Toxikologie, její předmět a vymezení pojmů
|
|
- Rostislav Urban
- před 9 lety
- Počet zobrazení:
Transkript
1 Toxikologie, její předmět a vymezení pojmů 1. Úvod 2. Předmět toxikologie a vymezení pojmů 3. Působení cizorodých látek na lidský organismus 4. Klasifikace jedů 5. Účinek jedů, druhy účinku 6. Závislost účinku na koncentraci a dávce
2 Úvod Zkušenosti s jedy (toxickými látkami) doprovází člověka celým jeho vývojem: látky přírodní povahy mikrobiální toxiny, rostlinné toxiny, toxiny jedovatých hub a živočišné toxiny; některé cíleně používané v travičství, například bolehlav podaný Sokratovi syntetické organické sloučeniny methanol, benzen,... anorganické jedy sloučeniny arsenu, olova, rtuti,... Základy moderní toxikologie položil Paracelsus ( ): Všechny látky jsou jedy. Toliko správná dávka odlišuje lék od jedu. Dnes: Každá látka, organismu kvalitativně nebo kvantitativně cizí, která jej poškozuje chemicky nebo fyzikálně, je jed.
3 Předmět toxikologie a vymezení pojmů Toxikologie je nauka o škodlivém působení látek na živý organismus. Toxikologie kombinuje znalosti z medicíny, molekulární biologie, genetiky a chemie. Má stránku popisnou, experimentální a teoretickou. Je blízká farmakologii. Odvětví: popisná toxikologie predikční toxikologie soudní lékařství klinická toxikologie průmyslová toxikologie toxikologie omamných a psychotropních látek ekotoxikologie toxikologie potravin a jejich doplňků toxikologie agrochemikálií
4 Působení xenobiotik na lidský organismus Působení biologického systému a cizorodé látky (xenobiotika) je vzájemné: Látka působí na organismus a ten působí na cizorodou látku, chemicky ji přeměňuje. Účinek látky na organismus je dělen na čtyři fáze: Vstup látky do organismu (vstřebání). Přenos látky v organismu. Látková přeměna biotransformace. Vylučování - exkrece. Biotransformace a vylučování se někdy označují společným názvem eliminace.
5 Stupně toxicity chemických látek Přibližná smrtná dávka Příklad Kategorie v mg/kg množství pro člověka 1. prakticky netoxické > víc než litr BaSO 4 2. málo toxické půllitr až litr C 2 H 5 OH 3. mírně toxické půldeci až půllitr NaCl, FeSO 4 4. silně toxické lžička až půldeci Cd 2+, Pb 2+, CH 3 OH 5. extrémně toxické kapek až lžička BaCO 3, KClO 3 6. supertoxické < 5 stopa, <7 kapek nikotin, As 3+, botulotoxin, dioxiny Česká legislativa třídí jedy (toxické látky) podle akutní toxicity do třech skupin: 1. silně toxické (T+) - smrtná dávka méně než 25 mg/kg 2. toxické - smrtná dávka (T) mg/kg 3. škodlivé (Xn) - smrtná dávka mg/kg
6 Účinek jedů, druhy účinku Působení xenobiotika na lidský organismus se může navenek projevit celou škálou rozmanitých účinků - od lehké nevolnosti, přes poruchy zažívání, nervové soustavy až po smrt. Otrava - intoxikace je poškozením životních funkcí organismu v důsledku působení xenobiotika. Může se projevit bezprostředně po jednorázové dávce cizorodé látky. V takovém případě mluvíme o otravě akutní - akutním účinku. V jiných případech se může poškození zdraví projevit teprve po dlouhodobém styku s látkou. Jedná se o chronický účinek, chronickou otravu. K akutní otravě dochází při jednorázové vyšší dávce nebo krátkodobé inhalaci vyšších koncentrací. K chronické otravě dochází naopak při opakovaných malých dávkách, nebo dlouhodobém vdechování nižších koncentrací. Účinky akutní a chronické vyvolané stejnou látkou se mohou navzájem značně lišit.
7 Způsob působení 1. Přímý toxický účinek - látka působí pouhou svou přítomností na kritickém místě v organismu. 2. Biochemický účinek - látka reaguje s cílovou molekulou (receptorem), ovlivní nějaký biochemický děj a tím některou životní funkci buňky či organismu. 3. Imunotoxický účinek - změny imunitního systému projevující se snížením imunity nebo nepřiměřenou alergickou reakcí. 4. Mutagenita - změna genetické informace vedoucí ke změně vlastností následujících generací. 5. Karcinogenita - změna genetické informace vedoucí ke zhoubnému nádorovému bujení. 6. Teratogenita - poškození plodu vedoucí k narození defektního jedince.
8 Přímý toxický účinek Pokud látka nepříznivě působí na organismus pouhou svou přítomností na určitém místě, aniž by se vázala na receptor, či reagovala s cílovými molekulami, mluvíme o přímém toxickém účinku. Mezi přímý toxický účinek patří působení silných kyselin a zásad. Projevuje se místně, jako účinek leptavý, nebo v některých případech i systémově, změnou buněčného ph. Látky, které krystalizují v ledvinách, je mechanicky poškozují a mají na ně přímý toxický účinek. Příkladem je kyselina šťavelová, která v ledvinách krystalizuje jako šťavelan vápenatý, a dále některá léčiva sulfonamidy, které je při předávkování mohou rovněž mechanicky poškodit.
9 Biochemický účinek, inhibice enzymů Mnohé cizorodé látky ovlivňují důležité biochemické děje v organismu a tím následně také životní funkce. Nejčastěji se jedná o inhibici enzymů. Inhibice znamená zpomalení reakce katalyzované (urychlované) příslušným enzymem S + E [ E - S ] P + E kde E je enzym, S - substrát a P - produkt Substrát se váže na enzym v tzv. aktivním místě. Inhibitor má schopnost vázat se dostatečně pevně na totéž místo, a tak soutěžit se substrátem o enzym. To je inhibice kompetitivní (soutěživá). Předpokladem kompetitivní inhibice je, aby jed, inhibitor, měl podobné vlastnosti jako substrát a mohl se tak účinně vázat na enzym. Příkladem kompetitivní inhibice je působení oxidu uhelnatého, který se váže místo kyslíku na hemové železo v krevním barvivu hemoglobinu (Hb). Vzniklá vazba CO-Hb je mnohem pevnější než vazba kyslíku (O 2 -Hb) a hemoglogin pak není schopen vázat kyslík.
10 Biochemický účinek, inhibice enzymů Fluorované látky, zejména kyselina fluoroctová, jsou prostorově velmi podobné nefluorovaným analogům. Atomové poloměry fluoru a vodíku jsou totiž podobné. Kyselina fluoroctová může sloužit pro některé enzymy Krebsova cyklu (cyklus kyseliny citrónové, součást fyziologického metabolismu) jako substrát nahrazující kyselinu octovou. Tak dojde ke vzniku kyseliny fluorcitrónové, která na rozdíl od kyseliny citrónové nemůže být dále zpracována enzymem akonitasou, ale naopak silně tento enzym inhibuje. Tím se celý cyklus spojený s produkcí energie blokuje. Kromě toho se může cizorodá látka vázat na jiné místo enzymu. Pozměněný enzym potom není schopen plnit svoji funkci. Mluvíme o inhibici nekompetitivní. Takto působí některé těžké kovy, Hg, Pb, As, Cd, které se váží na thiolové skupiny enzymů, a tak je poškozují. Inhibice tvorby adenosintrifosfátu (ATP) dinitrofenolem, dinitro-o-kresolem nebo pentachlorfenolem má za následek přeměnu energie na teplo - horečku. Silně kyselé fenoly pronikají do buňky a v mitochodriích zmenšují gradient ph potřebný pro správnou funkci enzymu pro syntézu ATP.
11 Imunotoxicita Imunitní systém reaguje na cizorodé vysokomolekulární látky, hlavně bílkoviny. Základními součástí imunitního systému jsou lymfatický systém (slezina, lymfatické žlázy, lymfatické uzliny) a bílé krvinky (periferní leukocyty). Když je nějaká látka imunitním systémem rozpoznána jako cizí, začnou se proti ní tvořit protilátky. Tyto protilátky vytvoří s antigenem komplex a tak jej deaktivují. Imunitní odpověď se navenek projevuje různě, od mírných kožních projevů, kopřivky, přes dýchací potíže až po anafylaktický šok. Toxické látky mohou buď imunitní reakci potlačit, nebo naopak vyvolat nepřiměřenou odpověď imunitního systému (alergická reakce).
12 Teratogenita Mnohé látky mají schopnost poškodit embryo, případně plod při dávkách, které nejsou pro matku toxické. Některé z nich způsobují, že se dítě narodí sice životaschopné, ale těžce poškozené. Tyto látky se označují jako teratogeny. Nejznámějším teratogenem je N-(2,6-dioxo-3-piperidinyl)ftalimid, thalidomid, léčivo, které bylo od 1957 od 1961 používané jako sedativum. Toto léčivo nemělo pro dospělé vedlejší účinky. Bylo proto doporučováno i těhotným ženám jako zvláště bezpečné. Děti žen, které ho během těhotenství užívaly, se rodily těžce deformované (zkrácené končetiny, malformace vnitřních orgánů ap.). To vedlo k zavedení povinného testování léčiv na teratogenitu a ke zpřísnění požadavků na testování léčiv vůbec.
13 Mutagenita Genetická informace je uchována a přenášena pomocí kyseliny deoxyribonukleové (DNA) a ribonukleové (RNA). Obě kyseliny jsou tvořeny dvojitými šroubovicemi. Vlákna šroubovice jsou k sobě poutána vodíkovými můstky v párech pyrimidinových (cytosin, uracil a thymin) a purinových basí (adenin a guanin). Každá purinová base je vázána s určitou pyrimininovou a naopak. V RNA jsou to páry adenin-uracil a guanin-cytosin. V DNA je thymin namísto uracilu. Příklad vazby vodíkovými můstky je ilustrován níže na párech adenin-thymin a guanin-cytosin. N N N O H N H NH H NH N O N N N NH H O N H N CH 3 N N O guanin - cytosin adenin - thymin
14 Karcinogenita Mutace v genetickém materiálu, DNA, se může projevit zhoubným bujením napadené tkáně - vznikne nádor. Mechanismus vzniku nádoru je značně složitý. Prvotní příčinou může být mutace, změna genetické informace. Vztah mezi mutagenitou a karcinogenitou není jednoznačný. Mutagenita není ani nutnou, ani postačující podmínkou karcinogenity. Většina karcinogenů má mutagenní účinky, ale nádorové bujení mohou vyvolat i látky nemutagenní. V takovém případě se může jednat o poškození opravných mechanismů, které jsou jinak schopny poškozenou DNA rozpoznat a opravit, případně nahradit.
15 Karcinogenita Tři typy údajů o látkách: Prokázaný účinek na člověka (Known Human Carcinogen, Sufficient Evidence of Human Carcinogenity, Group 1): benzen, asbest, vinylchlorid, benzidin, aj. Prokázaný účinek na zvířata, řada důvodů pro podezření z účinků na člověka (Anticipated Human Carcinogen, Human Inadequate Evidence, Suspected Human Carcinogen, Animal Sufficient Evidence, Animal Carcinogen, Group 2), N 2 H 4, DDT, dioxin, nitrobenzen, oxiran, PCB, N-nitrosodiethylamin, formaldehyd, CHCl 3, CCl 4, práškový Ni, některé sloučeniny Cr, akrylonitril, dimethylsulfát, epichlorhydrin, atd. Nedostatečné důkazy pro účinky na pokusná zvířata (Group 3)
16 Závislost účinku na koncentraci a dávce Předpoklad závislosti mezi dávkou a odpovědí organismu, účinkem, je základním konceptem toxikologie. Pod jistou prahovou hodnotou dávky se zpravidla žádný účinek neobjeví. Při jejím překročení účinek s dávkou stoupá. Mnohem více než na dávce závisí účinek na koncentraci látky, nebo jejího účinného metabolitu, na místě účinku, tedy tam, kde látka reaguje s receptorem. Tato koncentrace je zase závislá na dávce, a tedy i účinek je pak závislý na dávce. Pokud je látka plynná, je dávka úměrná součinu vdechované koncentrace a času působení. Účinek je pak funkcí koncentrace a času: D U k c t f( c kde D je dávka, U je účinek toxické látky, c její koncentrace ve vdechovaném vzduchu, k je konstanta úměrnosti, t je doba působení, n je exponent závislý na charakteru vazby látky na receptor a reversibilitě účinku. n t )
17 Závislost účinku na koncentraci a dávce Pro látky vázané na receptory slabě, které se snadno uvolňují vydechováním, platí přibližně n = 0. Vazba na receptory je dokonale vratná. Účinek pak závisí pouze na koncentraci vdechované látky, nikoli na době vdechování. To je případ mnohých inhalačních anestetik (např. rajský plyn - N 2 O). Jejich účinek odezní brzy po ukončení inhalace a pacient se probudí. U látek, které se vážou na receptory nevratně (např. COCl 2 ), rozhoduje celková dávka. V těchto případech n = 1, U = f(d). Je-li vazba na receptor nevratná a účinek alespoň částečně nevratný, doba působení má větší váhu, než vdechovaná koncentrace látky. Jinak řečeno, krátkodobé vdechování vyšších koncentrací je méně škodlivé, než dlouhodobé působení koncentrací úměrně nižších. V těchto případech n > 1. To je často případ karcinogenních látek a radioaktivního záření.
V takovém případě mluvíme o otravě akutní - akutním účinku.
Účinek jedů, druhy účinku Působení cizorodé látky na lidský organismus se může navenek projevit celou škálou rozmanitých účinků - od lehké nevolnosti, přes poruchy zažívání, nervové soustavy až po smrt.
S + E [ E - S ] P + E. Stupnice toxicity chemických látek. Přímý toxický účinek
Účinek jedů, druhy účinku Působení cizorodé látky na lidský organismus se může navenek projevit celou škálou rozmanitých účinků - od lehké nevolnosti, přes poruchy zažívání, nervové soustavy až po smrt.
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Zjišťování toxicity látek
Zjišťování toxicity látek 1. Úvod 2. Literární údaje 3. Testy in vitro 4. Testy na zvířatech in vivo 5. Epidemiologické studie 6. Zjišťování úrovně expozice Úvod Je známo 2 10 7 chemických látek. Prostudování
Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_179_Toxikologie organických látek_pwp
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ
Hygiena a toxikologie, 3. ročník, Ekologie a životní prostředí
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_412 Jméno autora: Třída/ročník: Mgr. Alena
Možné účinky XENOBIOTIK
Možné účinky XENOBIOTIK přímý toxický účinek -látka působí pouhou svou přítomností na kritickém místě v organismu biochemický účinek - látka interaguje s cílovou molekulou (receptorem), ovlivní nějaký
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.
1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné
Enzymy faktory ovlivňující jejich účinek
Enzymy faktory ovlivňující jejich účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 10.8.2012 3. ročník čtyřletého G Faktory ovlivňující
Klasifikace látek a směsí
Klasifikace látek a směsí Dle nařízení EP a Rady EU 1272/2008/EC (CLP) Ing. Hana Krejsová Výzkumný ústav organických syntéz a.s. Centrum ekologie, toxikologie a analytiky Rybitví č.p. 296, Rybitví 533
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
Hygiena a toxikologie, 3. ročník, Ekologie a životní prostředí
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ
MUDr Zdeněk Pospíšil
MUDr Zdeněk Pospíšil Imunita Charakteristika-soubor buněk,molekul a humorálních faktorů majících schopnost rozlišit cizorodé látky a odstranit je /rozeznává vlastní od cizích/ Zajišťuje-homeostazu,obranyschopnost
Biochemie. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Platnost: od 1. 9. 2009 do 31. 8.
Studijní obor: Aplikovaná chemie Učební osnova předmětu Biochemie Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - půda V této kapitole se dozvíte: Jak vznikla půda. Nejvýznamnější škodliviny znečištění půd. Co je to
Vstup látek do organismu
Vstup látek do organismu Toxikologie Ing. Lucie Kochánková, Ph.D. 2 podmínky musí dojít ke kontaktu musí být v těle aktivní Působení jedů KONTAKT - látka účinkuje přímo nebo po přeměně (biotransformaci)
Klasifikace přípravků na základě konvenční výpočtové metody
Klasifikace přípravků na základě konvenční výpočtové metody konvenční výpočtovou metodu pro klasifikaci nebezpečnosti chemických přípravků definuje příslušné nařízení vlády. nebezpečné vlastnosti látek
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Erytrocyty. Hemoglobin. Krevní skupiny a Rh faktor. Krevní transfúze. Somatologie Mgr. Naděžda Procházková
Erytrocyty. Hemoglobin. Krevní skupiny a Rh faktor. Krevní transfúze. Somatologie Mgr. Naděžda Procházková Formované krevní elementy: Buněčné erytrocyty, leukocyty Nebuněčné trombocyty Tvorba krevních
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Úvod do problematiky chemických látek
Úvod do problematiky chemických látek Machartová V. 12.5. 2012 Šafránkův pavilon, Plzeň Klinika pracovního lékařství LF UK a FN v Plzni Projekt Pracovní lékařství pro lékaře všech odborností Registrační
Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D.
Úvod do biochemie Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Co je to biochemie? Biochemie je chemií živých soustav.
R věty. Jednoduché R věty:
R věty Nebezpečné vlastnosti chemických látek jsou popsány tzv. R-větami, které stanoví specifickou rizikovost jednotlivých nebezpečných chemických látek. R-věty jsou jednoduché nebo kombinované (podle
III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT. Hygiena a toxikologie, 3. ročník, Ekologie a životní prostředí
Název školy Číslo projektu Název projektu Klíčová aktivita Označení materiálu: Typ materiálu: Předmět, ročník, obor: Tematická oblast: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ
RNDr. Klára Kobetičová, Ph.D.
ENVIRONMENTÁLNÍ TOXIKOLOGIE ÚVODNÍ PŘEDNÁŠKA RNDr. Klára Kobetičová, Ph.D. Laboratoř ekotoxikologie a LCA, Ústav chemie ochrany prostředí, Fakulta technologie ochrany prostředí, VŠCHT Praha ÚVOD Předmět
Preventivní medicína
Preventivní medicína Předseda Doc. MUDr. Alexander Martin Čelko, CSc., Ústav epidemiologie LF UK tel: 26710 2485 fax: 272 738 497 e-mail: martin.celko@lfcuni.cz Místopředseda Prof. MUDr. Kamil Provazník,
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty)
Otázka: Hygiena a toxikologie Předmět: Chemie Přidal(a): dan 1. Definice, základní poznatky HYGIENA = dodržování zásad pro uchování zdraví (dnes synonymum pro dodržování čistoty) vnějším znakem hygieny
Vyhláška 79/2013 Sb. Chemické faktory CD hotel Garni*** Plzeň
Vyhláška 79/2013 Sb. Chemické faktory 15.5.2013 CD hotel Garni*** Plzeň Bartizalová Š. Klinika pracovního lékařství LF UK a FN v Plzni Projekt Pracovní lékařství pro lékaře všech odborností Registrační
OBRANNÝ IMUNITNÍ SYSTÉM
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_04_BI2 OBRANNÝ IMUNITNÍ SYSTÉM Základní znaky: není vrozená specificky rozpoznává cizorodé látky ( antigeny) vyznačuje se
V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Zjišťování toxicity. Toxikologie. Ing. Lucie Kochánková, Ph.D.
Zjišťování toxicity Toxikologie Ing. Lucie Kochánková, Ph.D. Zjišťování toxicity kdykoli se dostaneme do kontaktu s novou látkou, zjistíme si její toxicitu! 1) známá - již popsaná látka různé zdroje informací
Lze onemocnění prostaty ovlivnit životním stylem a stravou?
Lze onemocnění prostaty ovlivnit životním stylem a stravou? VILÍM ŠIMÁNEK Praha 7.12.2016 Které faktory se podílí na nádorovém onemocnění prostaty a jejím biochemickém návratu. Lze je ovlivnit? Co může
Člověk a mikroby, jsme nyní odolnější? Jan Krejsek. Ústav klinické imunologie a alergologie, FN a LF UK v Hradci Králové
Člověk a mikroby, jsme nyní odolnější? Jan Krejsek Ústav klinické imunologie a alergologie, FN a LF UK v Hradci Králové Jsme určeni genetickou dispozicí a životními podmínkami, které působí epigeneticky
Osud xenobiotik v organismu. M. Balíková
Osud xenobiotik v organismu M. Balíková JED-NOXA-DROGA-XENOBIOTIKUM Látka, která po vstřebání do krve vyvolá chorobné změny v organismu Toxické účinky: a) přechodné b) trvale poškozující c) fatální Vzájemné
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
TOXICITA. Ing. Hana Věžníková, Ph. D.
TOXICITA Ing. Hana Věžníková, Ph. D. OBSAH Toxicita Toxický účinek Expozice Toxicita plynných zplodin hoření Oxid uhelnatý Oxid uhličitý Synergický účinek 2 TOXIKOLOGIE Vědecká disciplína na pomezí několika
Kontaminace půdy pražské aglomerace
Kontaminace půdy pražské aglomerace ING. ANNA CIDLINOVÁ (anna.cidlinova@szu.cz) Odběry půdních vzorků vareálech mateřských školek spolupráce SZU a ČGS monitoring půd součástí celoevropského projektu Urban
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_419 Jméno autora: Třída/ročník: Mgr. Alena
VY_32_INOVACE_003. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám
VY_32_INOVACE_003 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Základní znaky života Vyučovací předmět:
H200 Nestabilní výbušnina. H201 Výbušnina; nebezpečí masivního výbuchu. H202 Výbušnina; vážné nebezpečí zasažení částicemi.
http://www.msds-europe.com H200 Nestabilní výbušnina. H201 Výbušnina; nebezpečí masivního výbuchu. H202 Výbušnina; vážné nebezpečí zasažení částicemi. H203 Výbušnina; nebezpečí požáru, tlakové vlny nebo
CZ.1.07/1.5.00/
Projekt: Příjemce: Název materiálu: Autor materiálu: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická,
Klasifikace látek, symboly, R-věty a S-věty:
Klasifikace látek, symboly, R-věty a S-věty: (8) Nebezpečné látky a přípravky jsou látky a přípravky, které vykazují jednu nebo více nebezpečných vlastností a pro tyto vlastnosti jsou klasifikovány za
SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM
SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM Jana Badurová, Hana Hudcová, Radoslava Funková, Helena Mojžíšková, Jana Svobodová Toxikologická rizika spojená
Xenobiotika a jejich analýza v klinických laboratořích
Xenobiotika a jejich analýza v klinických laboratořích BERÁNEK M., BORSKÁ L., KREMLÁČEK J., FIALA Z., MÁLKOVÁ A., VOŘÍŠEK V., PALIČKA V. Lékařská fakulta UK a FN Hradec Králové Finančně podporováno programy
MYKOTOXINY. Jarmila Vytřasová. Univerzita Pardubice Fakulta chemicko-technologická Katedra biologických a biochemických věd
MYKOTOXINY Jarmila Vytřasová Univerzita Pardubice Fakulta chemicko-technologická Katedra biologických a biochemických věd Centralizovaný rozvojový projekt MŠMT č. C29: Integrovaný systém vzdělávání v oblasti
Učební osnovy vyučovacího předmětu chemie se doplňují: 2. stupeň Ročník: devátý. Přesahy, vazby, rozšiřující učivo, poznámky
- zná pojmy oxidace, redukce, redoxní reakce - pozná redoxní reakci - určí oxidační číslo prvku ve sloučenině - popíše princip výroby surového železa a oceli - vysvětlí princip koroze a způsob ochrany
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Vliv znečišťujících látek z lokálních topenišť na zdraví Ostrava,
Vliv znečišťujících látek z lokálních topenišť na zdraví Ostrava, 5.11.2015 MUDr. Helena Šebáková a kol. 595 138 200 Krajská hygienická stanice Moravskoslezského kraje se sídlem v Ostravě Na Bělidle 7,
Nukleové kyseliny příručka pro učitele. Obecné informace:
Obecné informace: Nukleové kyseliny příručka pro učitele Téma Nukleové kyseliny je završením základních kapitol z popisné chemie a je tedy zařazeno až na její závěr. Probírá se v rámci jedné, eventuálně
Bezpečnostní pokyny pro nakládání s vybranými nebezpečnými chemickými látkami na pracovištích PřF UP Olomouc. Látky toxické
Bezpečnostní pokyny pro nakládání s vybranými nebezpečnými chemickými látkami na pracovištích PřF UP Olomouc Látky toxické Methanol, CH 3 OH F, T R: 11-23/25 S: (1/2-)7-16-24-45 Bezbarvá kapalina charakteristické
Název školy: Číslo a název sady: klíčové aktivity: Hygiena a toxikologie, 3. ročník, Ekologie a životní prostředí
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ
Enzymy charakteristika a katalytický účinek
Enzymy charakteristika a katalytický účinek Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek enzymy 28.7.2012 3. ročník čtyřletého G Charakteristika
Článek 1 Úvodní ustanovení
Věc Působnost Účinnost Číslo jednací Vypracoval Předkládá Schválil UNIVERZITA PARDUBICE Směrnice č. 6/2009 Seznam prací zakázaných těhotným ženám, kojícím ženám, matkám do devátého měsíce po porodu a mladistvým
Zákon č. 356/2003 Sb. o chemických látkách a chemických přípravcích a o změně některých zákonů
Zákon č. 356/2003 Sb. o chemických látkách a chemických přípravcích a o změně některých zákonů Hlavní zásady zákona - komplexnost úpravy pro celou oblast managementu chemických látek (navazuje na předchozí
POKYNY FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ
POKYNY Prostuduj si teoretický úvod a následně vypracuj postupně všechny zadané úkoly zkontroluj si správné řešení úkolů podle řešení FAKTORY OVLIVŇUJÍCÍ RYCHLOST REAKCÍ 1) Vliv koncentrace reaktantů čím
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY
Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.
DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy
Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,
Postup při klasifikaci karcinogenů v Mezinárodní agentuře pro výzkum rakoviny
Postup při klasifikaci karcinogenů v Mezinárodní agentuře pro výzkum rakoviny International Agency for Research on Cancer (IARC) Lyon, Francie Jaroslav Mráz Státní zdravotní ústav, Praha Centrum hygieny
KREV. Autor: Mgr. Anna Kotvrdová 29. 8. 2012
KREV Autor: Mgr. Anna Kotvrdová 29. 8. 2012 KREV Vzdělávací oblast: Somatologie Tematický okruh: Krev Mezioborové přesahy a vazby: Ošetřovatelství, Klinická propedeutika, První pomoc, Biologie, Vybrané
Materiály 1. ročník učebních oborů, maturitních oborů On, BE. Metodický list. Identifikační údaje školy
Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu Název
Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_172_Toxikologie přechodných kovů_pwp
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
1. ročník Počet hodin
SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
Delegace naleznou v příloze dokument D033542/02 - ANNEX.
Rada Evropské unie Brusel 14. července 2014 (OR. en) 11888/14 ADD 1 ENV 672 ENT 161 PRŮVODNÍ POZNÁMKA Odesílatel: Evropská komise Datum přijetí: 11. července 2014 Příjemce: Předmět: Generální sekretariát
FORMALDEHYD VE VNITŘNÍM OVZDUŠÍ STAVEB
FORMALDEHYD VE VNITŘNÍM OVZDUŠÍ STAVEB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu
Deoxyribonukleová kyselina (DNA)
Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou
Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta
Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.
Klasifikace směsí. Ing. Hana Krejsová. Tel.:
Klasifikace směsí Ing. Hana Krejsová Tel.: 724278705 H.krejsova@seznam.cz Klasifikace akutní toxicity Akutní toxicita nepříznivé účinky k nimž dojde po aplikaci jedné dávky nebo vícenásobné dávky látky
20. Radionuklidy jako indikátory
20. Radionuklidy jako indikátory Indikátorová metoda spočívá v umělých změnách izotopového složení prvku říkáme, že prvek je označen radioaktivním izotopem (metoda značených atomů) Vztah izotopového indikátoru
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Zákon č. 356/2003 Sb. o chemických látkách a chemických přípravcích a o změně některých zákonů
Zákon č. 356/2003 Sb. o chemických látkách a chemických přípravcích a o změně některých zákonů Hlavní zásady zákona - komplexnost úpravy pro celou oblast managementu chemických látek (navazuje na předchozí
Využití zvířat použitých k pokusným účelům v ČR v roce tabulka EK
Využití zvířat použitých k pokusným účelům v ČR v roce 2014 - tabulka EK Údaje pro EU Počet zvířat Ano 232771 100,00% Ne Opětovné použití Počet zvířat Ne 227858 97,89% Ano 4913 2,11% Vytvoření nové geneticky
toxikodynamika soudní toxikokinetika anorganické přírodní analytická látky toxikologie ekotoxikologie toxikologie speciální toxikologie toxikologie
Toxikologie řec. τό τοξικον = jed k napouštění šípů, λογος = nauka vědní obor studující účinek chemických sloučenin (jejich směsí) na živé organismy (ekosystémy) studuje mechanismus těchto účinků v kvalitativním
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba
Informace o označování alergenů ve školní jídelně
Vážení rodiče,vážení strávníci, Informace o označování alergenů ve školní jídelně Od 13. 12. 2014 musí být součástí jídelního lístku i informace o alergenech obsažených v jídle. Odvolání na legislativu:
Doprava, znečištěné ovzduší a lidské zdraví
Doprava, znečištěné ovzduší a lidské zdraví Bratislava, 2. února 2011 odborný konzultant v oblasti ekologických a zdravotních rizik e-mail: miroslav.suta (zavináč) centrum.cz http://suta.blog.respekt.ihned.cz
FARMAKODYNAMIKA. Doc. PharmDr. František Štaud, Ph.D.
FARMAKODYNAMIKA Doc. PharmDr. František Štaud, Ph.D. Katedra farmakologie a toxikologie Univerzita Karlova v Praze Farmaceutická fakulta v Hradci Králové FARMAKODYNAMIKA studuje účinky léčiv a jejich mechanizmy
Výukový materiál zpracován v rámci projektu EU peníze školám
http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;
Biotransformace Vylučování
Biotransformace Vylučování Toxikologie Ing. Lucie Kochánková, Ph.D. Biotransformace proces chemické přeměny látek v organismu zpravidla enzymaticky katalyzované reakce vedoucí k látkám tělu vlastním nebo
Vyhláška 79/2013 Sb.
Vyhláška 79/2013 Sb. Machartová V. 15.5.2013 CD hotel Garni*** Plzeň Klinika pracovního lékařství LF UK a FN v Plzni Projekt Pracovní lékařství pro lékaře všech odborností Registrační číslo projektu CZ.01.07/3.2.02/01.0026
Klasifikace alergenů z pohledu právních předpisů
Klasifikace alergenů z pohledu právních předpisů M. Hornychová Státní zdravotní ústav mhornych@szu.cz 22. konzultační den CPL, 17. 4. 2008 Základní pojmy 2 zákona č. 356/2003 Sb. Klasifikace je postup
Heterocyklické sloučeniny, puriny a pyrimidiny
Heterocyklické sloučeniny, puriny a pyrimidiny Heterocyklické sloučeniny jsou organické látky, které obsahují v cyklickém řetězci mimo atomů uhlíku také atomy jiných prvků (N, O, P, S), kterým říkáme heteroatomy.
FAKTORY PROST EDÍ OHRO UJÍCÍ ZDRAVÍ LOV KA
FAKTORY PROSTEDÍ OHROUJÍCÍ ZDRAVÍ LOVKA CIZORODÉ LÁTKY V OVZDUŠÍ VODA (LÁTKY V NÍ OBSAŽENÉ) KONTAMINACE PŮDY HLUK A VIBRACE ZÁŘENÍ TOXICKÉ KOVY PERZISTENTNÍ ORGANICKÉ POLUTANTY Cizorodé látky v ovzduí
BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím
SMĚRNICE, KTEROU SE STANOVÍ PRÁCE ZAKÁZANÉ ŽENÁM, TĚHOTNÝM ŽENÁM, KOJÍCÍM ŽENÁM, MATKÁM DO KONCE DEVÁTÉHO MĚSÍCE PO PORODU A MLADISTVÝM
SMĚRNICE, KTEROU SE STANOVÍ PRÁCE ZAKÁZANÉ ŽENÁM, TĚHOTNÝM ŽENÁM, KOJÍCÍM ŽENÁM, MATKÁM DO KONCE DEVÁTÉHO MĚSÍCE PO PORODU A MLADISTVÝM Podle Zákona č.262/2006 Sb. Zákoníku práce, ve znění pozdějších úprav,
Aplikace nových poznatků z oblasti výživy hospodářských zvířat do běžné zemědělské praxe
Výživa zvířat a její vliv na užitkovost a zdraví zvířete ODBORNÝ SEMINÁŘ v rámci projektu Aplikace nových poznatků z oblasti výživy hospodářských zvířat do běžné zemědělské praxe Za podpory Ministerstva
Název školy: Číslo a název sady: klíčové aktivity: Hygiena a toxikologie, 3. ročník, Ekologie a životní prostředí
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
ATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 17. OCHRANA PŘED JADERNÝM ZÁŘENÍM Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. OCHRANA PŘED JADERNÝM ZÁŘENÍM VLIV RADIACE NA LIDSKÝ ORGANISMUS. 1. Buňka poškození
Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.
KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám
VY_32_INOVACE_PPM13660NÁP Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření: