Logické obvody CMOS. 2014, kat. měření, ČVUT - FEL, Praha J. Fischer. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 1

Rozměr: px
Začít zobrazení ze stránky:

Download "Logické obvody CMOS. 2014, kat. měření, ČVUT - FEL, Praha J. Fischer. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 1"

Transkript

1 Logické obvody CMOS 2014, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 1

2 Polovodiče pro logické obvody, silně zjednodušený pohled detaily viz. kniha- Vobecký, Záhlava: Elektronika Polovodičový materiál pro log. obvody - křemík, Si, čtyřmocný 4 elektrony v el. obalu. atomu křemíku intrinzický polovodičový materiál - krystalová struktura bez defektů, kovalentní vazba - silná, dodáním energie - přibl. 1,1 ev uvolnění el. z el. obalu, generace párů, rekombinace - zánik v rovnováze. vznik volného páru elektron - díra, za pokojové teploty - malý počet párů Působení napětí - proud- vodivost způsobují elektrony i díry vlastní (intrinzická) vodivost polovodiče, za pokojové teploty - velmi nízkávodivost, s rostoucí teplotou - vlastní vodivost roste, tepelná aktivace intrinzický polovodič díra elektron U A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 2

3 Polovodič Si Intrinzický polovodič, pouze jeden prvek, čistý materiál, ideální krystalová struktury bez poruch (dislokací) krystalové struktury Vodivost intrinzická vodivost pouze tepelně generovanými páry elektron díra Si Si Si Si Si Si Si Si Si společné valenční elektrony Si A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 3

4 Polovodič Si Dodání tepelné energie kmity, možnost uvolnění elektronu z elektronového obalu, vznik páru elektron - díra Intrinzická vodivost pouze tepelně generovanými páry elektron - díra elektron při působení vnějšího elektrického pole pohyb ve směru el. pole. Růst intr. vodivosti s teplotou Uspořádaný pohyb elektronů elektrický proud, Díry též pohyb při působení vnějšího el. pole, Si Si díra volný elektron tepelná energie Pohyblivost elektronu - trojnásobná oproti pohyblivosti díry v (Si materiálu) (důsledek vliv na volbu šířky tranzistoru NMOS a PMOS ve struktuře CMOS (PMOS volby 3x širší pro dosažení stejného odporu) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 4

5 Nevlastní polovodič typu N a P Dotace prvky V nebo III skupiny, zvýšení vodivosti (5 el. v obalu, 3 el. v obalu) nevlastní vodivost, nevlastní polovodič způsobená působením příměsí Polovodič typu N (pátý elektron atomu dopantu vázán slabě k jádru, dodání malé energie možnost uvolnění elektronu, za pokojové teploty atom dopantu volný elektron) Polovodič typu P (3 elektrony v obalu, chybí jeden el. pro kovalentní vazbu, toto místo může zastoupit jiný elektron (analogie hra s chybějící židlí). Pohyb díry Si volný elektron Si díra Si As Si Si B Si Si Si a) b) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 5

6 Nevlastní polovodič typu N Zvýšení vodivosti polovodiče - zvýšení počtu volných nosičů náboje polovodič typu N, příměsi ze skupiny V (5- mocné, 5 el. v obalu) Dopant - donor - dárce- poskytuje elektron Přidání příměsí - difuzí, iontovou implantací, 4 el. vázané ve struktuře pevně, pátý el. vázán slabě, dodání malé ionizační energie (řádu desítek mev) na uvolnění elektronu Za pokojové teploty - všechny atomy donorů - ionizovány Elektronová vodivost materiálu, nevlastní polovodič typu N Polovodič N - majoritní nosiče - elektrony, minoritní nosiče díry Polovodič N je navenek ale stále elektricky neutrální počet kladně a záporně nabitých částic je shodný Pokud elektron opustí atom donoru - ionizovaný atom donoru - představuje místo kladného fixovaného náboje Vyšší koncentrace volných elektronů- vyšší vodivost Velmi vysoká koncentrace dopantů, degenerovaný polovodič N + A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 6

7 Nevlastní polovodič typu P Polovodič typu P, příměsi - ze skupiny III (3- mocné, 3 el. v obalu) Dopant - akceptor - příjemce, může přijmout elektron - příjemce není úplná kovalentní vazba, chybí pro ni elektron Elektron se může přijmout z vedlejšího atomu Si, zde pak chybí elektron ve vazbě- díra se posune, tato díra se takto může pohybovat dále Děrová vodivost, materiál typu P Pohyblivost díry je 1/3 oproti pohyblivosti elektronu - vodivost materiálu typu P je 1/3 oproti typu N při stejné koncentraci volných nosičů polovodič P - majoritní nosiče - díry, minoritní nosiče - elektrony Polovodič P je ale stále elektricky neutrální, počet kladně a záporně nabitých částic je opět shodný Pohyb díry - Ionizovaný atom akceptoru - představuje místo záporného fixovaného náboje Velmi vysoká koncentrace dopantů akceptorů - degener. polovodič P + A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 7

8 Přechod PN Polovodiče P a N na sobě difůze elektronů z oblasti N do oblasti P, děr z P do N, rekombinace (difůzní délka - střední dráha nosiče, než rekombinuje ) Vznik chuzené oblasti - bez volných nosičů - elektronů, nebo děr, oblast prostorového náboje (OPN) vyprázdněná oblast, (depletion region) - oblast PN přechodu Po odešlých děrách a elektronech zůstávají ionizované atomy donorů a akceptorů, představují místa fixovaných záporných a kladných nábojů, elektrická dvouvrstva PN přechod - uspořádání i P + na N, nebo N + na P čím vyšší koncentrace dopantů- kratší dif. délka, menší OPN difuze el. a děr ochuzená oblast P N P N A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření elektrická dvouvrstva 8

9 Dioda s přechodem PN Dioda s přechodem PN, Si materiál, napětí v předním směru, 0,6 až 0,7 V Zapojení diody v propustném směru nutnost překonat působení elektrického -elektrické dvouvrstvy v oblasti přechodu. Průchod elektronů a děr do oblasti přechodu PN, rekombinace. uvolnění energie ve formě tepelné energie. Schottkyho dioda přechod Kov polovodič, napětí v předním směru 0, 3 V ( příklad Schottkyho diody např.m dioda BAT 46) Závěrný proud Si diody s přechodem PN, roste s teplotou, způsoben tepelnou genereací párů elektron díra problém klidových proudů obvodů CMOS s bateriovým napájením. ( i omezení funkce obrazových senzorů CMOS) Světloemitující dioda LED, zapojení v předním směru působení vnějšího pole napájecí obvod - příchod elektronů a děr do oblasti přechodu PN, rekombinace, uvolnění energie - částečně ve formě optické nebo světlo, částečně ve formě tepelné napětí v předním směru LED přibl. 2 V ( červená LED), zelená vyšší 2 2, 5 V, bílá LED 3 V a více A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 9

10 Návrh obvodu s diodami a LED Návrhvýstupní napětí obvodu, napětí v předním směru LED, volby proudu, výpočet odporu zvoleného rezistoru. Dioda Si jako ochranný prvek dioda do série s napájením dioda antiparalelně A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 10

11 MOS tranzistor s indukovaným kanálem N Substrát, polovodič P, izolant SiO 2, Gate - polykrystalická Si elektroda MOS Tranzistor M - Metal poly Si (dříve i Al), izolant O - Oxid, S- Silicon substrát křemík U G kladné, přitahování elektronů, až počet elektronů přesáhne počet děr, Při U G > U T - prahové napětí, vznik inverzní vrstvy pod G indukovaný kanál n tranzistor NMOS elektrody G- gate, S - Source ( zdroj nosičů!), D Drain ( odvaděč nosičů ), pomocí oblastí N+, kontakt substrát P + poly - Si U G =0 G SiO 2 N + - Si U G > U T G N + - Si substrát P - Si substrát P - Si inverzní oblast indukovaný kanál n A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 11

12 Tranzistor NMOS s indukovaným kanálem - vlastnosti Napětí mezi elektrodami Gate a Source U GS > U T (prahové napětí - threshold) V log. obvodech - MOS tranzistor jako spínač I DS spínač proti zemi, U G - U GS = U G - 0 > U T, elementární N- MOS invertor U T U GS S -source U GS = U G - U S > U T D - drain U G N + - Si N + - Si + Ucc D U S substrát P - Si U 1 S U 2 A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 12

13 Tranzistor NMOS s indukovaným kanálem - příklad Přiklad BSS83 Oblast v počáku- proud roste s napětím U DS Oblast saturace omezení proudu A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 13

14 Tranzistor NMOS jako spínač ve vzorkovači + Ucc G D D S D G U 2 B- sub. S U 1 S Kanál n, elektrony, U S nižší napětí oproti U D, symetrická konstrukce, záměna funkce S a D podle připojeného napětí NMOS jako spínač - vzorkovač U G - U S > U T, pozor U G > U S + U T! Diody tvořené D a S proti substrátu- musí být v záv. směru- substrát zapojit na nejzápornější napětí vyskytující se v obvodu tranzistoru Spínání napětí (-2 V až +2 V), substrát -2V, napětí U G ( -2V vyp, + 5 V zap.) Pro přepínač, vzorkovač - použitelný pouze typ se samostatně vyvedeným substrátem, Pozor - substrátová dioda MOS tranzistorů A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 14

15 Tranzistor PMOS s indukovaným kanálem P jako spínač S -source P + - Si U G D - drain P + - Si S + Ucc S B- sub. D + Ucc U S U 1 D R U 2 G substrát N - Si 0 Kanál P, nosiče náboje díry, zdroj nosičů source S - na vyšší (kladné) napětí oproti D - drain, Symetrická konstrukce, záměna funkce S a D podle orientace připojeného napětí mezi elektrodami U 1 = Ucc PMOS rozepnut - nevede, U 1 = 0 PMOS sepnut - vede! Diody tvořené D a S proti B -substrátu- musí být v záv. směru- B - zapojit na nejkladnější napětí vyskytující se v obvodu tranzistoru PMOS s kanálem P A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 15

16 Invertor CMOS CMOS - komplementární MOS logika využívající kombinaci NMOS a PMOS tranzistorů invertor CMOS (není CMOS tranzistor!) S p D p D n + Ucc p kanál nosiče - díry n kanál, nosiče - el. S n + Ucc vstup U G výstup invertoru GND P + P + N + N + N + (kontakt) P - kanál (N - kanál) vana P - Si P + (kontakt) substrát N - Si A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 16

17 Invertor CMOS CMOS - komplementární MOS logika využívající kombinaci NMOS a PMOS tranzistorů + Ucc S p CMOS invertor ( není CMOS tranzistor!) D n D 2 D 1 D n D 3 S n + Ucc vstup U G výstup invertoru GND P + P + N + N + N + (kontakt) P - kanál D 2 D 3 (N - kanál) vana P - Si P + (kontakt) substrát N - Si D 1 A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 17

18 Invertor CMOS Důsledky V každém logickém obvodu CMOS je záporně polarizovaný PN přechod mezi svorkami Ucc napájení a GND zem. Při přepólování napájení v propustném směru Pro uživení zařízení použít zdroj s omezením proudu CMOS - komplementární MOS logika využívající kombinaci Tyto závěrně polarizované přechody PN- závěrný proud problém klidového odběru Stand By režim procesorů pro bateriové napájení- při požadavku na etrémně malé klidové odběry- řádu ua. (Příklad- měřidla, rozpočítávací měřidlo topných nákladů - požadavek na funkci 10 let z jediné baterie, el. vodoměr, ) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 18

19 Náhradní schéma výstupu CMOS Sériově zapojené tranzistory PMOS a NMOS, Klidový stav Rp,nebo Rn se blíží nekonečnu rozepnutý stav Druhý tranzistor sepnutý R ON CMOS invertor ( není CMOS tranzistor!) R P +U CC Náhradní schéma: Zdroj UCC do série R P_ON nebo GND ( 0 V) do série R N_ON u řady HCMOS a dalších, odpory 100 Ohmů a nižší ( 74LVCxxx R N_ON ~15 Ohmů, podle typu) Při změně stavu, malý okamžik vedou oba tranzistory proudový impuls mezi U CC a GND R P_ON R N_ON R N U 2 GND +U CC U 2 GND A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 19

20 Logický obvod jako dvojbran- statické parametry 1 U cc napájení ( U DD ), zem- GND- (ground) I i U cc I o Vstup, U i, I i vstupní napětí, proud Výstup U O, I O, výstupní napětí, proud Pozor na orientaci výstupního proudu. U i U o Kladný výstupní proud I O - vtéká do výstupu (proud z výstupu přes rezistor do GND - záporný) důležité kvůli orientaci v katalogových údajích (pozn. v aglosaské lit. napětí onačeno jako V -Voltage, tedy V i, V O,,...) (u STM32 a dalších proc. označení V DD - napájení, V SS - zem) Pomůcka pro zapamatování označení - Ucc ( bipolární log. obvody, NPN tranzistory, kolektory na kladné napět) U CC U - colector, colector Podobně NMOS logika, Drain na kladné napětí tedy U DD (napětí U -Drain, Drain - U DD, jako U CC kladné napájení) U STM32F103,..logika společné elektrody Source ( U SS - source, source) - ekvivalent GND. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 20

21 Logický obvod jako dvojbran- statické parametry 2 U cc Charakteristické parametry obvodu I i I o U i U o U ih - vstup. napětí pro vysokou log. úroveň - High U ihmin - minimální vstupní napětí pro vysokou log. úroveň - High!!! (které obvod vyhodnotí jako úroveň High) U il - vstup. napětí pro nízkou log. úroveň - Low, U ilmax - maximální vstupní napětí pro nízkou log. úroveň - Low!!! (které obvod vyhodnotí jako úroveň Low) U OH - napětí na výstupu obvodu generujícího vysokou úroveň - High U OL - napětí na výstupu obvodu generujícího nízkou úroveň - Low I ih - vstupní proud pro vysokou log. úroveň High připojenou na vstup I il - vstupní proud pro nízkou log. úroveň Low připojenou na vstup I OH - výstupní proud při vysoké úrovni - H High I OL - výstupní proud při nízké úrovni - L Low A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 21

22 Dynamické parametry - odezva na změnu na vstupu vstup výstup ve fázi t PLH t PHL U i t PHL U m t PLH (3V - TTL ) U m (1,5 V - TTL) 0 V U OH U OL výstup v protifázi U m U OH U OL t PLH - zpoždění odezvy při změně z nízké na vysokou úroveň ( Low - High) t PHL - zpoždění odezvy při změně z vysoké na nízkou (High - Low) U m (nebo také U t ) rozhodovací úroveň t PLH Propagation delay time, low-to-high-level output t PHL Propagation delay time, high-to-low-level output t pd Propagation delay time, obecně doba zpoždění odezvy obvodu A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 22

23 Dynamické vlastnosti - předstih a přesah dat řídicí vstup datový vstup t S t H U H 0 V U H 0 V t s (set - up time) předstih datového signálu vůči hodinovému řídicímu) sig. t H (hold time) přesah datového signálu vůči hodinovému (řídícímu) signálu vyjadřuje dobu, po kterou musí být datový log. signál v klidu před testováním a po testování v okamžiku určeném příslušnou aktivní hranou hodinového signálu význam, specifikace klopné obvody, posuvné registry, paměti,... příklad specifikace u 74HCT595, SH_CP hod. sig.,ds- datový vstup posuvný registr (úloha - cvičení) (analogie snímek s bleskem, zde náběžná hrana hod. sig. - blesk) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 23

24 Bipolární logické obvody Logika TTL (nepoužívá se), význam - definice standardu a úrovní Ucc napájení Ucc = + 5V proti zemi - GND příklad - obvod NAND 7400 vstupy A, B, výstup Y, Y = /(AxB) A B T1 4k 1k6 130 T4 T2 D Y 1k T3 GND Vstup na U IL - nízká úroveň, vstupní proud I IL - záporný (= -1,6 ma), vytéká z emitoru T1 a vtéká do výstupu budicího obvodu pro TTL logiku - kritický parametromezení počtu vstupů, které může výstup ve stavu L budit; snaha snížit I IL Vstup na U IH - úroveň H, vtéká nulový nebo malý kladný proud do vstupu U OH omezeno. Úbytek na U AK na diodě D a U CET4 (emitorový sledovač T 4 ) U OH < U CC - U CET4 = 5 V - 0,7 V- 0,7 V= 3,6 V - důsledek na výstupu Y hradla TTL není ve stavu H napětí 5 V ale nižší A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 24

25 Bipolární logické obvody TTL -LS a TTL - ALS Snížení I IL i dalších proudů v obvodu, řady bipolárních log. obvodů TTL - LS ( Low Power Schottky) ALS (Advanced Low Power Schottky) 20k 8k 120 Ucc 37k 50k 14k 50 Ucc A B 12k 4k Y 5k Y A 1k5 3k B 2k8 5k6 GND GND I IL - záporný (= -0,4 ma) I IL - záporný (= -0,1 ma) Při definici paramtrů CMOS log obvodů ( např. i mikroprocesorů) často odkaz na parametry TTL, nebo TTL - LS, např. formou, že výstupu up je schopen budit vstup jednoho TTL hradla ( to drive one TTL load ), A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 25

26 Pouzdro log. obvodu, číslování vývodů Číslování vývodů na pouzdře logického obvodu proti směru hodinových ručiček Vývod č. 1 umístěn vlevo od indexové značky směr platí i u pouzder pro SMD (povrch. montáž) Přívody napájení U CC a GND u TTL, TTL - LS,..., CD4000, 74HC, 74HCT,.. - vlevo dole GND, vpravo nahoře U CC, pouzdro 14 vývodů GND pin 7, Ucc pin 14 pouzdro 16 vývodů GND pin 8, Ucc pin 16 platí také u některých procesorů ( AT89C51,...) pouzdro DIL 40 vývodů GND pin 20, Ucc pin 40 směr číslování vývodů GND indexová značka neplatí však obecně, např. ATmega32,,,,,a další s vnitřním převodníkem A/D svorky U CC a GND uprostřed na stranách pouzdra, pro zkrácení vnitřních přívodů v nitřních přívodů v pouzdře a snížení jejich impedance U CC A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 26

27 Parametry řad bipolárních log. obvodů Důležité údaje: U ILmax max. napětí pro úroveň L (nízká úroveň na vstupu) U IHmin min. napětí pro úroveň H (vysoká úroveň na vstupu) I ILmax - vstupní proud pro U IL - nízkou úroveň na vstupu U t - rozhodovací napěťová úroveň na vstupu U CC - napájecí napětí typicky + 5 V ( + 4,75 až + 5,25 V) řada U ILmax I ILmax U IHmin I IH I OLmax U OLmax I OH U OHmin t PD U t I CCL [V] [ma] [V] [ua] [ma] [V] [ma] [V] [ns] [V] [ma] TTL 0,8-1, ,4-0,4 2,4 10 1,3 3 LS - TTL 0,8-0, ,5-0,4 2,7 10 1,1 0,6 S TTL 0, ,5-1 2,4 4,7 1,3 5 FAST 0,8-0, , ,3 1,5 1,4 ALS 0,8-0, ,5-0, ,4 0,4 pro TTL: U ILmax = 0,8 V, U IHmin = 2 V, I ILmax = 1,6mA, zpoždění t pd - jednotky ns, a více podle typu obvodu. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 27

28 Bipolární log. obvody Nevyužité vstupy u TTL, TTL LS, TTL ALS Pro stav L připojit na zem - GND, Pro stav H připojit na výstup hradla s definovanou úrovní H (invertor se vstupem na GND) nebo na UCC ( i přes odpor 2-5 kohmů) Nezapojený vstup TTL, TTL LS, TTL ALS se chová, jako by byl připojen na úroveň H ale není to korektní stav A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 28

29 Logické obvody v technologii NMOS Snížení vstupní a napájecích proudů - logické obvody v technologii NMOS se využívalo pouze tranzistorů MOS s kanálem N používaná pouze pro specializované obvody a obvody velké integrace nejsou v obvody s funkcí analogickou obvodům TTL (není hradlo NAND,..) používáno také u mikroprocesorů Intel 8080, 8086, ale i jednočipových mikropočítačů Intel 8031, 8051,.. (obdobné mikropočítače v technologii CMOS 80C31, 80C51, 89C51 -písmeno C označuje použitou technologii CMOS) Integrované obvody v technologii NMOS - stálý statický proudový odběr int. obvodu + Ucc např. elementární invertor NMOS D (nyní proto používána pouze technologie CMOS) U 1 S U 2 A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 29

30 Logické obvody v technologii CMOS, řada CD4000 Technologie CMOS s hliníkovým hradlem - elektroda Gate - hliníková logické obvody řady CD4000 (někdy označované jako high voltage CMOS) viz v klidu I cc = 0, proudový odběr především při změnách stavu napájecí napětí Ucc = 3 až 15 V zpoždění invertoru - t pd roste s klesajícím napájecím napětím S p + Ucc U CC [V] t PD [ns] Obvody pro pomalé aplikace U ihmin = 0,7 x Ucc, = 0,3 x Ucc U ilmax D p D n S n Řada CD mnoho typů, široce rozšířené, nejsou kompatibilní s řadou TTL (jiné rozložení vývodů, jiné funkce) CD 4011 hradlo NAND rozložení vývodů jiné než u NAND TTL 7400 obecné vlastnosti řady CD4000 viz. dokument family.hef4000.specification.pdf A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 30

31 Logické obvody v technologii CMOS, řada CD4000 Nevyužité vstupy připojit!!! na správnou log. úroveň, L, nebo H, svorka GND nebo Ucc, Nezapojený vstup plovoucí nepředvídatelné chování, výskyt napětí v zakázané oblasti zvýšení klidového proudového odběru, částečně vedou oba tranzistory, A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 31

32 Logické obvody HC MOS Rychlé logické obvody CMOS - High Speed CMOS 74HCxx Technologie CMOS s křemíkovým hradlem (Poly Si Gate) náhrada za TTL, obdobné označení, funkce i rozložení vývodů TTL 7400, 74LC00, 74 ALS 00 funkční náhrada 74HC00, atd. Napájecí napětí U CC = + 2 až + 6V, typicky U CC = + 5V 74HC odlišné vstupní úrovně od TTL 74HCxxx U m (U t ) = 0,5 Ucc rozhodovací úroveň polovina napájecího napětí U ihmin = 0,7 x Ucc, 3,5 V!!! (při U CC = 5V) U ilmax = 0,3 x Ucc 1,5 V (při U CC = 5V) Výstup TTL není možno připojit na vstup HC (U CC = +5 V) U OH TTL obvodu není kompatibilní s U IH min u HC obvodu! vstupní klidové proudy I IH, I IL velmi malé, typ. 100 na, zaručováno- menší 1 ua A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 32

33 Logické obvody HCT MOS Rychlé logické obvody CMOS - High Speed CMOS 74HCTxx Úprava vstupu HCT obvodu - kompatibilní s výstupními úrovněmi TTL posun, zpětná vazba,.. (úprava pouze ve vstup. obvodu, ostatní je jako u HC, žádné další diody) S p + Ucc (Napájení standardně U CC = +5V, rozmezí + 4,5 V až +5,5 V) Výstupní obvod HCT vlastnosti - jako výstup HC 74HCTxxx U m (U t ) = 1,3 V rozhodovací úroveň na vstupu U ihmin = 2 V!!! U ilmax = 0,8 V D p D n S n A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 33

34 Logické obvody HCT MOS Pozor, na vstupu 74HCT může být U ih = 2,4 V, ale roste I CC (vysvětlení tabule), Příčný proud- NMOS tranzistor již vede, PMOS ještě není zcela vypnut S p D p D n + Ucc I CC změna napájecího proudu I CC, pokud bude jeden vstup na U ih = 2,4 V u SN74HCT00 (Texas Instruments I CC = typ. 1,4 ma, Philips NXP 0,6 ma) Požadavek strmosti hran vstupního signálu (stejný důvod) zamezit výskytu napětí na vstupu v oblasti rozhodovací úrovně, požadavek - doba hran kratší než 500 ns - jinak nárůst I CC Pro bateriové napájení vstupy - úroveň 0, nebo U CC, jinak zvýšení odběru. Nevyužité vstupy připojit na GND nebo U CC, Nezapojený vysokoimpedanční vstup - nepředvídatelné chování, elektrostatická indukce úroveň H nebo L. Nepředvídatelné chování obvodu CMOS -!!!! kontrola vstupů A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 34 S n

35 Typické vstupní parametry obvodů HC, HCT 74HCxxx U m (U t ) = 0,5 Ucc rozhodovací úroveň I i U cc I o U ihmin = 0,7 x Ucc, 3,5 V!!! (při U CC = 5V) U ilmax = 0,3 x Ucc 1,5 V U i U o 74HCTxxx při Ucc= 5 V U m (U t ) = 1,4 V rozhodovací úroveň U ihmin U ilmax = 2 V = 0,8 V I i zbytkový vstupní proud (InputLeakageCurrent) typ. do 0,1 ua, CMOS prakticky nulový statický vstupní proud oproti TTL. (typicky i menší - řádu na, určen svodovými proudy ochranných diod) (vstup připojen na Ucc, nebo GND) Vstupní kapacity C i = typ. řádově 5-10 pf A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 35

36 Typické výstupní parametry obvodů HC, HCT U OH - určen U CC a závisí na velikosti výstupního proudu I O, vnitřního odporu R P I i U cc I o naprázdno přibližně U OH = U CC U OL určeno velikostí výstupního proudu I O U i U o a vnitřním odporem R N naprázdno přibližně U OL = 0 V (GND) Vnitřní odpory, pro odhad napětí - přibližně 100 Ohmů a méně (R - pro NMOS tranzistor typ 50 Ohmů a méně) Náhradní schéma výstupu log. obvodu CMOS +U CC R P U OL = I O. R N U OH = U CC (I O. R N ) R N U O GND A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 36

37 Příklad- výstupní charakteristiky obvodů HC00 Horní char. pro výstup ve stavu H (červená tečna) (5 V/0,15 A = cca 33 Ohm) Dolní char. pro výstup ve stavu L (modrá tečna) (5 V/0,14 A = cca 35 Ohm) ( odhad z grafu) lineární oblast (malé proudy) tečny a oblast saturace (větší proudy) omezení dalšího růstu proudu injektáž kladného proudu do výst. injektáž záporného proudu do výst. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 37

38 Mezní parametry obvodů HC, HCT I CC, I GND, I O, I ik, I OK (absolute maximum) překročením hrozí poškození I i U cc I o I CC, I GND - proud svorkou U CC nebo GND = 50 ma (70mA - bus typy)!!! I O - výstupní proud = ± 25 ma (± 35 ma bus typy) (output source or sink current) I IK proud vstupními záchytnými diodami ±20 ma(inputdiodecurrent) při (U Oi < 0.5 V nebo U Oi > U CC V) (vstup zápornější, než GND; kladnější než Ucc) U i U o I OK output diode current (U O < 0.5 V to U O > U CC V) proud výstupními (parazitními) diodami ±20 ma A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 38

39 Mezní parametry obvodů HC, HCT, důsledky I CC, I GND, I O, I ik, I OK U cc I i I o U i U o Příklad - posuvný registr 74HCT595, (74HC_HCT595_4.pdf, hc595.pdf vysvětlení mezních parametrů absol, maximum ratings, vysvětlení klíč. slov na dokumentech) použit pro buzení 7- segment LED, výstupy buzení LED proti U CC (úloha cvič.) jak volit proud? I O?? 10mA, katalog I Omax = 25 ma, ANO - OK 10 ma méně než 25 ma, ale!!! 7x 10 ma = 70 ma = I GND max.absolutní pro 74HCT595 je právě 70 ma NE!!! volit nižší proud, např. 5 ma (7x 5 ma = celkem 35 ma) analogicky úvahy u jednočip. mikropočítače D. úkol. - nalézt příslušné parametry a omezení pro AT89C2051 a AT89S8252, STM32F103. Jak by bylo možno budit připojené LED (max. velikost proudů)? A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 39

40 Mezní parametry konkrétních obvodů Způsob orientace v katalogovém listu obvodu přednáška s využitím katalogového listu HC00, 74HCT00, 74HCT595, AT89C2051, STM32F103 viz. katalog - PDF Demonstrace typických a mezních parametrů U i, I ik, I Ok, I CCmax, I GND max, I Omax Vysvětlení způsobu specifikace parametrů obvodu a jak je nalézt v katalogovém listu viz vysvětlení na přednášce a příslušné katalogové listy. STM32F100, hesla: Absolute maximum ratings, General input/output characteristics Způsob zjištění dle katalogových údajů, zda vstup obvod je + 5 V tolerantní A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 40

41 Ochrana vstupů CMOS log obvody, průrazné napětí izolantu MOS tranzistorů - desítky V, působení statické elektřiny 10 -ky kv, vstupy bez ochrany - průraz poškození struktury ochrana vstupů, - záporně polarizované PN přechody D 1, D 2 Ideové schéma ochrany - obecně důsledky 0 <U i < U cc ; vstupní napětí nesmí být záporné, ani větší, než napájecí U CC D1 U 1 D2 CMOS obvod U 2 příp. omezení velikosti vstup. proudu rezistorem U CC R s U i 1 A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 41

42 Ochranné diody - model Ochrany vstupů, různé řešení, ochrany vstupu 74HCxx poly- Si rezistor 100 Ω D2 U CC U 1 U 2 D Ω HC MOS obvod difundovaný didový rezistor U CC D3 D5 U 1 D4 CMOS obvod U 2 D6 D7 Obecně model s diodami proti GND a U CC. zjednodušený model (pro zapamatování) obvodu CMOS z hlediska diod na vstupech a výstupech A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 42

43 Přídavná ochrana vstupů s rezistorem Situace s částmi obvodu s různými napájecími zdroji nebezpečí částečného výpadku napájení nebo různě rychlého náběhu napájení. Nebezpečí poškození budicího i buzeného obvodu U CC1 U CC2 U CC1 U CC2 R R 2 D 1 1 Ochranný rezistor R 1 (470 Ohmů, - 1 kohm) kompromis mezi ochranou a dynamikou, limitně R = 270 ( příp. 220) Ohmů (5V /270 Ohmů = méně než 20 ma) Zhoršení dynamiky pro výpočet. čas. konstanty C = pf kapacita vstupu obvodu ( až 10 pf) + parazit kapacity krátkého spoje čas. konstanta (tau) τ = 470 Ohmů x 20 pf = přibl s doba náběžné hrany t nab = 2,2 x τ = přibl. 2 x 10-8 s = 20 ns A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 43

44 Řešení ochrany vstupů Pokud není možno zajistit správnou sekvenci náběhu napájení - v nouzi možno použít ochranné rezistory, U CC1 U CC2 U CC1 U CC2 R 1 1 D R 1 1 Využívat na cvičení, zamezení poškození procesoru!!! Volba velikosti ochranného odporu - omezení velikosti vstupního proudu na bezpečnou velikost, např. 5 ma, detaily- hledání v katalogu., absolute ---- max. ratings výpočet časové konstanty ochranného obvodu, parazitní kapacity vstupu obvodu a spojů A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 44

45 Působení diod ve vstupu obvodu CMOS zdroj signálu funguje (nechtěně) jako napáječ obvodu U CC1 = 5V U CC2 < 5V I n zatěžování zdroje signálu jednocestný usměrňovač s D a C zdroj signálu C + i v U n D CMOS log. obv. CMOS log. obv. Pozor na připojení zdroje signálu na vstup procesoru bez napájení (!!! cvičení, připojení vstupů obvodu 74HC595 bez napájení na výstupy STM32F103, použít ochranné rezistory) parazitní napájení obvodu ze zdroje signálu, (příklad, čítač CMOS, viz. výklad) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 45

46 Působení diod na výstupu obvodu CMOS Působení diody D5 ve výstupní struktuře (důsledek přítomnosti tranzistoru PMOS ve výstupní struktuře) Výpadek napájení U CC2 nebo snížení napájecího napětí CMOS obvodu (např. s třístavovým výstupem) kolize sběrnice Nelze paralelně spojit třístavové výstupy budičů (CMOS) s různým napájecím napětí, např. 5 V a 3,3V Obvod s U CC2 by působil jako parazitní napěťový omezovač. D budič A U CC1 = 5V D U CC D3 D5 U 1 D4 CMOS obvod U 2 D6 D7 budič B U CC2 < 5V i v U CC3 přijímač Řešení: použít obvody 74FCTxxx T, které mají koncový stupeň (analogicky jako TTL ) pouze s MOS tranzistory jednoho druhu vodivosti NMOS A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 46

47 Latch - UP efekt, parazitní tyristor ve struktuře CMOS Přítomnost ochranných diod na vstupu i parazitních diod na výstupu ve struktuře CMOS, parazitní tyristor mezi U CC a GND P - gate T1 U CC R - N sub. Vnucení nadměrného proudu do vstupu nebo výstupu a tekoucího PN přechody - nebezpečí sepnutí parazit. tyristoru mezi U CC a GND. Tyristor - zůstává sepnutý i po odeznění spínacího impulsu. U1 R - P obl. T2 N - gate Omezení proudu tyristoru - pouze odporem přívodů a zdrojem (spálení obvodu). Vypnutí tyristoru, pouze vypnutím napájení Latch UP free - struktura odolná Latch UPefektu, omezení proudu ochranným odporem. u HC - dřívejší zničení vstupní struktury. Pozor CMOS - převodníky, progr. obvody,... A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 47

48 Latch - UP efekt - Proudová injektáž možná i výbojem statické elektřiny do vstupu u jistých konstrukcí možné vyvolání Latch UP a a zničení obvodu (zmínit přiklad obvodu.7). Chránit obvody CMOS před výbojem statické elektřiny a před napěťovými špičkami, možnost částečného poškození vstup/výst bloku, zvýšení proudového odběru (ilustrační příklad se STM32F m.t. ) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 48

49 Ochrana vstupů 2 Problém pro vstupní napětí U 1 = U i > U cc řešení v některých obvodech náhrada diody MOS tranzistorem vyšší napětí - otevření tranzistoru T 1 U imax = 5 V (5,5 V) (využití u 5V tolerantních obvodů) 100 Ω U CC U 1 U 2 T 1 D 1 CMOS obvod pokud není explicitně uvedeno- počítat s diodou mezi vstupem a U CC CMOS obvody - paměti, mikroprocesory, jednočip. mikropočítače, převodníky A/D v CMOS technologii,... přivedení měřeného napětí (ze zdroje s malým vnitřním odporem) na vstup A/D převodníku bez napájení - poškození obvodu nadměrným proudem nutné omezení vstupního proudu I I na 10 ( příp. 20 ma), ( proudová injektáž, injected current u STM32F10x do 5 ma) řešení - použití vnějšího rezistoru R = cca 1 kohm (pozor, dynamika) Pamatovat pojem 5V tolerantní vstup, kdy má tento výraz smysl - pouze u obvodu s napájecím napětím nižším než 5 V. Umět nalézt tuto informaci v katalogu A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 49

50 AT89C51RC2 mezní parametry Maxima - výklad A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 50

51 AT89C51RC2 typické a mezní parametry Parametry, výklad a diskuse A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 51

52 Mezní parametry obvodů HC Maxima výklad SN74HC00 Texas Instruments ( A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 52

53 Mezní parametry obvodů HC Maxima výklad dle kat. listu SN74HC04 firma NXP ( A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 53

54 Typické parametry obvodů HC Typické parametry výklad na přednášce a diskuse parametrů, orientace v katalogu SN74HC00 Texas Instruments ( A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 54

55 Typické parametry obvodů HC Typické parametry, výklad na přednášce a diskuse parametrů, orientace v katalogu SN74HC00 Texas Instruments ( A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 55

56 Typ. parametry obvodu HC04 dle NXP (WW.NXP.COM) Výklad na před. a diskuse parametrů, orientace v katalogu A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 56

57 Typ. parametry obvodu HCT04 dle NXP (WW.NXP.COM) Výklad na před. a diskuse parametrů, orientace v katalogu A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 57

58 Typické parametry obvodů HC Typické parametry výklad na přednášce a diskuse parametrů, orientace v katalogu SN74HC00 Texas Instruments ( A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 58

59 Mezní proudové parametry u procesoru STM32F10x Maxima A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 59

60 Mezní napěťové parametry u procesoru STM32F10x Maxima, rozlišení + 5 V tolerantní pin, a normální CMOS pin. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 60

61 Typické napěťové parametry u procesoru STM32F10x. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 61

62 Logické obvody CMOS- advanced varianty Vývoj log. obvodů řady pro zvýšení rychlosti AC - Advanced CMOS, ACT - Advanced CMOS, TTL compatible AC, AHC, VHC napájení Ucc = +2 až +5,5 V (příp +6 V) U ilmax = 0,3 x Ucc ; U ihmin = 0,7 x Ucc, ACT, AHCT, VHCT, FCT typické napájení má Ucc = + 5 V T značí - obvod je na vstupu kompatibilní s výstupními úrovněmi TTL U ihmin = 2 V; U ilmax = 0,8 V Doporučení řada AHC, kompromis vyšší rychlost než HC, menší rušení a proudové impulsy než AC. AHC má již specifikovány dyn. parametry i pro U CC = +3,3 V AHCT vyšší rychlost oproti HCT, avšak ještě únosné proudové špičky A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 62

63 Parametry log. obvodů CMOS s napájením + 5 V U CCsp napájecí nap.,při kterém jsou specifikovány dynamické parametry řada U CC U CCsp U t U IHmin U ILmax I OLmax I OHmax [V] [V] [V] [V] [V] [ma] [ma] toler. HC ,5.U CC 3,5 1, ne HCT 4,5-5,5 5 1,4 2 0, AHC 2-5,5 3,3; 5 0,5. U CC 3,5 1, ano AHCT 4,5-5,5 5 1,4 2 0, VHC 2-5,5 3,3; 5 0,5.U CC 3,5 1, ano VHCT 4,5-5,5 5 1,4 2 0, AC 2-6 3,3; 5 0,5.U CC 3,5 1, ne ACT 4,5-5,5 5 1,4 2 0, FCT 4,75-5,25 5 1,4 2 0, V A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 63

64 Nízkonapěťová logika CMOS Snižování dynamické výkonové ztráty snižování napájecího napětí L Low Voltage, nízkonapěťová logika. Významná hodnota napájení U CC = +3,3 V Např. sig. procesory, jádro 1,2V, interface obvody 3,3 V otázka + 5 V tolerance vstupů existují řady i s nižším napájecím napětím Řada 74LVC výhodná pro aplikace, rychlost, schopnost budit, + 5 V tolerance vstupů LV řady velmi často pouze v pouzdrech pro povrchovou montáž (není možno pro škol. lab.) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 64

65 Nízkonapěťová logika CMOS přehled vybraných řad řada U CC U CCopt U t I OLmax I OHmax 5V tol techn. [V] [V] [V] [ma] [ma] vstup LV 2-5,5 3,3 0,5*U CC +8-8 ne CMOS LVT 2,7-3,6 3,3 1, ano BiCMOS ALVT 2,3-3,6 3,3; 2,5 1, ano BiCMOS LVC 2-3,6 3,3 0,5*U CC ano CMOS ALVC 1,65-3,6 3,3; 2,5 0,5*U CC ne CMOS FCT3 2,7-3,6 3,3 1, ano CMOS AVC 1,4-3,6 2,5 0,5*U CC +8-8 ne CMOS LVX 2-3,6 3,3 0,5*U CC +4-4 ano CMOS LVQ 2-3,6 3,3 0,5*U CC ne CMOS LCX 2-3,6 3,3 0,5*U CC ano CMOS VCX 1,4-3,6 2,5 0,5*U CC ne CMOS AUC 1,1-2,7 1,8 0,5*U CC +8-8 ne CMOS A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 65

66 Společné rysy logických obvodů CMOS U t = 0,5.U CC, U IH min = 0,7.U CC, U ILmax = 0,3.U CC (mimo 74**Txx s U CC =5 V) U t 1,4 V, U IH min = 0,8 V, U ILmax = 2 V, pro CMOS TTL komp. ( 74**Txxx) Výstup ve stavu H se chová jako zdroj napětí U out = U CC s vnitřním odporem 25Ω-100Ω (neplatí pro řady 74FCTxxxT se dvěma tranz. NMOS na výst.). Výstup ve stavu L se chová jako zdroj napětí U out = 0 V s R V = 15Ωaž 70Ω. Vstupní klidové proudy jsou velmi malé I I < 1µA. Klidový napájecí proud I CC0 - je řádu jednotek, maximálně stovek mikroampér ( při mezních kladných teplotách C). Na vstupech jsou clamp-diody proti svorce GND (D 2, D 4 dle ). Část obvodů má na vstupech clamp-diody proti svorce U CC (jako D 1, D 3 ). Max. napětí na vstupu U Imax = U CC (s výjimkou 5 V, příp. 3,6 V toler. vstupů) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 66

67 Materiál TI napěťové úrovně podle řad log. obvodů. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 67

68 Obvody CBT Crossbar Switches, lit. Texas Instruments scdd001b_cbt_log_fam.pdf Tranzistor NMOS (induk. kanál N) symetrická struktura, funkce elektrody Drain, Source podle orientace napětí, podmínka sepnutí U GS větší než prahové napětí U T G Spínače sběrnic, převodníky napěťových úrovní S D B- sub. A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 68

69 Obvody CBT Elementární spínač SN74CBT1G125, SINGLE FET BUS SWITCH UCC= 5 V 5 Ohmů v sepnutém stavu, pro napěťové úrovně L (0 V) 10 Ohmů v sepnutém stavu, pro napěťové úrovně L (2,4 V) použitelné i jako rychlý analogový spínač, videosignál, ( obousměrný ) spínač sběrnic SN74CBT3245A pinově kompatibilní se obousměrným budičem sběrnic 74 HCT245, a dalšími 245 A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 69

70 CBT jako spínač sběrnice a převodník úrovní Podmínka sepnutí tranzistoru U GS >U T (napětí na gate 4,3 V) vstupní napětí do 3 V tranzistor vede - vstupní napětí 5 V tranzistor reguluje (analogie emitorového sledovače) - na výstupu může být max. napětí U G - U T A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 70

71 Obvod Bus - Hold Definice logické úrovně na sběrnici při odpojení všech budičů, zamezení výskytu nežádoucí napěťové úrovně a případného vzniku kmitů podstata bistabilní klopný obvod s invertory CMOS, zachovává poslední definovanou logická úroveň na sběrnici při použití obousměrných budičů sběrnic. Přepnutí budiče z režimu výstup do vstupního režimu, sběrnice je plovoucí floating obvodem Bus Hold, ekvivalent odporu 1 kohm ve zpětné vazbě při změně úrovně je nutno budit ( překonat působení) obsažen v řadě obvodů obousměrných budičů sběrnic (řada obvodů ABT, LVT, ALVC, LVC,..) A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 71

72 Důvod použití obvodu Bus hold Vstup obvodu na napětí v okolí rozhodovací úrovně částečně vedou oba tranzistory elementárního invertoru, zvýšení proudového odběru, změna napětí na vstupu změna proudu svorkou U CC nebo GND, úbytky na parazitních indukčnostech přívodů (problém ground bounce ) (vysvětlení působení imp. zemního vodiče,.tabule) vstup L do H, zvýšení proudu do GND, zvýšení úbytku na LGND, pokles napětí na vstupu (proti GND vývodu obvodu) je třeba zamezit dlouhodobému výskytu napětí na vstupu v okolí rozhodovací úrovně A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 72

73 Proudový odběr logických obvodů Bipolární log. obvody statický proudový odběr a jeho růst s frekvencí Logické obvody CMOS v klidu buzení odporových zátěží proud zátěží zbytkové závěrné proudy přechodů PN, zbytkový proud tepelně generovanými nosiči, roste s teplotou Dynamický proudový odběr - přebíjení kapacit A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 73

74 Dynamická výkonová ztráta obvodů CMOS Přebíjení kapacity C L frekvencí f Dynamická výkonová ztráta nezávislá je na velikosti odporů R P, R N (ovlivňují pouze dynamiku) +U CC +U CC C i R P U 1 U 2 C L C PD GND R N U 2 GND C L P= 2 P= fu CC C fu 2 C CC L Proud obvodu vyvolaný zatížením obvodu kapacitou C L I = fu CC C L A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 74

75 Dynamická výkonová ztráta obvodů CMOS Ekvivalentní ztrátová kapacita CPD (power dissipation capacitace), C PD vyjadřuje parazitní vnitřní kapacity i ztráty proudovým impulsem mezi svorkami +U CC a GND 2 P= fu C CC P= fu 2 C CC L ( ) 2 P = f U C + C + I U D i CC ( ) PD L CC0 CC 2 P = f C + f C U + I U D i PD O L CC CC0 CC CC i CC ( CPD+ CL) ICC0 I = fu + I CC celkový proudový odběr obvodu z napájení U CC +U CC U 1 U2 CL C i GND A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 75

76 Snižování dynamického odběru obvodů CMOS Snižování proudového odběru: snižování napájecího napětí snižování pracovní frekvence zkracování doby aktivní funkce obvodu (Viz. dig. hodinky, 1,5 V, Hz XTAL) Použití obvodů nízkonapětové logiky, P 2 = fu C CC Snížení odběru mikroprocesorů a mikrořadičů: Rozdělení napájení jádra procesoru 2,5 V, 1,8 V, 1,2V.. napájení budičů výstupů často stále 3,3 V kvůli kompatibilitě s další logikou, ale možno i nižší napětí viz STM32F103 napájení jádra nižší napětí, vnější vstup napájecího napětí, někdy vnitřní regulátor sníženého napětí Snížení taktovací frekvence jádra (PLL) na nutnou hodnotu, aktivace pouze periferií a sběrnic potřebných pro činnost (viz STM32F103) Volba dvou procesorů výkonný (hlavní) a monitorovací (zap.) viz. výklad Problematika bateriového napájení, především snížení odběru A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 76

77 Další výklad, příklady kat. listy, orientace údajích a parametrech Pro další studium a pro pochopení problematiky logických obvodů CMOS je vhodné využít též katalogových příslušných pamětí, které jsou též umístěny na www stránkách předmětu. Tento materiál je určen pouze pro studenty předmětů A3B38MMP, při přednáškách a domácí přípravě. Slouží především jako grafický podklad a přehled hesel k přednášce. Studium tohoto materiálu nenahrazuje účast na přednášce, která mimo jiné obsahuje výklad k prezentaci i další vysvětlení a výklad u tabule. Tento materiál nesmí být využíván k jiným účelům ani publikován jinou formou. Jan Fischer 2014 A3B38MMP, 2014, J. Fischer, ČVUT - FEL, Praha, kat. měření 77

Logické obvody, aspekty jejich aplikace ve vestavných systémech

Logické obvody, aspekty jejich aplikace ve vestavných systémech Logické obvody, aspekty jejich aplikace ve vestavných systémech 2015 A4M38AVS Aplikace vestavných systémů J. Fischer, kat. měření, ČVUT - FEL, Praha A4M38AVS, 2015, J.Fischer, ČVUT - FEL Praha kat. měření

Více

Přednáška 4, 5 a část 6 A4B38NVS Návrh vestavěných systémů 2014 katedra měření, ČVUT - FEL, Praha. J. Fischer

Přednáška 4, 5 a část 6 A4B38NVS Návrh vestavěných systémů 2014 katedra měření, ČVUT - FEL, Praha. J. Fischer Přednáška 4, 5 a část 6 A4B38NVS Návrh vestavěných systémů 2014 katedra měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2014, J.Fischer, kat. měření, ČVUT - FEL 1 Informace Toto je grafický a heslovitý

Více

Přednáška 4, 5. A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha otočení ctrl shift +

Přednáška 4, 5. A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha otočení ctrl shift + Přednáška 4, 5 A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha otočení ctrl shift + A4B38NVS, 2012, J.Fischer, kat. měření, ČVUT - FEL 1 Informace Toto je grafický

Více

Přednáška 4, 5. A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha otočení ctrl shift +

Přednáška 4, 5. A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha otočení ctrl shift + Přednáška 4, 5 A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha otočení ctrl shift + A4B38NVS, 2012, J.Fischer, kat. měření, ČVUT - FEL 1 Informace Toto je grafický

Více

Přednáška 4, 5 a část 6 A4B38NVS Návrh vestavěných systémů 2015 katedra měření, ČVUT - FEL, Praha

Přednáška 4, 5 a část 6 A4B38NVS Návrh vestavěných systémů 2015 katedra měření, ČVUT - FEL, Praha Přednáška 4, 5 a část 6 A4B38NVS Návrh vestavěných systémů 2015 katedra měření, ČVUT - FEL, Praha J. Fischer Grafický podkladový materiál k přednášce A4B38NVS Studium tohoto materiálu nenahrazuje účast

Více

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. 2011, kat. měření, ČVUT - FEL, Praha. J. Fischer. Přednáška 7

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. 2011, kat. měření, ČVUT - FEL, Praha. J. Fischer. Přednáška 7 Přednáška 7 011, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Náplň přednášky Poznámky ke cvičením: živení HW RS-3 + 5 V tolerance pinů STM3 log. obvody CBT dynamický odběr CMOS, blokování rozvodu napájení

Více

2015 katedra měření, ČVUT - FEL, Praha J. Fischer

2015 katedra měření, ČVUT - FEL, Praha J. Fischer Přednáška 4, 5 a část 6 A4B38NVS Návrh vestavěných systémů 2015 katedra měření, ČVUT - FEL, Praha J. Fischer Grafický podkladový materiál k přednášce A4B38NVS Studium tohoto materiálu nenahrazuje účast

Více

Přednáška 4, 6, část 7. A4B38NVS Návrh vestavěných systémů 2014 katedra měření, ČVUT - FEL, Praha. J. Fischer

Přednáška 4, 6, část 7. A4B38NVS Návrh vestavěných systémů 2014 katedra měření, ČVUT - FEL, Praha. J. Fischer Přednáška 4, 6, část 7 A4B38NVS Návrh vestavěných systémů 2014 katedra měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2014, J.Fischer, kat. měření, ČVUT - FEL 1 Informace Toto je grafický a heslovitý podkladový

Více

Přednáška 4, 5 a část 6, část 7 A4B38NVS Návrh vestavěných systémů, 2013, J. Fischer, katedra měření, ČVUT - FEL, Praha

Přednáška 4, 5 a část 6, část 7 A4B38NVS Návrh vestavěných systémů, 2013, J. Fischer, katedra měření, ČVUT - FEL, Praha Přednáška 4, 5 a část 6, část 7 A4B38NVS Návrh vestavěných systémů, 2013, J. Fischer, katedra měření, ČVUT - FEL, Praha A4B38NVS, 2013, J.Fischer, kat. měření, ČVUT - FEL 1 Informace Toto je grafický a

Více

Kontrolní otázky a okruhy k testu v semestru A4B38NVS (verze r. 2012) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM

Kontrolní otázky a okruhy k testu v semestru A4B38NVS (verze r. 2012) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Kontrolní otázky a okruhy k testu v semestru A4B38NVS (verze r. 2012) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Cortex- M3 - proto, pokud je dotaz na procesor, míní

Více

Polovodičov. ové prvky. 4.přednáška

Polovodičov. ové prvky. 4.přednáška Polovodičov ové prvky 4.přednáška Polovodiče Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku (Si). Čisté krystaly křemíku mají za pokojové teploty jen

Více

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku

Více

Spínače s tranzistory řízenými elektrickým polem. Používají součástky typu FET, IGBT resp. IGCT

Spínače s tranzistory řízenými elektrickým polem. Používají součástky typu FET, IGBT resp. IGCT Spínače s tranzistory řízenými elektrickým polem Používají součástky typu FET, IGBT resp. IGCT Základní vlastnosti spínačů s tranzistory FET, IGBT resp. IGCT plně řízený spínač nízkovýkonové řízení malý

Více

Elektronika pro informační technologie (IEL)

Elektronika pro informační technologie (IEL) Elektronika pro informační technologie (IEL) Třetí laboratorní cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole inecasova@fit.vutbr.cz

Více

Neřízené polovodičové prvky

Neřízené polovodičové prvky Neřízené polovodičové prvky Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Neřízené polovodičové spínače neobsahují

Více

Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer

Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru

Více

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů (elektrony nebo díry) pracují s kanálem jednoho typu vodivosti

Více

Okruhy a kontrolní otázky k testu v semestru A4B38NVS (verze r. 2015) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM

Okruhy a kontrolní otázky k testu v semestru A4B38NVS (verze r. 2015) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Okruhy a kontrolní otázky k testu v semestru A4B38NVS (verze r. 2015) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Cortex- M3 - proto, pokud je dotaz na procesor, míní

Více

Napájení mikroprocesorů. ČVUT- FEL, katedra měření, přednášející Jan Fischer. studenty zapsané v předmětu: A4B38NVS

Napájení mikroprocesorů. ČVUT- FEL, katedra měření, přednášející Jan Fischer. studenty zapsané v předmětu: A4B38NVS Napájení mikroprocesorů v. 2012 Materiál je určen jako pomocný materiál pouze pro studenty zapsané v předmětu: A4B38NVS ČVUT- FEL, katedra měření, přednášející Jan Fischer A4B38NVS, 2012, J.Fischer, kat.

Více

A8B32IES Úvod do elektronických systémů

A8B32IES Úvod do elektronických systémů A8B32IES Úvod do elektronických systémů 29.10.2014 Polovodičová dioda charakteristiky, parametry, aplikace Elektronické prvky a jejich reprezentace Ideální dioda Reálná dioda a její charakteristiky Porovnání

Více

Řádkové snímače CCD. zapsané v předmětu: Videometrie a bezdotykové měření, ČVUT- FEL, katedra měření, přednášející Jan Fischer

Řádkové snímače CCD. zapsané v předmětu: Videometrie a bezdotykové měření, ČVUT- FEL, katedra měření, přednášející Jan Fischer Řádkové snímače CCD v. 2011 Materiál je určen pouze jako pomocný materiál pro studenty zapsané v předmětu: Videometrie a bezdotykové měření, ČVUT- FEL, katedra měření, přednášející Jan Fischer Jan Fischer,

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII KOMBINAČNÍ LOGICKÉ OBVODY

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII KOMBINAČNÍ LOGICKÉ OBVODY Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 5.4.1 KOMBINAČNÍ LOGICKÉ OBVODY Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt je

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Čím se vyznačuje polovodičový materiál Polovodič je látka, jejíž elektrická vodivost lze měnit. Závisí na

Více

Polovodiče, dioda. Richard Růžička

Polovodiče, dioda. Richard Růžička Polovodiče, dioda Richard Růžička Motivace... Chceme součástku, která propouští proud jen jedním směrem. I + - - + Takovou součástkou může být polovodičová dioda. Schematická značka polovodičové diody

Více

Měření na unipolárním tranzistoru

Měření na unipolárním tranzistoru Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární

Více

Elektřina a magnetizmus polovodiče

Elektřina a magnetizmus polovodiče DUM Základy přírodních věd DUM III/2-T3-11 Téma: polovodiče Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus polovodiče Obsah POLOVODIČ...

Více

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω. A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty

Více

FEKT VUT v Brně ESO / P5 / J.Boušek 3 FEKT VUT v Brně ESO / P5 / J.Boušek 4

FEKT VUT v Brně ESO / P5 / J.Boušek 3 FEKT VUT v Brně ESO / P5 / J.Boušek 4 Využití vlastností polovodičových přechodů Oblast prostorového náboje elektrické pole na přechodu Propustný směr difůze majoritních nosičů Závěrný směr extrakce minoritních nosičů Rekombinace na přechodu

Více

Bipolární tranzistory

Bipolární tranzistory Bipolární tranzistory h-parametry, základní zapojení, vysokofrekvenční vlastnosti, šumy, tranzistorový zesilovač, tranzistorový spínač Bipolární tranzistory (bipolar transistor) tranzistor trojpól, zapojení

Více

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna

Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Tato otázka přepokládá znalost otázky č. - polovodiče. Doporučuji ujasnit

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Tranzistory 1 BIPOLÁRNÍ TRANZISTOR - třívrstvá struktura NPN se třemi vývody (elektrodami): e - emitor k - kolektor b - báze Struktura, náhradní schéma a schematická značka

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Struktura logických obvodů Přednáška č. 10 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Struktura logických obvodů 1 Struktura logických

Více

A8B32IES Úvod do elektronických systémů

A8B32IES Úvod do elektronických systémů A8B32IE Úvod do elektronických systémů 5.11.2014 Tranzistor MOFET charakteristiky, parametry, aplikace Tranzistor řízený polem - princip a základní aplikace Charakteristiky a mezní parametry tranzistoru

Více

ELEKTRONICKÉ SOUČÁSTKY

ELEKTRONICKÉ SOUČÁSTKY ELEKTRONICKÉ SOUČÁSTKY VZORY OTÁZEK A PŘÍKLADŮ K TUTORIÁLU 1 1. a) Co jsou polovodiče nevlastní. b) Proč je používáme. 2. Co jsou polovodiče vlastní. 3. a) Co jsou polovodiče nevlastní. b) Jakým způsobem

Více

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Řídicí obvody (budiče) MOSFET a IGBT Hlavní požadavky na ideální budič Galvanické

Více

Projekt Pospolu. Polovodičové součástky tranzistory, tyristory, traiky. Pro obor M/01 Informační technologie

Projekt Pospolu. Polovodičové součástky tranzistory, tyristory, traiky. Pro obor M/01 Informační technologie Projekt Pospolu Polovodičové součástky tranzistory, tyristory, traiky Pro obor 18-22-M/01 Informační technologie Autorem materiálu a všech jeho částí je Ing. Petr Voborník, Ph.D. Bipolární tranzistor Bipolární

Více

FEKT VUT v Brně ESO / P9 / J.Boušek 1 FEKT VUT v Brně ESO / P9 / J.Boušek 2. Uzemněné hradlo - závislost na změně parametrů

FEKT VUT v Brně ESO / P9 / J.Boušek 1 FEKT VUT v Brně ESO / P9 / J.Boušek 2. Uzemněné hradlo - závislost na změně parametrů Unipolární tranzistory Řízení pohybu nosičů náboje elektrickým polem: FET [Field - Effect Transistor] Proud přenášen jedním typem nosičů náboje (unipolární): - majoritní nosiče v inverzním kanálu - neuplatňuje

Více

VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Unipolární tranzistory

Unipolární tranzistory Unipolární tranzistory MOSFET, JFET, MeSFET, NMOS, PMOS, CMOS Unipolární tranzistory aktivní součástka řízení pohybu nosičů náboje elektrickým polem většinové nosiče menšinové nosiče parazitní charakter

Více

Cvičení předmětu A4B38NVS Návrh vestavěných systémů, kat. měření, ČVUT FEL, Praha, 2011

Cvičení předmětu A4B38NVS Návrh vestavěných systémů, kat. měření, ČVUT FEL, Praha, 2011 Úloha č. 1 Měření statických parametrů logických obvodů CMOS Úkol: Nastudujte katalogové listy obvodů 74HC04 a 74HCT04. Navrhněte a realizujte obvody pro měření vybraných statických parametrů logických

Více

ELEKTRONICKÉ SOUČÁSTKY

ELEKTRONICKÉ SOUČÁSTKY TEMATICKÉ OKRUHY ELEKTRONICKÉ SOUČÁSTKY 1. Základní pojmy fyziky polovodičů. Pásová struktura její souvislost s elektronovým obalem atomu, vliv na elektrickou vodivost materiálů. Polovodiče vlastní a nevlastní.

Více

OBVODY TTL a CMOS. Úvod

OBVODY TTL a CMOS. Úvod OBVODY TTL a CMOS Úvod Tato úloha si klade za cíl seznámení se strukturou základních logických obvodů technologie TTL a CMOS, seznámení s jejich funkcí, vlastnostmi, základními charakteristikami a parametry.

Více

VY_32_INOVACE_06_III./2._Vodivost polovodičů

VY_32_INOVACE_06_III./2._Vodivost polovodičů VY_32_INOVACE_06_III./2._Vodivost polovodičů Vodivost polovodičů pojem polovodiče čistý polovodič, vlastní vodivost příměsová vodivost polovodičová dioda tranzistor Polovodiče Polovodiče jsou látky, jejichž

Více

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů logického obvodu část Teoretický rozbor

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů logického obvodu část Teoretický rozbor MĚŘENÍ Laboratorní cvičení z měření část 3-6-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu:

Více

Dioda - ideální. Polovodičové diody. nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem)

Dioda - ideální. Polovodičové diody. nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem) Polovodičové diody: deální dioda Polovodičové diody: struktury a typy Dioda - ideální anoda [m] nelineární dvojpól funguje jako jednocestný ventil (propouští proud pouze jedním směrem) deální vs. reálná

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu.

[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu. [Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] 04.01.01 Na rezistoru je napětí 5 V a teče jím proud 25 ma. Rezistor má hodnotu. A) 100 ohmů B) 150 ohmů C) 200 ohmů 04.01.02 Na rezistoru

Více

Nezkreslená věda Vodí, nevodí polovodič? Kontrolní otázky. Doplňovačka

Nezkreslená věda Vodí, nevodí polovodič? Kontrolní otázky. Doplňovačka Nezkreslená věda Vodí, nevodí polovodič? Ve vašich mobilních zařízeních je polovodičů mraky. Jak ale fungují? Otestujte své znalosti po zhlédnutí dílu. Kontrolní otázky 1. Kde najdeme polovodičové součástky?

Více

VÝKONOVÉ TRANZISTORY MOS

VÝKONOVÉ TRANZISTORY MOS VÝKONOVÉ TANZSTOY MOS Pro výkonové aplikace mají tranzistory MOS přednosti: - vysoká vstupní impedance, - vysoké výkonové zesílení, - napěťové řízení, - teplotní stabilita PNP FNKE TANZSTO MOS Prahové

Více

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Tranzistor je elektronická aktivní součástka se třemi elektrodami.podstatou jeho funkce je transformace odporu mezi

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektroniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektroniky 1 Model atomu průměr

Více

MĚŘENÍ HRADLA 1. ZADÁNÍ: 2. POPIS MĚŘENÉHO PŘEDMĚTU: 3. TEORETICKÝ ROZBOR. Poslední změna

MĚŘENÍ HRADLA 1. ZADÁNÍ: 2. POPIS MĚŘENÉHO PŘEDMĚTU: 3. TEORETICKÝ ROZBOR. Poslední změna MĚŘENÍ HRADLA Poslední změna 23.10.2016 1. ZADÁNÍ: a) Vykompenzujte sondy potřebné pro připojení k osciloskopu b) Odpojte vstupy hradla 1 na přípravku a nastavte potřebný vstupní signál (Umax, Umin, offset,

Více

LOGICKÉ OBVODY. souèástka se doplòuje na sklad # souèástka na skladì, výprodej Dodací podmínky neoznaèených souèástek sdìlíme na poptávku

LOGICKÉ OBVODY. souèástka se doplòuje na sklad # souèástka na skladì, výprodej Dodací podmínky neoznaèených souèástek sdìlíme na poptávku LOGICKÉ OBVODY Logické obvody øada technologie log. úroveò (V) rozsah Uc (V) Ic ( A) tpd max (ns] vstup výstup MOS 4000 Standard CMOS 5.0 3.0 ~ 18.0 20 CMOS CMOS 74 HC High Speed CMOS 5.0 2.0 ~ 6.0 80

Více

Sada 1 - Elektrotechnika

Sada 1 - Elektrotechnika S třední škola stavební Jihlava Sada 1 - Elektrotechnika 8. Polovodiče - nevlastní vodivost, PN přechod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

7. Elektrický proud v polovodičích

7. Elektrický proud v polovodičích 7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů

Více

ETC Embedded Technology Club setkání 6, 3B zahájení třetího ročníku

ETC Embedded Technology Club setkání 6, 3B zahájení třetího ročníku ETC Embedded Technology Club setkání 6, 3B 13.11. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club,6, 3B 13.11.2018, ČVUT- FEL,

Více

ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY

ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. Analogové spínače s tranzistory 2.1 Spínací vlastnosti tranzistorů bipolárních a unipolárních 2.2 Příklady použití spínačů 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY

Více

způsobují ji volné elektrony, tzv. vodivostní valenční elektrony jsou vázány, nemohou být nosiči proudu

způsobují ji volné elektrony, tzv. vodivostní valenční elektrony jsou vázány, nemohou být nosiči proudu Vodivost v pevných látkách způsobují ji volné elektrony, tzv. vodivostní valenční elektrony jsou vázány, nemohou být nosiči proudu Pásový model atomu znázorňuje energetické stavy elektronů elektrony mohou

Více

Konfigurace portů u mikrokontrolérů

Konfigurace portů u mikrokontrolérů Konfigurace portů u mikrokontrolérů Porty u MCU Většina vývodů MCU má podle konfigurace některou z více funkcí. K přepnutí funkce dochází většinou automaticky aktivováním příslušné jednotky. Základní konfigurace

Více

7. Elektrický proud v polovodičích

7. Elektrický proud v polovodičích 7. Elektrický proud v polovodičích 7.1 Elektrické vlastnosti polovodičů Kromě vodičů a izolantů existují polovodiče. Definice polovodiče: Je to řada minerálů, rud, krystalů i amorfních látek, řada oxidů

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

Projekt Pospolu. Polovodičové součástky diody. Pro obor M/01 Informační technologie

Projekt Pospolu. Polovodičové součástky diody. Pro obor M/01 Informační technologie Projekt Pospolu Polovodičové součástky diody Pro obor 18-22-M/01 Informační technologie Autorem materiálu a všech jeho částí je Ing. Petr Voborník, Ph.D. Polovodičová součástka je elektronická součástka

Více

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ Polovodič - prvek IV. skupiny, v elektronice nejčastěji křemík Si, vykazuje vysokou čistotu (10-10 ) a bezchybnou strukturu atomové mřížky v monokrystalu.

Více

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA)

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA) Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda

Více

V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu.

V nejnižším energetickém stavu valenční elektrony úplně obsazují všechny hladiny ve valenčním pásu, nemohou zprostředkovat vedení proudu. POLOVODIČE Vlastní polovodiče Podle typu nosiče náboje dělíme polovodiče na vlastní (intrinsické) a příměsové. Příměsové polovodiče mohou být dopované typu N (majoritními nosiči volného náboje jsou elektrony)

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

Metodický návod: 5. Zvyšování vnějšího napětí na 3 V. Dochází k dalšímu zakřivování hladin a rozšiřování hradlové vrstvy.

Metodický návod: 5. Zvyšování vnějšího napětí na 3 V. Dochází k dalšímu zakřivování hladin a rozšiřování hradlové vrstvy. Metodický návod: 1. Spuštění souborem a.4.3_p-n.exe. Zobrazeny jsou oddělené polovodiče P a N, majoritní nositelé náboje (elektrony červené, díry modré), ionty příměsí (čtverečky) a Fermiho energetické

Více

Řídící a regulační obvody fázové řízení tyristorů a triaků

Řídící a regulační obvody fázové řízení tyristorů a triaků A10-1 Řídící a regulační obvody fázové řízení tyristorů a triaků.puls.výstup.proud Ig [ma] pozn. U209B DIP14 155 tacho monitor, softstart, U211B DIP18 155 proud.kontrola, softstart, tacho monitor, limitace

Více

Obrázek 1: Schematická značka polovodičové diody. Obrázek 2: Vlevo dioda zapojená v propustném směru, vpravo dioda zapojená v závěrném směru

Obrázek 1: Schematická značka polovodičové diody. Obrázek 2: Vlevo dioda zapojená v propustném směru, vpravo dioda zapojená v závěrném směru Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_2S2_D16_Z_ELMAG_Polovodicove_soucastky_PL Člověk a příroda Fyzika Elektřina a magnetismus

Více

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Projekt - Voltmetr Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Náplň Projekt Voltmetr Princip převodu Obvodové řešení

Více

Měření základních vlastností logických IO TTL

Měření základních vlastností logických IO TTL Měření základních vlastností logických IO TTL 1. Zadání: A. Kombinační obvody: U jednoho hradla NAND TTL (IO 7400): a) Změřte převodní statickou charakteristiku U výst = f(u vst ) b) Změřte vstupní charakteristiku

Více

Elektrický proud v polovodičích

Elektrický proud v polovodičích Elektrický proud v polovodičích Polovodič Látka, jejíž měrný elektrický odpor je při obvyklých teplotách mnohem menší než u izolantů, ale zase mnohem větší než u kovů. Polovodič Látka, jejíž měrný elektrický

Více

Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2

Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2 PŘEDNÁŠKA 3 - OBSAH Přednáška 3 - Obsah i 1 Parazitní substrátový PNP tranzistor (PSPNP) 1 1.1 U NPN tranzistoru... 1 1.2 U laterálního PNP tranzistoru... 1 1.3 Příklad: proudové zrcadlo... 2 2 Parazitní

Více

r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes.

r W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes. r. 1947 W. Shockley, J. Bardeen a W. Brattain, zahájil epochu polovodičové elektroniky, která se rozvíjí dodnes. 2.2. Polovodiče Lze je definovat jako látku, která má elektronovou bipolární vodivost, tj.

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY KOMBINAČNÍ LOGICKÉ OBVODY Použité zdroje: http://cs.wikipedia.org/wiki/logická_funkce http://www.ibiblio.org http://martin.feld.cvut.cz/~kuenzel/x13ups/log.jpg http://www.mikroelektro.utb.cz http://www.elearn.vsb.cz/archivcd/fs/zaut/skripta_text.pdf

Více

Napájení mikroprocesorů

Napájení mikroprocesorů Napájení mikroprocesorů Přednáška A4B38NVS ČVUT- FEL, katedra měření, přednášející Jan Fischer A4B38NVS, 2014, J.Fischer, kat. měření, ČVUT FEL, Praha 1 Náplň Napájení síťové napájení, bateriové napájení

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

Součástky s více PN přechody

Součástky s více PN přechody Součástky s více PN přechody spínací polovodičové součástky tyristor, diak, triak Součástky s více PN přechody první realizace - 1952 třívrstvé tranzistor diak čtyřvrstvé tyristor pětivrstvé triak diak

Více

Polovodiče ELEKTROTECHNIKA TO M Á Š T R E J BAL

Polovodiče ELEKTROTECHNIKA TO M Á Š T R E J BAL Polovodiče ELEKTROTECHNIKA TO M Á Š T R E J BAL Jaké znáte polovodiče? Jaké znáte polovodiče? - Např. křemík, germanium, selen, Struktura křemíku Křemík (Si) má 4 valenční elektrony. Valenční elektrony

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

17. Elektrický proud v polovodičích, užití polovodičových součástek

17. Elektrický proud v polovodičích, užití polovodičových součástek 17. Elektrický proud v polovodičích, užití polovodičových součástek Polovodiče se od kovů liší především tím, že mají větší rezistivitu (10-2 Ω m až 10 9 Ω m), (kovy 10-8 Ω m až 10-6 Ω m). Tato rezistivita

Více

Unipolární tranzistor aplikace

Unipolární tranzistor aplikace Unipolární tranzistor aplikace Návod k praktickému cvičení z předmětu A4B34EM 1 Cíl měření Účelem tohoto měření je seznámení se s funkcí a aplikacemi unipolárních tranzistorů. Během tohoto měření si prakticky

Více

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3? TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název

Více

III. Stacionární elektrické pole, vedení el. proudu v látkách

III. Stacionární elektrické pole, vedení el. proudu v látkách III. Stacionární elektrické pole, vedení el. proudu v látkách Osnova: 1. Elektrický proud a jeho vlastnosti 2. Ohmův zákon 3. Kirhoffovy zákony 4. Vedení el. proudu ve vodičích 5. Vedení el. proudu v polovodičích

Více

Navrhované a skutečné rozměry. Návrhová pravidla pro návrh topologie (layoutu) čipu. Základní parametry návrhových pravidel

Navrhované a skutečné rozměry. Návrhová pravidla pro návrh topologie (layoutu) čipu. Základní parametry návrhových pravidel Navrhované a skutečné rozměry Změna skutečných rozměrů oproti navrhovaným Al spoje Kontaktní otvor v SiO Návrhová pravidla pro návrh topologie (layoutu) čipu Jiří Jakovenko Difuzní oblast N+ Vzájemné sesazení

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Unipolárn rní tranzistory Přednáška č. 5 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Unipolárn rní tranzistory 1 Princip činnosti

Více

Fotodioda ve fotovodivostním a fotovoltaickém režimu OPTRON

Fotodioda ve fotovodivostním a fotovoltaickém režimu OPTRON Cvičení 13 Fotodioda ve fotovodivostním a fotovoltaickém režimu OPTRON Přenosová charakteristika optronu Dynamické vlastnosti optronu Elektronické prvky A2B34ELP cv.13/str.2 cv.13/str.3 Fotodioda fotovodivostní

Více

ETC Embedded Technology Club 10. setkání

ETC Embedded Technology Club 10. setkání ETC Embedded Technology Club 10. setkání 21.2. 2017 Katedra telekomunikací, Katedra měření, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club -10, 21.2.2017, ČVUT- FEL, Praha 1 Náplň Výklad: Fototranzistor,

Více

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý

Více

Návrhová pravidla pro návrh topologie (layoutu) čipu Vzájemné sesazení masek kontaktu, poly

Návrhová pravidla pro návrh topologie (layoutu) čipu Vzájemné sesazení masek kontaktu, poly Navrhované a skutečné rozměry Návrhová pravidla pro návrh topologie (layoutu) čipu Vzájemné sesazení masek kontaktu, poly Minimální šířka motivu Minimální vzdálenost motivů Minimální a maximální rozměr

Více

1 VA-charakteristiky tranzistorů JFET a MOSFET. Úloha č. 7

1 VA-charakteristiky tranzistorů JFET a MOSFET. Úloha č. 7 1 A-charakteristik tranzistorů JFET a MOSFET Úloha č. 7 Úkol: 1. Změřte A charakteristik unipolárního tranzistoru (JFET - BF245) v zapojení se společnou elektrodou S 2. JFET v zapojení se společnou elektrodou

Více

Otázka č.4. Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace.

Otázka č.4. Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace. Otázka č.4 Silnoproudé spínací polovodičové součástky tyristor, IGBT, GTO, triak struktury, vlastnosti, aplikace. 1) Tyristor Schematická značka Struktura Tyristor má 3 PN přechody a 4 vrstvy. Jde o spínací

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Diody a usměrňova ovače Přednáška č. 2 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Diody a usměrňova ovače 1 Voltampérová charakteristika

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Diody, usměrňovače, stabilizátory, střídače 1 VÝROBA POLOVODIČOVÝCH PRVKŮ Polovodič - prvek IV. skupiny, nejčastěji Si, - vysoká čistota (10-10 ), - bezchybná struktura

Více

GFK-2004-CZ Listopad Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C.

GFK-2004-CZ Listopad Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C. Modul slouží pro výstup digitálních signálů 24 Vss. Specifikace modulu Rozměry pouzdra (šířka x výška x hloubka) Připojení 48,8 mm x 120 mm x 71,5 mm dvou-, tří- a čtyřdrátové Provozní teplota -25 C až

Více