MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/ Systém a evoluce vyšších rostlin Historie systematické botaniky Petr Bureš
|
|
- Marta Bartošová
- před 8 lety
- Počet zobrazení:
Transkript
1 MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/ Systém a evoluce vyšších rostlin Historie systematické botaniky Petr Bureš
2 Historie systematické botaniky (čili dědkologie) a vývoj jejích metod Zpočátku uspořádání rostlin jen nevědomé uspořádání kapitol či popisů rostlin v knize, bez explicitní potřeby klasifikovat. Botanika byla vědou užitou = součást lékařství, farmacie, alchymie. Tato mystikou poněkud zahalená etapa historie botaniky pokrývá dějinný interval od antiky až do renesance, tedy zhruba do 16. století.
3 Antické Řecko (4-3. stol. př. Kr.) Theophrastos př. Kr. gymnasiarcha Lykeionu v Athénách Renesanční vydání Historia plantarum Peri fyton historias = Historia plantarum; obsahuje ca 500 druhů rostlin hlavně středomořských ale také z výprav Alexandra Makedonského do V Asie. Třídil rostliny na habituálním principu: byliny, keře, polokeře, stromy. Zavedl základní termíny - např. Angiospermae, či Gymnospermae, phloiós, xylós,
4 Antický Řím (počátek letopočtu) Do období Antiky sahá i vznik samotného termínu botanika - botaniké = nauka o rostlinách Pedanius Dioscorides 1 stol. Dioscorides byl lékařem Poprvé termín botaniké použil Dioscorides v díle Peri hyles iatrikes = De materia medica římských legií, s nimiž prošel mnohá území, kde sbíral nové dosud neznámé údaje o rostlinách
5 Renesanční bylináře ( stol)
6 Němečtí otcové botaniky (16. stol.) Hieronymus Bock (Tragus) Otto Brunfels Leonard Fuchs Habituálně podobné druhy např. čeledí Asteraceae, Apiaceae, Lamiaceae pohromadě = intuitivně přirozené uspořádání na habituálním principu
7 Ilustrace Hanse Weiditze v Brunfelsově herbáři Fuchsův kapesní atlas Historia stirpium
8 Herbáře = kolekce preparovaných rostlin Za vynálezce herbarizace rostlin považován Luca Ghini, prefekt botanické zahrady v Pise. Luca Ghini Nejstarší herbářovou sbírkou pocházející z území Čech je herbář Jana Františka Beczskovského, křížovníka řádu s červenou hvězdou, pocházející z přelomu 17. a 18. století). ČR je z hlediska počtu herb. položek na hlavu na 5. místě na světě. Před námi je Švýcarsko, Švédsko, Finsko a Rakousko.
9 Herbář je nepřekonanou konzervační metodou 1. uchovává data o morfologické variabilitě, geografickém rozšíření, 2. dává možnost kontroly těchto dat 3. z herbářových položek lze také na rozdíl od literárních dat či počítačových databází izolovat DNA 4. jedinou formou jak uchovávat nomenklatorické typy.
10 Herbářové sbírky nad 30 tis. v České republice a na Slovensku (stav v r. 2000) Karlova univerzita PRC Národní muzeum PR Moravské muzeum BRNM Masarykova univerzita BRNU Muz. Opava OP Muz. Olomouc OLM Bot. ústav Průhonice PRA Muz. Pardubice MP Muz. Roztoky ROZ Muz. Litoměřice LIT Muz. České Budějovice CB Muz. Plzeň PL Muz. Třebíč ZMT Muz. Mikulov MMI Muz. Hradec Králové HR Muz. Jihlava MJ Muz. Liberec LIM Palackého univerzita OL Muz. Zlín MG Muz. Chomutov CHOM Slov. nár. múzeum BRA Komenského univerzita SLO Bot. ústav Bratislava SAV Tech. Univ. Zvolen ZV Muz. Tatr. Lomnica TNP Univ. P.J. Šafárika KO Celkem ČR 7,8 milionu položek; Slovensko 1,17 milionu položek
11 16 největších světových herbářových sbírek (nad 2,5 milionu položek stav v r. 1990) Muséum National d'histoire Naturelle Paris, France P 7 Royal Botanic Gardens Kew, England, UK K 6 Komarov Botanical Institute St. Petersburg, Russia LE 5,77 Swedish Museum of Natural History Stockholm, Sweden S 5,6 New York Botanical Garden Bronx, New York, USA NY 5,3 British Museum of Natural History London, England, UK BM 5,2 Conservatoire et Jardin botaniques Geneva, Switzerland G 5 Harvard University Massachusetts, USA HUH 4,6 United States National Herbarium Washington, DC, USA US 4,3 Université Montpellier Montpellier, France MPU 4 Naturhistorisches Museum Wien, Austria W 3,75 Missouri Botanical Garden St. Louis, USA MO 3,7 Rijksherbarium Leiden, the Netherlands L 3 University of Helsinki Helsinki, Finland H 2,72 Bot. Museum Berlin-Dahlem Berlin, Germany B 2,5 Uppsala University Uppsala, Sweden UPS 2,
12 Z čeho sestává herbářová scheda? Musí na ní být: naleziště (locatio), stanoviště (habitatio), sběratel (collector), rok (anno). Je vhodné aby na ní bylo: jméno rostliny (nomen plantae), jméno herbáře (nomen herbarii), datum (datum), nadmořská výška (altitudo supramarino).
13 V renesanční bylinářích nebyly rostliny hierarchicky klasifikovány
14 jednoúrovňová (lineární) klasifikace = přiřazení jmen k objektům klasifikace hierarchická
15 Příkladem vynuceného přechodu od lineární klasifikace ke klasifikaci hierarchické je knihovna
16 Umělé hierarchické systémy rostlin (konec 16. stol) italský lékař a botanik Andrea Cesalpino, osobní lékař papeže Klimenta VIII. v díle De plantis libri sedecim (Florencie 1583) (16 knih o rostlinách) Podle Theophrasta považuje dřeviny za samostatnou skupinu, byliny dělí do 15 skupin podle znaků na generativních orgánech: Andrea Cesalpino (Caesalpinus) tvar a stavba plodu počet semen počet přihrádek v semeníku stavba květu
17 Druhové diagnózy (počátek 17. stol.) Počet známých druhů rychle rostl - od dob "německých otců botaniky" za necelých 100 let se víc než zdesateronásobil. V díle Pinax theatri botanici (1623) Švýcar Gaspard Bauhin použil krátké a výstižné diagnózy = soubory rozlišovacích znaků, které sloužily i jako pojmenování rostlin Gaspard Bauhin
18 Vznik rostlinné morfologie (2. pol. 17. stol.) Snaha o co nejpřesnější popis druhu, vedla při rostoucím počtu druhů k inflaci morfologických pojmů kvůli jednoznačnosti nutná kodifikace vzniká rostlinná morfologie zakladatel je Joachim Jung Joachim Jung (Jungius) ( ) německý lékař Doxoscopiae physicae minores (Hamburg 1662) (Menší rozhledy po přírodě a Isagoge phytoscopica (Hamburg 1678)
19 Soubor morfologických znaků taxonu = morfologický popis. pořadí znaků v popisu ustáleno s respektem k tradici a praktickým zvyklostem
20 Pojem a definice druhu (1686) John Ray "abychom mohli začít rostliny inventarizovat a správně klasifikovat, musíme se snažit zjistit některá kriteria na rozlišení tzv. druhů. Po dlouhém a usilovném výzkumu jsem nezjistil jiné kriterium na rozlišení druhů než jsou diferenční znaky, zachovávající si při rozmnožování semeny svoji stálost." Druh je podle Raye skupinou jedinců, kteří jsou v rámci své variability geneticky stálí. (Historia generalis plantarum, Londini )
21 Carl Linné - vrchol umělé klasifikace (pol. 18. stol.) Za vrchol umělých systémů je považováno dílo Švéda Karla Linnéa. Ten synteticky navázal na vše progresivní co zjistili nebo zavedli jeho předchůdci: Carl Linné (Linnaeus) Od Johna Raye převzal princip definice druhu. Od Augusta Bachmana převzal princip důsledné binomické nomenklatury. Od Joachima Junga a dalších morfologickou terminologii. Od Josepha Pittona de Tourneforta hierarchické členění taxonomických jednotek. Od Gasparda Bauhina krátký a přesný způsob popisů - diagnóz.
22 Species plantarum (1753) = starting point nomenklatury cévnatých rostlin, játrovek a rašeliníků. Linnéův systém = 24 tříd dle počtu, délky, srůstu tyčinek a pestíků, tedy pohlavních orgánů je proto nazýván systém sexuální.
23 První přirozené systémy (2. pol. 18. stol.) Michael Adanson (1763) Rostliny rozdělil do 58 čeledí 1. podle komplexu morfologických znaků 2. hodnota jednotlivých znaků stejná Michel Adanson Antoine Laurent de Jussieu (1789) teoreticky rozpracoval systém strýce Bernarda druhů ve 100 čeledích a 15 třídách Antoine Laurent de Jussieu ma konci diagnóz čeledí uvádí vztahy k sousedním čeledím 2. tyto vztahy použil jako kriterium třídění čeledí 3. ve vymezení tříd se přidržuje hlavně stavby květu.
24 Objev a zobecnění rodozměny (1. pol. 19. stol) 1. v první polovině 19. stol. jsou objevena archegonia a antheridia, u jednotlivých skupin výtrusných rostlin 2. postupně je objevován i princip střídání gametofytní a sporofytní generace, čili rodozměna 3. roku 1851 je princip rodozměny zobecněn Wilhelmem Hoffmeisterem. Wilhelm Hoffmeister genetická podstata haploidní a diploidní fáze byla poznána až počátkem 20. století.
25 Objev principu opylení rostlin (1. pol. 19. stol) Giovanni Battista Amici ( ) prof. fyziky v Mondeně 1823 objevuje pylovou láčku, jež proroste skrz čnělku do semenníku. Osservazioni microscopiche sopra varie piante (Mondena 1823) Carl Wilhelm von Naegeli ( ) prof. botaniky na univ. v Zürichu 1842 studuje dělení buněk uvnitř vznikajícího pylového zrna Zur Entwicklungs-geschichte des Pollens bei den Phanerogamen. (Zürich 1842).
26 Objev principu oplození rostlin (2. pol. 19. stol) 1877 popis dělení a diferenciace buněk uvnitř zárodečného vaku Über Befruchtung und Zelltheil-ung (Jena 1877) Eduard Strassburger, , prof. botaniky univ. v Jeně 1898 objev dvojího oplození u rostlin Novyje nabljuděnija nad oplodotvorenijem u Fritillaria tenella i Lilium martagon, které vyšlo jako součást sborníku Dněvnik X. sjezda russkich estěstvoispytatělej i vračej v Kijevě. Sergej Gavrilovič Navašin, , prof. botaniky na univ v Moskvě
27 Evoluční teorie (2. pol. 19. stol.) 1859 evoluční teorie - Angličan Charles Darwin ( ). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. (O vzniku druhů přírodním výběrem neboli uchováním prospěšných plemen v boji o život) (1859). 1866, Němec Ernst Haeckel ( ) vyslovuje zákon rekapitulace = biogenetický zákon: ontogeneze = zkrácená fylogeneze (v témže roce zavádí pojem ekologie jakožto vztah organismu a prostředí) Richard Owen ( ) definoval homologie a analogie / později obdoba v Hennigových apomorfiích a plesiomorfiích Report on the archetype and homologies of vertebrate skeleton principy
28 Fytogeografie a Chorologie - studuje areál taxonu, jeho velikost, vertikální výskyt vazba na určité květenné oblasti, migrační cesty, vývojová centra. 19. stol. švýcarský botanik Augustin Pyrame De Candolle. Rozvoje v 20. století po nashromáždění potřebného množství dat o rozšíření jednotlivých druhů Augustin Pyramus de Candolle ( )
29 Kodifikace botanické nomenklatury (1867) 1. základy již v Linnéově Philosophia botanica (1751) pověřil botanický kongres komisi devíti v čele s Alphonsem De Candollem zpracováním prvního nomenklatorického kódu. 3. Nomenklatorická komise v období mezi kongresy shromažďuje podněty pro zpřesnění kódu 4. změny může schválit pouze botanický kongres, konaný ca 1x za 6 let. Alphonse de Candolle
30 Chromosomy v rostlinné systematice (20. stol.) 1848 pozoroval Němec Wilhelm Hofmeister poprvé některé fáze mitózy v buňkách trichomů nitek rodu Tradescantia virginica 1882 si Němec Eduard Strasburger poprvé všímá, že počet diferencujících chromosomů při mitóze je pro druhy stálý tento fakt zobecnil německý cytogenetik a anatom Theodor Boveri. Theodor Boveri V rostlinné systematice se začaly metody zjišťování počtu chromosomů používat od 20. let 20. stol.
31 Od počtu chromosomů k velikosti genomu Proudová cytometrie (konec 20 stol.) Od poloviny 80. let 20. stol. prodělává dramatický rozvoj metoda, jenž se původně sloužila k analýze krevních buněk - proudová cytometrie (flow cytometry). U rostlin umožňuje měření velikosti buněčných jader a chromozómů.
32 Paleobotanické přístupy (od 1. pol. 20. stol.) Robert Kidston a William Henry Lang během 1. svět. války studovali fosilie nejprimitivnějších suchozemských rostlin u obce Rhynie ve Skotsku Telomová teorie: evoluční základ všech rostlinných orgánů = prastonek = telom. Z jeho základní dichotomické podoby u ryniofyt vznikly různé typy větvení stonku, postavení a uspořádání sporangií a listy u všech dalších rostin. Na základě studia fosilních rostlin, zejména ryniofyt, ji vyslovil roku 1930 Němec Walter Zimmermann (v díle Phylogenie der Pflanzen). Dr Robert Kidston (right) and the palaeobotanist Professor David Thomas Gwynne- Vaughan (left).
33 Syntetická teorie evoluce (1. pol. 20. stol.) Godrey Harold Hardy německý genetik Wilhelm Weinberg německý genetik Theodosius Dobzhansky populační genetik George Ledyard Stebbins americký botanik 1937 zákon o frekvenci alel v panmiktické populaci = Hardy-Weinbergova rovnováha. Darwinismus + genetika = syntetická teorie evoluce Ne jedinec, ale populace je základní jednotkou evoluce. Theodosius Dobzhansky (Genetics and the origin of species 1937). G. Ledyard Stebbins (Variation and Evolution of Plants 1950).
34 Isoenzymy - markery populační genetiky 20. stol. Gelová elektroforéza zviditelní rozdíly v prostorovém uspořádání, hmotnosti a síle elektrického náboje enzymů. Elektroforézu vynalezl 1937 švédský biochemik Arne Wilhelm Kaurin Tiselius ( ) (Nob. cena 1948). polovina 60. let využití ve šlechtitelské genetice v systematice od 80 let - hybridní původ druhů, breeding systémy, populační genetika Isoenzymy katalyzují stejnou reakci ale strukturně se liší velikostí nebo sekvencí aminokyselin. Allozymy jsou isozymy kódované různými alelami téhož genu.
35 Objektivizace a racionalizace taxonomických dat = Biostatistika (20. století) Biometrická měření na rostlinách již na přelomu 19. a 20. století britský matematik Charles Pearson základní pojmy a koeficienty popisné statistiky variační koeficient; pracoval většinou se znaky s normální gausovskou distribucí sledoval např. počty ostnů na listech Ilex aquifolium, počty primárních žilek u Fagus sylvatica apod. Fenetika = každý znak má a priori stejnou váhu Charles Pearson ( ) V roce 1963 se etablovala díky studiím Američanů R. Roberta Sokala a Petera Sneathe numerická taxonomie masivní využití jejích metod jako je shluková čili clustrovací, diskriminační analýza či analýza hlavních komponent a mnoha dalších, umožnil rozvoj výpočetní techniky. Robert R. Sokal
36 Znaky kvantitativní a kvalitativní biometrika. Variabilita živých organismů si vynucuje použití metod biostatistiky. Nejčastějšími výstupy numericko taxonomických metod jsou: dendrogram (v případě metod klasifikačních jako je např. clustrová analýza) nebo ordinační diagram (vyjádřený obvykle ve formě scatter plotu, v případě metod ordinačních jako je např. analýza hlavních komponent PCA = principal component analysis, a. hlavních koordinát PCoA, či analýza DCA).
37 Kladistika Willi Hennig něm. entomolog Willi Hennig kladistika = fylogenetická klasifikace Smyslem je spojovat skupiny se společnými předky, sdílející nově se v evoluci objevivší (odvozený) znak = apomorfii. Kladogram vychází z apomorfií při maximální úspornosti maximum parsimony tree. Každý znak byl někdy v evoluci nový např.: genetický kód = apomorfie všech živých organizmů, cévní svazky = vyšších rostlin kromě mechorostů, konduplikátně svinutý plodolist = apomorfií krytosemenných. Opakem apomorfií jsou znaky primitivní plesiomorfie.
38 Moderní systémy rostlin (konec 20. stol.) John Hutchinson Armen Tchtadžjan Arthur John Cronquist James Reveal Rolf Dahlgren Dahlgrenogram Robert F. Thorne, 1920-
39 Studium DNA 90. léta 20. stol. postupy založené na polymerázové řetězcové reakci (PCR) v programovatelném zařízení, zvaném termocykler. Pro čtení sekvence nukleotidů sekven(c)ování se využívá automatický sekvenátor. Výhodou metod je, že stačí jen malé množství materiálu umožňující přežití zkoumaného jedince. The Nobel Prize in Chemistry 1980 Paul Berg Walter Gilbert Fred Sanger automatický sekvenátor The Nobel Prize in Chemistry 1993 Kary B. Mullis 1944-
40 Bar-coding identifikace rostlin pomocí sekvence DNA Př. Eriophorum angustifolium: sekvence intronu chloroplastového genu pro transferovou RNA CCTCTTACTATAAATTTCATTGTTGTCGATATTGACATGTAGAATGGACTCTCTCTTTATTCTCGTTTGATTTATCATCA TTTTTTCAATCTAACAAATTCTATAATGAATAAAATAAATAGAATAAATTGATTACTAAAAATTGAGTTTTTTTCTCATTA AACTTCATATTTGAATCAATTTACCATAAATAATTCATAATTTATGGAATTCAAAAAAATTCCTGAATTTGCTATTCCATA ATCATTGTCAATTTCTTTATTGACATGAAAAATATGATTTGATTGTTATTATGATCAATCATTTGATCATTGAGTATATAT ACGTACGTCTTTTTTTGGTATAGACGGCTATCCTTTCTCTTATTTCGATAAAGATATTTTAGTAATGCAACATAATCAA CTTTATTCGTTAGAAAAACTTCCATCGAGTCTCTGCACCTATCTTTAATATTAGATAAGAAATATTTTATTTCTTATAAT AAATAAGAGATATTTTATATCTCTCATTTTCTCAAAATGAAAGATTTGGCTCAGGATTGCCCACTCTTAATTCCAGGGT TTCTCTGAATTTGGAAGTTAACACTTAGCAAGTTNCCATACCAAGGCCAATCCAATGC
41 Plants (90 druhů sekvenováno = stav 2008) Eudicots (57) Monocots (15) Basal angiosperms (1) Amborella (1) Sekvenování kompletních genomů Gymnosperms (5) Ferns (2) eacv Adiantum capillus-veneris (maidenhair fern) (EST) esmo Selaginella moellendorffii (EST) Mosses (3) eppp Physcomitrella patens subsp. patens (EST) empm Marchantia polymorpha (EST) Green algae (5) Red algae (1) Glaucophytes (1)
42 Angiosperm Phylogeny Group Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 7, May 2006 [and more or less continuously updated since]. /research/apweb/.
43 Syntéza kladistických a molekulárních přístupů Fylogenetické vztahy vyšších rostlin v podobě maximum parsimony tree různých částí ribosomální DNA jaderného, chloroplastového a mitochondriálního genomu
44
45 Fylokód - fylogenetická definice jmen a b c jméno je definováno: a odkazem na nejbližšího společného předka dvou taxonů a všechny jeho potomky b odkazem na všechny organismy, které mají bližšího společného předka s označeným organismem než s jiným označeným organismem c odkazem na prvního předka, u kterého se vyvinul určitý znak a na všechny jeho potomky
Fylogeneze a diverzita vyšších rostlin Historie systematické botaniky Petr Bureš
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Fylogeneze a diverzita vyšších rostlin Historie systematické botaniky Petr Bureš Historie systematické botaniky a vývoj jejích metod
Fylogeneze a diverzita vyšších rostlin Historie systematické botaniky Petr Bureš
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Fylogeneze a diverzita vyšších rostlin Historie systematické botaniky Petr Bureš Historie systematické botaniky a vývoj jejích metod
Systematická biologie je věda o rozmanitosti organizmů (E. Mayr 1969: Principles of systematic zoology. Mac Graw Hill Book Co., New York X+428 p.).
základy taxonomie a systematiky Systematická biologie je věda o rozmanitosti organizmů (E. Mayr 1969: Principles of systematic zoology. Mac Graw Hill Book Co., New York X+428 p.). Základním posláním systematiky
GENETIKA 1. Úvod do světa dědičnosti. Historie
GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných
Taxonomický systém a jeho význam v biologii
Taxonomie Taxonomický systém a jeho význam v biologii -věda zabývající se tříděním organismů (druhů, rodů, ), jejich vzájemnou příbuzností a podobností. 3 úrovně: 1) charakteristika, pojmenování, vymezení
Jaro 2010 Kateřina Slavíčková
Jaro 2010 Kateřina Slavíčková Obsah: 1. Biologické vědy. 2. Chemie a fyzika v biologii koloběh látek a tok energie. 3. Buňka, tkáně, pletiva, orgány, orgánové soustavy, organismus. 4. Metabolismus. 5.
Systém a evoluce obratlovců I.Úvod
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Systém a evoluce obratlovců I.Úvod literatura taxonomie a systematika znaky a klasifikace Carl Linné Willy Hennig Literatura 2007
SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě
SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě Název projektu Zlepšení podmínek vzdělávání SZŠ Číslo projektu CZ.1.07/1.5.00/34.0358 Název školy Střední zdravotnická škola, Turnov, 28.
World of Plants Sources for Botanical Courses
Botanika 1 Úvod Botanika - je vědou o rostlinách (botané = řecky rostlina) Co k nim patří?.... Kde co!.... I když něco z toho ne sinice řasy houby lišejníky mechorosty plavuně přesličky kapraďorosty nahosemenné
Fylogeneze a diverzita obratlovců I.Úvod
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Fylogeneze a diverzita obratlovců I.Úvod literatura taxonomie a systematika znaky a klasifikace Carl Linné Willy Hennig Charles
Historie systematické botaniky (čili dědkologie) a vývoj jejích metod
Historie systematické botaniky (čili dědkologie) a vývoj jejích metod Po dlouhou dobu byla uspořádání rostlin dána jen jako nevědomé uspořádání kapitol či popisů rostlin v knize, bez explicitně zdůrazněné
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Úvod (1) Pojem a rozdělení biologie, biologické vědy, význam biologie. (1/1) Pojem a rozdělení biologie, biologické vědy, význam biologie.
Úvod (1) Pojem a rozdělení biologie, biologické vědy, význam biologie. (1/1) 1 Biologie = přírodní věda řec. Bios = život Řec. logos = nauka studuje vlastnosti a funkce organismů vztahy mezi organismy
Základy botaniky vyšších rostlin. Zdeňka Lososová
Základy botaniky vyšších rostlin Zdeňka Lososová Studijní literatura Mártonfi P.: Systematika cievnatých rastlín. Univerzita P.J. Šafárika, Košice, 2003 Smejkal M.: Systém a evoluce vyšších rostlin. In:
Vyšší rostliny Embryophyta. Milan Štech, PřF JU
Vyšší rostliny Embryophyta Milan Štech, PřF JU = suchozemské rostliny Embryophyta * mechorosty * cévnaté rostliny * jejich společní předci/přímí předchůdci Vznik chloroplastu klíčová událost na cestě k
Základní pojmy I. EVOLUCE
Základní pojmy I. EVOLUCE Medvěd jeskynní Ursus spelaeus - 5 mil. let? - 10 tis. let - 200 tis. let? Medvěd hnědý Ursus arctos Medvěd lední Ursus maritimus Základní otázky EVOLUCE Jakto, že jsou tu různé
Maturitní témata Biologie MZ 2017
Maturitní témata Biologie MZ 2017 1. Buňka - stavba a funkce buněčných struktur - typy buněk - prokaryotní buňka - eukaryotní buňka - rozdíl mezi rostlinnou a živočišnou buňkou - buněčný cyklus - mitóza
Maturitní témata - BIOLOGIE 2018
Maturitní témata - BIOLOGIE 2018 1. Obecná biologie; vznik a vývoj života Biologie a její vývoj a význam, obecná charakteristika organismů, přehled živých soustav (taxonomie), Linného taxony, binomická
Speciace a extinkce. Druh
Speciace a extinkce Druh Tři procesy biogeografie evoluce vymírání šíření = tři základní způsoby jimiž organismy odpovídají na prostorovou a časovou dynamiku geografických podmínek jen pro připomenutí
Biologie - Kvinta, 1. ročník
- Kvinta, 1. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Systém rostlin Část vyšší rostliny
Systém rostlin Část vyšší rostliny Literatura Hendrych R. (1977): Systém a evoluce vyšších rostlin. Rosypal S. (1992): Fylogeneze, systém a biologie organismů. Mártonfi P. (2003): Systematika cievnatých
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Charakterizace hybridních trav pomocí cytogenetických a molekulárních metod
Molekulární přístupy ve šlechtění rostlin Olomouc 14. února, 2017 Charakterizace hybridních trav pomocí cytogenetických a molekulárních metod Jan Bartoš Ústav experimentální botaniky Olomouc, Czech Republic
Evoluce (nejen) rostlinné buňky Martin Potocký laboratoř buněčné biologie ÚEB AV ČR, v.v.i. potocky@ueb.cas.cz http://www.ueb.cas.cz Evoluce rostlinné buňky Vznik a evoluce eukaryotních organismů strom
ICA 2018 Genetika a pojištění. Jan Kořistka
ICA 2018 Genetika a pojištění Jan Kořistka International Actuarial Association (IAA) Celosvětová asociace aktuárských společností (http://www.actuaries.org) V současnosti má IAA 74 plných a 25 přidružených
Botanika cévnatých rostlin
Botanika cévnatých rostlin Jan Suda suda@natur.cuni.cz N a ú v o d a n e b c o n á s č e k á Předpoklady: Anatomie a morfologie rostlin cvičení z botaniky Doporučeno: Terénní cvičení z botaniky (Dobronice)
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
M A T U R I T N Í T É M A T A
M A T U R I T N Í T É M A T A BIOLOGIE ŠKOLNÍ ROK 2017 2018 1. BUŇKA Buňka základní strukturální a funkční jednotka. Chemické složení buňky. Srovnání prokaryotické a eukaryotické buňky. Funkční struktury
Výukové environmentální programy s mezipředmětovými vazbami
Výukové environmentální programy s mezipředmětovými vazbami Ekologie, krajina a životní prostředí, ochrana životního prostředí, geologie a pedologie, praxe (Ing. Lenka Zámečníková) I) pracovní listy, poznávačky,
Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková. -pro učitele i žáky
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast RNDr. Monika Jörková Biologie1 obecná biologie Systém rostlin a binomická nomenklatura Taxonomické
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Tradice šlechtění šlechtění zlepšování pěstitelsky, technologicky a spotřebitelsky významných vlastností
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Aplikace DNA markerů v mykologii a molekulárni taxonomii
Mendelova genetika v příkladech Aplikace DNA markerů v mykologii a molekulárni taxonomii doc. RNDr. Michal Tomšovský, Ph.D., Ústav ochrany lesů a myslivosti, LDF MENDELU, Brno Tento projekt je spolufinancován
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
Výukový materiál zpracován v rámci projektu EU peníze školám
http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;
Vědní odvětví orientovaná na poznávání rostlinstva. Nauka o lese 001
Vědní odvětví orientovaná na poznávání rostlinstva Nauka o lese 001 Rostliny a člověk Rostliny jsou po tisíciletí předmětem zájmu člověka. Důvodem je jejich všestranná upotřebitelnost jak z hlediska užitečnosti
Jan S u d a Přehled pedagogické činnosti
Jan S u d a Přehled pedagogické činnosti 1. Pedagogická činnost Výuka na Přírodovědecké fakultě UK v Praze: Bakalářský studijní program Biologie přednášky: Anatomie a morfologie rostlin (B120C107); 1 hod.,
Vzdělávací obor Přírodopis - obsah 6.ročník
6.ročník Hlavní kompetence Učivo Navázání na dosažené kompetence Metody práce obor navázání na již zvládnuté ročník 1. OBECNÁ Kompetence k učení, k řešení problémů, 1.1 Vznik a vývoj života Vlastivěda
Okruhy otázek ke zkoušce
Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.
Aplikované vědy. Hraniční obory o ţivotě
BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)
Dědičnost pohlaví Genetické principy základních způsobů rozmnožování
Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série
Gymnázium Aloise Jiráska, Litomyšl, T. G. Masaryka 590
, T. G. Masaryka 590 Dodatek č. 1 ke Školnímu vzdělávacímu programu pro nižší stupeň gymnázia (zpracován podle RVP ZV) Tímto dodatkem se mění osnovy předmětu Biologie a geologie pro primu od školního roku
World of Plants Sources for Botanical Courses
Speciace a extinkce Druh Tři procesy biogeografie evoluce vymírání šíření = tři základní způsoby jimiž organismy odpovídají na prostorovou a časovou dynamiku geografických podmínek jen pro připomenutí
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Přírodopis 6. ročník Zpracovala: RNDr. Šárka Semorádová Obecná biologie rozliší základní projevy a podmínky života, orientuje se v daném přehledu vývoje organismů
World of Plants Sources for Botanical Courses. Zemědělská botanika. Cvičení 8 (po 8. přednášce) Identifikace druhů*
Zemědělská botanika Cvičení 8 (po 8. přednášce) Identifikace druhů* JN Klíč ke květeně České republiky Academia, Praha, 2002 Kubát, K., hlavní editor aktuálně je zpracováván kompletně nový, včetně elektronické
Jiří Mach. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy
Jiří Mach Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Název školy Gymnázium a Jazyková škola s právem státní jazykové zkoušky Svitavy Adresa školy Sokolovská 1638, 568 02 Svitavy
Strom života. Cíle. Stručná anotace
Předmět: Doporučený ročník: Vazba na ŠVP: Biologie 1. ročník Úvod do taxonomie Cíle Studenti zařadí člověka do příslušných taxonů taxonomického systému. Studenti se seznámí s principem fylogenetického
Sylabus kurzu: Biologie
Sylabus kurzu: Biologie Výchozí úroveň studentů: Vědomosti z biologie na gymnaziální úrovni Cílová úroveň studentů: Cílem je zopakovat a prohloubit vědomosti v oblasti biologie nabyté na gymnáziu, případně
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)
ROSTLINNÉ ORGÁNY - KVĚT
Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM
= primitivní vyšší rostliny, primárně suchozemské. pravděpodobně se vyvinuly z řas řádu Charales nemají pravé cévní svazky
MECHOROSTY = primitivní vyšší rostliny, primárně suchozemské první fosilie ze svrchního devonu (před 360 mil. let) pravděpodobně se vyvinuly z řas řádu Charales nemají pravé cévní svazky -odkázány na kapilární
Biologie - Oktáva, 4. ročník (přírodovědná větev)
- Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Cvičení z biologie Jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z biologie O8A, C4A Jednoletý volitelný předmět Cíle předmětu Předmět cvičení z biologie je určen pro studenty, kteří potřebují ke svému budoucímu studiu
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Téma / kapitola Prameny 8. třída (pro 3. 9. třídy)
Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.6 ČLOVĚK A PŘÍRODA - 5.6.3 PŘÍRODOPIS - Přírodopis - 7. ročník
OBECNÁ BIOLOGIE A GENETIKA RVP ZV Obsah 5.6 ČLOVĚK A PŘÍRODA 5.6.3 PŘÍRODOPIS Přírodopis 7. ročník RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo P9101 rozliší základní projevy
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Ekologie Ing. Vladimír Hula, PhD.
Ekologie Ing. Vladimír Hula, PhD. Ústav zoologie, rybářství, hydrobiologie a včelařství Mendelova zemědělská a lesnická univerzita Budova A, první mezipatro, tam vlevo, až na konec chodby, opět vlevo a
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.
Anotace: Materiál je určen k výuce přírodopisu v 7. ročníku ZŠ. Seznamuje žáky se růstem a rozmnožováním kvetoucích rostlin. Materiál je plně funkční
Anotace: Materiál je určen k výuce přírodopisu v 7. ročníku ZŠ. Seznamuje žáky se růstem a rozmnožováním kvetoucích rostlin. Materiál je plně funkční pouze s použitím internetu. rostlina jednoletá rostlina
Maturitní témata BIOLOGIE
Maturitní témata BIOLOGIE 1. BIOLOGIE ČLOVĚKA. KŮŽE. TERMOREGULACE LIDSKÉHO ORGANISMU. 2. BIOLOGIE ČLOVĚKA. SOUSTAVA OPĚRNÁ A POHYBOVÁ. 3. BIOLOGIE ČLOVĚKA. SOUSTAVA KREVNÍHO OBĚHU, TĚLNÍ TEKUTINY. 4.
Název: VNITŘNÍ STAVBA KVĚTU
Název: VNITŘNÍ STAVBA KVĚTU Autor: PaedDr. Ludmila Pipková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět: biologie Mezipředmětové vztahy: ekologie Ročník: 2. a 3. (1. ročník vyššího
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Definice Současný stav Úrovně Indikátory Ochrana Druhová ochrana Genová centra
Koncepce soudního lékařství. doc. MUDr. Alexander Pilin, CSc.
Koncepce soudního lékařství doc. MUDr. Alexander Pilin, CSc. 1 Definice oboru Soudní lékařství jest nauka o použití neboli vynaložení vědomostí a zkušeností lékařských k účelům soudním. prof. Josef Reinsberg,
II. Nástroje a metody, kterými ověřujeme plnění cílů
BIOLOGIE Gymnázium PORG Libeň Biologie je na PORGu Libeň vyučována jako samostatný předmět od sekundy do oktávy a navazuje na předmět Integrovaná přírodověda vyučovaný v primě. V sekundě, tercii a kvartě
Název školy: Základní škola a Mateřská škola Žalany. Číslo projektu: CZ. 1.07/1.4.00/ Téma sady: Přírodopis
Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Přírodopis Název DUM: VY_32_INOVACE_3C_20_Významní_biologové Vyučovací předmět: Přírodopis Název vzdělávacího
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Paleogenetika člověka
Budeme se snažit najít odpověď na možná nejstarší otázku člověka: Kdo jsme a odkud pocházíme? Budeme se snažit najít odpověď na možná nejstarší otázku člověka: Kdo jsme a odkud pocházíme? Kdo je náš předek?
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
obecné vlastnosti živých soustav soustav teorie evoluce Zeměpis, Dějepis 1. ročník prokaryotní a eukaryotní buňka buňka - stavba a funkce
odliší živé soustavy od neživých na základě jejich charakteristických vlastností zkoumá formy, vlastnosti a vnitřní procesy živých soustav, jejich vzájemné a k neživému prostředí OBECNÁ BIOLOGIE vznik
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr
Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr Evoluční teorie Základy evoluce, adaptace na životní podmínky - poskytuje řadu unifikujících principů
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
A B C D E F 1 Vzdělávací oblast: Člověk a příroda 2 Vzdělávací obor: Přírodopis 3 Ročník: 7. 4 Klíčové kompetence (Dílčí kompetence) Zoologie
A B C D E F 1 Vzdělávací oblast: Člověk a příroda 2 Vzdělávací obor: Přírodopis 3 Ročník: 7. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence občanské respektuje přesvědčení druhých je si vědom svých
Využití molekulárních markerů v systematice a populační biologii rostlin. 12. Shrnutí,
Využití molekulárních markerů v systematice a populační biologii rostlin 12. Shrnutí, Přehled molekulárních markerů 1. proteiny isozymy 2. DNA markery RFLP (Restriction Fragment Length Polymorphism) založené
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Úvod do studia biologie vyučující: Mgr. Blažena Brabcová, Ph.D. RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D.
Úvod do studia biologie vyučující: Mgr. Blažena Brabcová, Ph.D. RNDr. Zdeňka Lososová, Ph.D. Mgr. Robert Vlk, Ph.D. Mgr. Martina Jančová, Ph.D. Doc. RNDr. Boris Rychnovský, CSc. studijní literatura: Nečas
DUM č. 4 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 4 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Morfologie a rozdělení chromozomů, homologní
Otázka 22 Rozmnožování rostlin
Otázka 22 Rozmnožování rostlin a) Nepohlavně (vegetativně): 1. Způsoby rozmnožování u rostlin: typ množení, kdy nový jedinec vzniká z jediné buňky, tkáně, nebo části orgánu o některé rostliny vytvářejí
Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Biologie. Třída: Sekunda. Očekávané výstupy. Poznámky. Přesahy. Průřezová témata.
Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Biologie Třída: Sekunda Očekávané výstupy Žák: Vyjmenuje společné znaky strunatců Rozlišuje a porovnává základní vnější a vnitřní stavbu vybraných
PROČ ROSTLINA KVETE Při opylení
- Při opylení je pylové zrno přeneseno u nahosemenných rostlin na nahé vajíčko nebo u krytosemenných rostlin na bliznu pestíku. - Květy semenných rostlin jsou přizpůsobeny různému způsobu opylení. - U
Podmínky pro hodnocení žáka v předmětu biologie
Podmínky pro hodnocení žáka v předmětu biologie 1. ročník čtyřletého všeobecného a 5. ročník osmiletého studia všech daných okruhů a kontrola úplnosti sešitu. Do hodnocení žáka se obecné základy biologie
Anotace: Materiál je určen k výuce přírodopisu v 7. ročníku ZŠ. Seznamuje žáky se základy obecné botaniky. Materiál je plně funkční pouze s použitím
Anotace: Materiál je určen k výuce přírodopisu v 7. ročníku ZŠ. Seznamuje žáky se základy obecné botaniky. Materiál je plně funkční pouze s použitím internetu. kormus rinyofyty pletivo tkáň kořen stonek
Mendelistická genetika
Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí
Malcomber S.T. (2000): Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread,
Malcomber S.T. (2000): Phylogeny of Gaertnera Lam. (Rubiaceae) based on multiple DNA markers: evidence of a rapid radiation in a widespread, morphologically diverse genus. Evolution 56(1):42-57 Proč to
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)
Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis.
Populační studie Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Molecular Ecology 10:205 216 Proč to studovali?
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
Herbářové sbírky, databáze. Zpracování herbářového materiálu.
Cvičení ze systému vyšších rostlin, část 1. Herbářové sbírky, databáze. Zpracování herbářového materiálu. aneb základní prostředek k uchování a výzkumu rostlin RNDr. Michal Hroneš Herbářové sbírky herbář
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 ZÁKLADNÍ GENETICKÉ POJMY Genetika je nauka o dědičnosti a proměnlivosti znaků. Znakem se
SSOS_ZE_1.10 Příroda projevy živé hmoty
Číslo a název projektu Číslo a název šablony CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT DUM číslo a název SSOS_ZE_1.10
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Přírodopis 3. období 9. ročník Danuše Kvasničková, Ekologický přírodopis pro 9. ročník ZŠ a nižší ročníky víceletých gymnázií, nakl. Fortuna Praha 1998
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/..00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG) Tento
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Využití metagenomiky při hodnocení sanace chlorovaných ethylenů in situ Výsledky pilotních testů
Využití metagenomiky při hodnocení sanace chlorovaných ethylenů in situ Výsledky pilotních testů Stavělová M.,* Macháčková J.*, Rídl J.,** Pačes J.** * Earth Tech CZ, s.r.o ** ÚMG AV ČR PROČ METAGENOMIKA?