinou kořeny Minerální látky: obvykle přijímány
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Minerální výživa na extrémních půdách. Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů
Minerální výživa na extrémních půdách Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů Procesy vedoucí k acidifikaci půd Zvětrávání hornin s následným vymýváním kationtů (draslík,
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc 2008/11. *Ivana FELLNEROVÁ, PřF UP Olomouc*
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie PřF UP Olomouc 2008/11 Prezentace navazuje na základní znalosti z biochemie (lipidy, proteiny, sacharidy) Rozšiřuje přednášky: Stavba cytoplazmatické membrány
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
Endosomy, vakuola a ti druzí
Endocytóza Endosomy, vakuola a ti druzí Endocytické váčky mají clathrinový obal Various receptors and clathrin protein coats recognize vesicle types, and these are delivered (along cytoskeleton pathways?)
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Půda - 4 složky: minerálníčástice organickéčástice voda vzduch
Půda - 4 složky: minerálníčástice organickéčástice voda vzduch kameny a štěrk písek (částice o velikosti 2-0,05mm) prachovéčástice (0,05-0,002mm) jílovéčástice (méně než 0,002mm) F t = F m + F d F d =
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, Přírodovědecká fakulta UP
RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, Přírodovědecká fakulta UP Funkce cytoplazmatické membrány Cytoplazmatická membrána odděluje vnitřní obsah buňky od vnějšího prostředí. Pro většinu látek
MEMBRÁNOVÝ TRANSPORT
MEMBRÁNOVÝ TRANSPORT Membránový transport Soubor procesů umožňujících látkám různého typu překonat barieru biologické membrány. Buněčné membrány jsou polopropustné (semipermeabilní) Volný přístup přes
Schéma epitelu a jeho základní složky
Schéma epitelu a jeho základní složky Těsný spoj Bazální membrána Transcelulární tok Paracelulární tok LIS - Laterální intercelulární prostor Spojovací komplexy epiteliálních buněk Spojovací komplexy epiteliálních
MBRO ) Membránový transport
MBRO1 2018 3) Membránový transport 1 d) Kanály e) Přenašeče a co-transportéry, mediátory difúze a sekundární aktivní transport f) Intracelulární transport proteinů g) Sekreční dráha proteinů h) Rozpad
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
VAKUOLY - voda v rostlinné buňce
VAKUOLY - voda v rostlinné buňce Úvod: O vakuole: Vakuola je membránová struktura, která je součástí většiny rostlinných buněk. Může zaujímat 30-90% objemu buňky. Vakuola plní v rostlinné buňce mnoho důležitých
Obsah vody v rostlinách
Transpirace 1/39 Obsah vody v rostlinách Obsah vody v protoplazmě (její hydratace) je nezbytný pro normální průběh životních funkcí buňky. Snížení obsahu vody má za následek i omezení životních dějů (pozorovatelné
BIOMEMBRÁNY. Sára Jechová, leden 2014
BIOMEMBRÁNY Sára Jechová, leden 2014 zajišťují ohraničení buněk- plasmatické membrány- okolo buněčné protoplazmy, bariéra v udržování rozdílů mezi prostředím uvnitř buňky a okolím a organel= intercelulární
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
Schéma rostlinné buňky
Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř
Vápník. Deficience vápníku: - 0,4-1,5% DW. - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM)
Vápník - 0,4-1,5% DW - cytoplasmatická koncentrace vápníku velmi nízká (0,1-0,2µM) - stavební, signální funkce, stabilizace membrán - vápnomilné x vápnostřežné druhy Deficience vápníku: - poškození meristemů,
FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ
FYTOREMEDIACE LÉČIV A JEJICH REZIDUÍ Petr Soudek Ústav experimentální botaniky Akademie věd ČR Centralizovaný rozvojový projekt MŠMT č. C29: Integrovaný systém vzdělávání v oblasti výskytu a eliminace
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
4) Reakce rostlin k abiotickému stresu
2010 4) Reakce rostlin k abiotickému stresu a) Vodní deficit b) Zasolení a osmotické přizpůsobení a jeho role v toleranci k suchu a zasolení 1 Jenks M et al. (2005) Plant Abiotic Stress. Blackwell Publishing
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK
MEMBRÁNOVÉ STRUKTURY EUKARYONTNÍCH BUNĚK PLASMATICKÁ MEMBRÁNA EUKARYOTICKÝCH BUNĚK Všechny buňky (prokaryotické a eukaryotické) jsou ohraničeny membránami zajišťujícími integritu a funkci buněk Ochrana
Vodní režim rostlin. Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické.
Vodní režim rostlin Úvod Adaptace, aklimace: rostliny vodní, poikilohydrické (řasy, mechy, lišejníky, kapradiny, vyšší rostliny) a homoiohydrické. Obsah vody, RWC, vodní potenciál a jeho komponenty: charakteristika,
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Lékařská chemie přednáška č. 3
Lékařská chemie přednáška č. 3 vnitřní prostředí organismu transport látek v membráně Václav Babuška Vaclav.Babuska@lfp.cuni.cz Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
2 Iontové kanály a vedení signálů
2 Iontové kanály a vedení signálů Elektrické signály, které jsou pro nervové funkce nezbytné, zprostředkovává iontový tok přes vodné (hydrofilní) póry v membráně nervové buňky. Tyto póry jsou tvořeny transmembránovými
RVR e) Fotobiologie reakcí zprostředkovaných modrým světlem f) Fotoreceptory g) Přenos signálu
1 2015 9) Fotomorfogeneze e) Fotobiologie reakcí zprostředkovaných modrým světlem f) Fotoreceptory g) Přenos signálu Briggs WR, Spudich JL (eds) (2005) Handbook of Photosensory Receptors, Wiley-VCH Schäfer
Farmakologie. -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem
Farmakologie -věda o lécích používaných v medicíně -studium účinku látek na fyziologické procesy -biochemie s jasným cílem Léky co v organismu ovlivňují? Většina léků působí přes vazbu na proteiny u nichž
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3
Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující
MEMBRÁNOVÝ PRINCIP BUŇKY
MEMBRÁNOVÝ PRINCIP BUŇKY Gorila východní horská Gorilla beringei beringei Uganda, 2018 jen cca 880 ex. Biologie 9, 2018/2019, Ivan Literák MEMBRÁNOVÝ PRINCIP BUŇKY MEMBRÁNOVÝ PRINCIP BUŇKY živá buňka =
*Ivana FELLNEROVÁ, PřF UP Olomouc*
Faktory ovlivňující transport přes membrány Velikost molekul: Malé molekuly jako voda, kyslík, kysličník uhličitý mohou volně procházet přes membrány, na rozdíl od většiny větších molekul. Rozpustnost
FM styrylové sloučeniny/barvičky (fy. Mol.Probes) fluoreskují po zapojení do membrány. Internalizují se endocyózou. Optimální je pro rostlinné buňky
FM styrylové sloučeniny/barvičky (fy. Mol.Probes) fluoreskují po zapojení do membrány. Internalizují se endocyózou. Optimální je pro rostlinné buňky FM4-64 Cytokinese a endocytóza GFP či YFP-AtEB1 a CLIP170
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*
Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická
Anorganické látky v buňkách - seminář. Petr Tůma některé slidy převzaty od V. Kvasnicové
Anorganické látky v buňkách - seminář Petr Tůma některé slidy převzaty od V. Kvasnicové Zastoupení prvků v přírodě anorganická hmota kyslík (O) 50% křemík (Si) 25% hliník (Al) 7% železo (Fe) 5% vápník
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK Fyziologie srdce Akční potenciál v srdci (pracovní myokard) Automacie srdeční aktivity a převodní systém Mechanismus
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Difuze Vyrovnávání koncentrací látek na základě náhodného pohybu Osmóza (difuze rozpouštědla) Dva roztoky o rúzné koncentraci oddělené
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
10) Reakce rostlin k abiotickému stresu
2015 10) Reakce rostlin k abiotickému stresu a) Vodní deficit b) Zasolení a osmotické přizpůsobení a jeho role v toleranci k suchu a zasolení c) Vliv vodního deficitu a zasolení na membránový transport
Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci
TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického
Stomatální vodivost a transpirace
Vodní režim rostlin Stomatální vodivost a transpirace Vliv faktorů prostředí - obecně Změny během dne Interakce různých faktorů Aklimace Adaxiální a abaxiální epidermis Ontogeneze Matematické modelování
Hypotonie děložní. MUDr.Michal Koucký, Ph.D. Gynekologicko-porodnická klinika VFN a 1.LF UK
Hypotonie děložní MUDr.Michal Koucký, Ph.D. Gynekologicko-porodnická klinika VFN a 1.LF UK Fyziologie děložní kontraktility Interakce aktin vs. myosin v myocytech Myocyty propojeny pomocí gap a tight junctions
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2017-2018 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu. Školitel Mgr.
Milada Roštejnská. Helena Klímová. Buňka. Pankreas. Ledviny. Mozek. Kost. Srdce. Sval. Krev. Vajíčko. Spermie. Obr. 1.
Milada Roštejnská Buňka Helena Klímová Ledviny Pankreas Mozek Kost Srdce Sval Krev Spermie Vajíčko Obr. 1. Různé typy buněk (1. část) Typy buněk Prokaryotní buňka Eukaryotní buňka Jádro, jadérko a jaderná
BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)
BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger
Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky. Reakce průduchů na vlhkost vzduchu. Reakce průduchů na vodní stres
Vodní režim rostlin Mechanizmy pohybu průduchů Obecné charakteristiky Reakce průduchů na světlo Reakce průduchů na vodní stres Reakce průduchů na vlhkost vzduchu Reakce průduchů na CO 2 Reakce průduchů