PÍST ČTYŘDOBÉHO ZÁŽEHOVÉHO MOTORU O VÝKONU 373 KW PISTON FOR 373 KW 4 - STROKE SI-ENGINE

Rozměr: px
Začít zobrazení ze stránky:

Download "PÍST ČTYŘDOBÉHO ZÁŽEHOVÉHO MOTORU O VÝKONU 373 KW PISTON FOR 373 KW 4 - STROKE SI-ENGINE"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING PÍST ČTYŘDOBÉHO ZÁŽEHOVÉHO MOTORU O VÝKONU 373 KW PISTON FOR 373 KW 4 - STROKE SI-ENGINE BAKALÁŘSKÁ PRÁCE BACHELOR S THESIS AUTOR PRÁCE AUTHOR VEDOUCÍ PRÁCE SUPERVISOR PAVEL KOVÁŘ ING. RADIM DUNDÁLEK, PH.D.

2 Abstrakt Tato bakalářská práce se zabývá návrhem pístu čtyřdobého záţehového motoru o výkonu 373 kw. Zaměřuje se na hlavní rozměry pístu tak, aby byl schopen pracovat v těţkých podmínkách, kterým je ve válci vystaven. Další důleţitou částí návrhu pístu je pevnostní výpočet, který je v postupu nejdůleţitější. Abstract This bachelor work deals with the design of a piston for 373 kw 4-stroke SI-engine. The work is focused to main dimensions of the piston, to make it able to work in difficult conditions, which is exposed at cylinder. One of the most important part of design piston is strength calculation. Klíčová slova mechanismus motor namáhání píst pístní krouţek pístní čep Key words mechanism engine stress piston piston ring wrist-pin

3 Bibliografická citace KOVÁŘ, P. Píst čtyřdobého zážehového motoru o výkonu 373kW. Brno: Vysoké učení technické v Brně, Fakulta strojního inţenýrství, s. Vedoucí bakalářské práce Ing. Radim Dundálek, Ph.D.

4 Čestné prohlášení Prohlašuji, ţe předloţená bakalářská práce je původní a zpracoval jsem ji samostatně. Prohlašuji, ţe citace pouţitých pramenů je úplná, ţe jsem v práci neporušil autorská práva (ve smyslu zákona č. 121/2000 Sb. o právu autorském a o právech souvisejících s právem autorským). V Brně dne podpis

5 Poděkování Rád bych tímto poděkoval Ing. Davidu Svídovi za odborné vedení a poskytnutí mnoha uţitečných rad a poznatků, bez kterých by tato bakalářská práce jen těţce vznikala.

6 Obsah 1 Úvod Pístní skupina Píst Materiál pístů Kmity ve spalovacím prostoru Chlazení pístů Plášť pístu Tření pístu Pístní krouţky Jak pístní krouţek v motoru funguje Těsnící pístní krouţky Stírací pístní krouţky Pístní čep Druhy pístních čepů Plovoucí pístní čep Pevně uloţený čep Materiál pístního čepu Pojištění čepu proti axiálnímu posuvu Stanovení hlavních rozměrů motoru [3] Zadání úlohy Stanovení hlavních rozměrů pístového spalovacího motoru Zdvihový objem válce Objemový (litrový) výkon Stanovení průměru pístu D Zdvih pístu Střední pístová rychlost Návrh hlavních rozměrů pístu Dráţky pro pístní krouţky Radiální vůle pístních krouţků Axiální vůle pístních krouţků Dráţka pro stírací krouţek Pevnostní výpočet pístu Pevnostní výpočet dna pístu Nejslabší místo pláště pístu Brno 2008 Strana 1 Pavel KOVÁŘ

7 3.5.3 Měrný tlak na plášti pístu Mústek mezi prvním a druhým těsnícím krouţkem Závěr Literatura Použité symboly Seznam příloh Brno 2008 Strana 2 Pavel KOVÁŘ

8 1 Úvod Píst vytváří, ještě s pístními krouţky těsnícími, pístními krouţky stíracími, pístním čepem a pojistnými krouţky takzvanou pístní skupinu. Tato skupina, spolu s ojnicí a klikovou hřídelí umoţňuje, přetvářet energii tepelnou, vzniklou v prostoru nad hlavou pístu vznícením směsi paliva s kyslíkem na energii mechanickou. Za tímto účelem byl po parním stroji vynalezen spalovací motor, který nám především dnes výrazně ulehčuje práci. Po 19. století STOLETÍ PÁRY přichází nová doba v podobě spalovacího motoru. První vynález spalovacího motoru se datuje do roku 1860, kdy belgický vynálezce Jean Lenoir vyvinul první dvoutaktní spalovací motor na svítiplyn. Po několika pokusech s jinými druhy paliv obdrţel německý mechanik Gottlieb Daimler v roce 1885 patent na "vozidlo na kolech poháněné plynovým nebo petrolejovým motorem, umístěným pod sedadlem a mezi zadními nápravami". Gottlieb Daimler, Karl Benz a jejich vozy byly základem pro dnes vznikající vozidla. S vývojem motorů se současně vyvíjela i paliva. Nejvíce pouţívaná paliva dneška jsou benzín a nafta. Především záţehové motory na benzín byli zejména u osobních automobilů dominantní, vznětové motory na naftu nacházely svoje uplatnění v nákladních vozech a těţké technice. S postupem času a velkým pokrokem ve vývoji vznětových motorů se poměr mezi pouţíváním záţehového a vznětového motoru sníţil. Dnes uţ se setkáváme s prvními návrhy na sportovní automobily s pohonnou jednotkou na naftu. Byl to zejména problém spotřeby, která je u vznětového motoru niţší neţ u záţehového. Spotřeba jde ruku v ruce s emisemi. Kvůli sníţení emisí bylo provedeno mnoho úprav a vylepšení samotného motoru. V dnešní době je nezbytné dbát na ţivotní prostředí. Jednou z moţností jsou hybridní pohonné jednotky. Zejména automobilky TOYOTA a LEXUS se v tomto odvětví prezentovali jiţ několika modely, které vyuţívají tuto technologii. Technologii, která spojuje motor spalovací s elektromotorem. Tato bakalářská práce je zaměřena na pevnostní výpočet pístu dle zadání. V práci je dále nastíněna metodika výroby pístu a celé pístní skupiny včetně materiálů. Brno 2008 Strana 3 Pavel KOVÁŘ

9 2 Pístní skupina FAKULTA STROJNÍHO INŽENÝRSTVÍ Pístní skupina se skládá z pístu, pístních krouţků (těsnící, stírací), pístního čepu a závlaček pro zajištění pístního čepu proti axiálnímu pohybu. Píst tvoří ve spalovacím prostoru prvek, který přenáší pomocí pístního čepu tlak na ojnici a dále na klikovou hřídel. Píst dále utěsňuje spalovací prostor a zabraňuje unikání spalin do prostoru klikového hřídele, této funkci napomáhají pístní krouţky.[1] Obrázek 1 Pístní skupina [6] 2.1 Píst Píst přenáší tlaky splavání a těsní spalovací prostor motor proti průtoku plynů i proti vnikání oleje při všech provozních podmínkách. Musí odolávat vysokým teplotám a značným setrvačným silám při nejnepříznivějších podmínkách mazání. Konstrukce a volba materiálu pístů pro dnešní motory s vysokými výkonovými parametry můţe splnit tyto poţadavky, jen kdyţ správně vyuţije všech zkušeností z vývoje a výzkumu, avšak s tím vědomím, ţe i nové motory budou mít písty s neodstranitelnými vrozenými nedostatky. Současný vývoj ukazuje, ţe nelze očekávat podstatné usnadnění výroby pístů, i kdyţ směřuje ke konstrukci technicky a ekonomicky optimálních pístů.[2] Brno 2008 Strana 4 Pavel KOVÁŘ

10 Píst musí být lehký a bezpečně přenášet síly od tlaku plynů, síly setrvačné a tepla. Přestup tepla ze spalin do dna pístu má být malý a píst musí rychle odvádět teplo, které přijme. Proto povrch dna pístu má mít jen nezbytně velkou plochu. Rychlý odvod tepla nastává u pístů z hliníkových slitin. Průřezy, kterými teplo proudí, mají být dostatečně velké. Chladicí prostor válce se má vţdy vyvést co nejblíţe k dosedací ploše hlavy, aby pístní krouţky pístu zasahovaly v obou úvratí do chlazené oblasti povrchu válce (omývané chladicí tekutinou). Teplo se odvádí z pístu zejména pístními krouţky. Plášť pístu odvádí podstatně méně tepla (jen asi 20 30%). Olejový film na stěně válce ztěţuje přestup tepla z pístu do stěn válce. Pístní krouţky musí přenést i teplo, které vzniká z tření pístu ve válci. Mechanické vlastnosti materiálu pístu se zhoršují, zvětšuje-li se teplota. Tepelné napětí v pístu zvětšuje namáhání od tlaku plynů a setrvačných sil. Toto tepelné napětí vzniká z nerovnoměrného ohřevu pístu, nerovnoměrného rozloţení spalovaní ve spalovacím prostoru i z nedostatků konstrukce.[2] Materiál pístů Obrázek 2 Píst spalovacího motoru [6] Písty se přednostně zhotovují z hliníkových slitin Al-Si. Tyto slitiny se vyznačují velmi dobrými licími vlastnostmi. Mají poměrně malou teplotní roztaţnost, takţe rozdíl vůlí pístu ve válci při studeném a ohřátém motoru není nadměrný. Písty se nejčastěji zhotovují z eutektické slitiny obsahující okolo 11% Si. Tato slitina dává stejnoměrnou, jemně rozptýlenou směs obou sloţek. Nadeutektická slitina s obsahem asi 18% Si se často pouţívá pro písty naftových motorů. Tato slitina vytváří primární krystaly Si uloţené v základní eutektické hmotě. Velmi jemné krystaly Si se přitom dosahují přísadou fosforu nebo látek, které jej obsahují. Obě tyto slitiny se vyznačují nízkou hustotou, vysokou pevností po tepelném zpracování, značnou odolností proti opotřebení, teplotní stálostí, Brno 2008 Strana 5 Pavel KOVÁŘ

11 uspokojivou tepelnou vodivostí a příznivými vlastnostmi pro chod pístu ve válci. Kluzné vlastnosti těchto slitin se zlepšují, zvětšuje-li se obsah křemíku. Odolnost proti korozi se zvyšuje přísadou Mg. Slévatelnost i mechanické vlastnosti se zlepšují přísadou Mn. Odlévání pístů z těchto materiálů se nekomplikuje tvarem spalovacího prostoru. Písty se nejčastěji odlévají a jen zřídka kovou.[2] Kované (lisované) písty jsou vhodné pro mechanicky a tepelně značně namáhané motory. Jejich výhoda se projeví zejména v těch částech pístu, kde vysoké mechanické namáhání převládá nad namáháním tepelným. Lisované písty jsou výrobně náročnější neţ lité písty, avšak lisované písty vyvolávají menší destrukci při havárii motoru.[2] Tabulka 1 Složení Al slitin pro písty[2] Brno 2008 Strana 6 Pavel KOVÁŘ

12 Tabulka 2 Vlastnosti slitin Al pro písty [2] P odlévané do pístu K odlévané do kokily V kované Kmity ve spalovacím prostoru Kmity ve spalovacím prostoru, které vznikají při hoření, mohou rozkmitat pístní krouţky a narušit tak přestup tepla do stěn válce. Přitom se píst můţe porušit erozí.[2] Klopení pístu od jedné ke druhé stěně válce posouvá pístní krouţky v radiálním směru, a to třikrát za jednu otáčku. Tím se zvyšuje tření pístu ve válci, opotřebení roste a má-li píst větší vůli, dochází ke zvýšenému namáhání přepáţek pístních krouţků. Nepříznivý účinek klopení pístu na hluk motoru se u benzínových motorů omezuje vyosovávaním pístního čepu o 0,5 1 mm z osy pístu ve směru působení normálné síly. písty naftových motorů se vyosovávají o 0,5 aţ 2,5 mm (výjimečně 3mm) na protilehlou, nezatíţenou stranu. Vůle pístu na zatíţené straně se tím při klopení rychle zmenší, takţe tepelné namáhání zatíţené strany pístu se sníţí a omezí se mnoţství zplodin ze spalování oleje. Vyosování mění doby výkyvu pístu při pohybu ke stranám válce, takţe se od sebe liší.[2] Brno 2008 Strana 7 Pavel KOVÁŘ

13 Vůle pístu ve válci má být co nejmenší (asi 2x10-4 D) při všech provozních stavech motoru. Píst a válec se mají co nejméně deformovat z působení mechanického a tepelného zatíţení. Vnější obrys pístu se přizpůsobuje teplotní roztaţnosti válce a pístu (ovalitou, kuţelovitostí) i způsobu chlazení pístu jako např. ostřiku pístu olejem, účinku chladícího okruhu v pístu. Malá vůle pístu se dosahuje písty s řízenou dilatací pomocí zalitých vyrovnávacích vloţek. Větší vůle při studeném stavu motoru vede ke klepání pístu po spuštění studeného motoru. Nahradí-li se píst s hladkým pláštěm pístem s řízenou dilatací, intenzitu hlasitosti vzduchem chlazeného motoru se sníţí aţ o 8 db a kapalinou chlazeného motoru aţ o 3 db. Píst má však poměrně malý vliv na hladinu hlasitosti, je-li motor v dobrém stavu.[2] Chlazení pístů Teplota pístu v první dráţce pro pístní krouţek můţe dosahovat aţ 240 C. Při překročení této hodnoty je třeba píst zchladit.[1] V praxi se vyuţívají 2 způsoby chlazení: 1. Nástřik dna pístu [1] - Pro méně zatíţené motory - Nástřik dna pístu olejem sniţuje teplotu v dráţce prvního pístního krouţku asi o 20 ºC. Hlavní mazací kanál Obrázek 2 Nástřik dna pístu[1] Brno 2008 Strana 8 Pavel KOVÁŘ

14 2. Chladící kanál v hlavě pístu [1] - Pro více zatíţené motory - Sniţuje teplotu cca o 40 ºC 1 Toroidní chladící kanál 2 Přívodní kanálek 3 Tryska 4 Přívodní kanál 5 Odpadní kanál Obrázek 3 Chladící kanál v hlavě pístu [1] Plášť pístu Délka pláště pístu zajišťuje vedení pístu ve válci. Plášť přenáší normálné síly a udrţuje klopení pístu v přijatelných mezích. Optimální vedení pístu se dosahuje vhodným uloţením pístního čepu v plášti. Umístí-li se čep v těţišti pístu, eliminují se klopné momenty z působení setrvačných sil. Motor má menší výšku, uloţí-li se čep blízko dna pístu. Normálná síla se rozdělí po povrchu kluzné plochy rovnoměrněji, je-li čep uprostřed pláště. Tento poţadavek je často rozhodující. Pístní oka se musí dobře zakotvit jak k plášti, tak ke dnu pístu. Vzdálenost pístních ok závisí na šířce ojničního oka, při němţ píst a pístní čep se musí co nejméně deformovat. [2] Brno 2008 Strana 9 Pavel KOVÁŘ

15 2.1.5 Tření pístu FAKULTA STROJNÍHO INŽENÝRSTVÍ Ztráty třením pístu mají být co nejmenší. Závisí především na deformaci válce a přítlaku stíracího krouţku na válec. Těsnící krouţky a plášť pístu mají na třecí ztráty malý vliv, jsou-li správně konstruovány a zamontovány. Povrchová úprava pístu (např. poolovění, grafitování apod.) zlepšuje záběh motoru, přispívá k udrţení oleje na kluzné ploše a sniţuje tlak třecí ztráty. Osový pohyb krouţků při zdvizích pístu mezi úvratěmi má čerpací účinek, který vytlačuje olej ve směru ke spalovacímu prostoru. Čerpací účinek je tím větší, čím větší je osová vůle krouţku v dráţce. Píst musí mít vyhovující pevnost a tuhost, odolnost proti opotřebení a vzniku poruch na povrchu (např. rýh), musí se dobře chladit a ve válci správně vést, a to při všech provozních podmínkách chodu motoru.[2] 2.2 Pístní kroužky V několika minulých desetiletích stále rostly poţadavky kladené na moderní motory. V lehkých benzínových a dieselových motorech došlo k významnému zvýšení měrného výkonu díky lepší přípravě směsi, ale také ke zvýšení objemové účinnosti díky vyššímu počtu ventilů a přeplňování. Spolu s vývojem těchto výkonných motorů stoupají také nároky kladené na pístní krouţky. Byly vyvinuty a zavedeny některé speciální konstrukce, zejména povrchové úpravy kluzné plochy krouţku, např. plazmový nástřik. Pro benzínové i dieselové motory nejmodernější konstrukce je předepsána povrchová vrstva keramického materiálu s obsahem chromu (CKS), vyvinutá před několika málo roky. Kromě zvýšení měrného výkonu motorů je poţadována také delší ţivotnost a splnění stále přísnějších emisních limitů. Splnění těchto poţadavků by měly pomoci zajistit právě pístní krouţky.[5] Obrázek 4 Těsnící a stírací pístní kroužky Brno 2008 Strana 10 Pavel KOVÁŘ

16 2.2.1 Jak pístní kroužek v motoru funguje Pro splnění různých funkcí jsou v motoru zapotřebí různé typy pístních krouţků. Rozeznáváme těsnicí a stírací pístní krouţky. Těsnicí krouţek izoluje spalovací komoru od prostoru olejové vany. Musí zajistit těsnění mezi pístem a stěnou válce. Při 100 zdvizích pístu za kaţdou sekundu jsou pístní krouţky vystaveny extrémně vysokému tepelnému a mechanickému zatíţení. Proto je důleţité správné mnoţství mazacího oleje. To zajišťuje dolní, stírací pístní krouţek, který přivádí potřebné mnoţství oleje z olejové vany a společně se dvěma těsnicími krouţky je v tenké vrstvě rovnoměrně rozděluje po celé stěně válce.[5] Další důleţitou funkcí pístního krouţku je přenos velké části tepla pohlcovaného pístem do ochlazované stěny válce.[5] Těsnící pístní kroužky Nejčastější konstrukční řešení těsnícího pístního kroužku: 1) Kroužky se zkosením nebo ústupkem na vnitřní horní hraně: Obrázek 5 Kroužek se zkosením nebo ústupkem na horní hraně [5] Krouţky se zkosením nebo ústupkem na vnitřní horní hraně se pouţívají hlavně ve druhé, ale někdy také v první dráţce benzínových motorů. Funkční výhodou tohoto krouţku je jeho zkroucení, ke kterému dochází při zatlačení pístu do válce, takţe spodní vnější hrana krouţku se dotýká stěny válce. Tento lineární kontakt, podobně jako u pístního krouţku s úkosem, řídí a zlepšuje stírání oleje a umoţňuje rychlejší usazení krouţku v dráţce.[5] Brno 2008 Strana 11 Pavel KOVÁŘ

17 2) Kroužky s úkosem a zkosením nebo ústupkem na dolní vnitřní hraně: Tyto krouţky, známé také jako krouţky s negativním zkroucením, se většinou pouţívají ve druhé dráţce pístu spalovacího motoru. Mají velký úkos na straně směřující ke stěně válce (ca. 2 aţ 2 30 ). Ústupek na dolní vnitřní straně způsobuje, ţe se krouţek při zatlačení pístu do válce zkroutí v opačném směru, neţ krouţek se zkosením nebo ústupkem na horní vnitřní straně. Zkosení způsobuje, ţe se dolní vnější hrana dotýká stěny válce.[5] Obrázek 6 Kroužek s úkosem nebo ústupkem na dolní vnitřní hraně [5] 3) Kroužky s lichoběžníkovým průřezem: Obrázek 7 Kroužek s lichoběžníkovým průřezem [5] Krouţek s lichoběţníkovým (nebo také klínovým) průřezem můţe mít lichoběţníkový úhel 6 nebo 15 a v současné době je povaţován za standardní tvar pro první dráţku pístu v dieselových motorech. V omezeném rozsahu se tyto krouţky také pouţívají ve vysokootáčkových dieselových motorech lehkých vozidel. Výhodou tohoto krouţku ve srovnání s rovným krouţkem je to, ţe se na jeho stranách a v dráţce pístu neusazují pevné zplodiny hoření, coţ zabraňuje jeho zapečení v dráţce.[5] 4) Kroužky s úkosem Krouţky s úkosem mají zkosení na pracovní straně, jejíţ dolní hrana se lineárně dotýká stěny válce. To zajišťuje dobré stírání oleje a rychlé usazení krouţku v dráţce. Úkos pracovní strany je proveden v úhlu od 45 Brno 2008 Strana 12 Pavel KOVÁŘ

18 (DIN 70911) a 90 a u krouţků se zkosením nebo ústupkem na dolní vnitřní hraně v úhlu aţ Krouţky s úkosem se pouţívají hlavně ve druhé pístní dráţce dieselových motorů, ale někdy také ve druhé pístní dráţce a v ojedinělých případech i v první pístní dráţce benzínových motorů. V těchto případech je pracovní strana částečně lapována. Krouţky s úkosem mohou mít stejnou povrchovou úpravu jako krouţky s rovnými stranami.[5] Stírací pístní kroužky Obrázek 8 Kroužek s úkosem [5] Nejčastější konstrukční řešení stíracího pístního kroužku: 1) Kroužek s drážkou bez pružiny Obrázek 9 Kroužek s drážkou bez pružiny [5] Můţe mít fasetky válcového tvaru na vnější straně, zkosené hrany nebo dvojitě zkosené hrany. Vzhledem k nízkému tangenciálnímu namáhání, a tím i slabšímu kontaktnímu přítlaku fasetek ke stěně válce (měrný povrchový přítlak Po = 0,3 aţ 0,7 N/mm2) spolu s niţší přizpůsobivosti (schopností přizpůsobit se tvaru válce) se tento krouţek v moderních motorech pouţívá uţ jen zřídka.[5] 2) Stírací kroužek s pružinou Stírací krouţky s pruţinou mohou mít vyšší měrný přítlak a vysokou přizpůsobivost. Stírací krouţky s prstencovou pruţinou bez povrchové úpravy vnější strany mohou mít fasetku válcového tvaru, zkosenou hranu nebo dvojitě zkosenou hranu. Střední měrný přítlak se u těchto krouţků pohybuje Brno 2008 Strana 13 Pavel KOVÁŘ

19 v rozmezí ca. 0,9 aţ 1,5 N/mm2. Vynikající řízení oleje a vyznačují se nízkým opotřebením.[5] Obrázek 10 Kroužek s úkosem [5] 3) Skládané V moderních benzínových motorech se nyní stále více pouţívají ocelové stírací krouţky skládající se ze tří komponentů. Díky své vysoké přizpůsobivosti a měrnému přítlaku v rozmezí 0,8 a 1,2 N/mm2 zajišťují tyto krouţky dobré řízení oleje. Krouţek je záměrně navrţen tak, aby zajistil těsnění v dráţce mezi ocelovými výstupky a dráţkou.[5] Obrázek 11 Řez skládaným pístním kroužkem [5] Brno 2008 Strana 14 Pavel KOVÁŘ

20 2.3 Pístní čep Pístní čep je spojovacím členem přenášejícím síly mezi pístem a ojnicí. Tyto síly, vznikající působením tlaků ve válci a účinků setrvačných hmot pístu, čep namáhají a deformují. Pevnostní výpočet pístního čepu má obvykle jen druhořadý význam, neboť při správné volbě rozměru zpravidla vede k vysokým násobkům bezpečnosti. Rozhodující význam pro správnou funkci má výpočet deformací pístního čepu v závislosti na jeho uloţení v pístu.[4] Obrázek 12 Uložení pístního čepu [4] Druhy pístních čepů Nejpouţívanějším druhem pístních čepů je s průběţným válcovým otvorem obr. a). Další úpravy čepů slouţí ke sníţení hmotnosti jako například čep s kuţelovým zúţením konců obr. b). Čep můţe být také uzavřený z jedné strany nebo uprostřed. Tato úprava se provádí zejména pro dvoudobé Obrázek 13 Druhy pístních čepů[3] motory. Brno 2008 Strana 15 Pavel KOVÁŘ

21 2.3.2 Plovoucí pístní čep V motorech pro vozidla se převáţně pouţívají tzv. plovoucí čepy. Plovoucí čep se poměrně lehko montuje a rovnoměrně se opotřebovává po celé délce a po obvodě. [2] Obrázek 14 Plovoucí uložení pístního čepu [2] Pevně uložený čep Jeho ohybové napětí můţe být niţší neţ u plovoucího čepu, protoţe vzdálenost pístních ok se od sebe můţe zkrátit a jejich délka prodlouţit. Pevný čep zlepšuje stabilitu pístu ve válci. [2] Obrázek 15 Pevné uložení pístního čepu [2] Brno 2008 Strana 16 Pavel KOVÁŘ

22 2.3.4 Materiál pístního čepu FAKULTA STROJNÍHO INŽENÝRSTVÍ Pístní čepy se zhotovují z ocelí tříd 12, 14, 15, 16. Oceli třídy 16 vynikají pevností a odolností proti opotřebení, proto se pouţívají u vysoce zatíţených motorů. Běţně zatíţené motory pouţívají oceli třídy 12, 14 a 15. Čepy se po základním opracování cementují do hloubky 0,5 aţ 1,5 mm. Ţivotnost čepu závisí na jeho odolnosti proti rázům, opotřebení a na jeho tuhosti a pevnosti. Oboustranné tepelné zpracování a leštění povrchů značně zvyšuje odolnost proti otěru. Únavová pevnost čepu se po cementaci obou povrchů zvýšila o 12 aţ 20 % a po nitridaci o 35 aţ 45 %. Drsnost povrchu pístního čepu by neměla překročit R a = 1,5.[2] Pojištění čepu proti axiálnímu posuvu Způsobů jak zabránit axiálnímu posuvu pístního čepu je mnoho. Pístní čep můţeme do ok pístu zalisovat tak, ţe je volná jen hlava ojnice. Nejčastěji pouţívané zajištění čepu je segerovým krouţkem nebo víčkem. Víčka se nejčastěji zhotovují z Al slitiny. Vůle mezi válcem a víčkem bývá 0,5 mm. Víčko je kulovitě zaobleno poloměrem asi 0,45 D. Pojištění krouţkem kruhovitého průřezu není dost spolehlivé. Krouţky obdélníkového průřezu se dobře vsazují a lícují s čepem, ale v dráţkách pro krouţky vznikají neţádoucí napětí.[2] Obrázek 16 Jištění víčkem[2] Obrázek 17 Jištění kroužky[2] Brno 2008 Strana 17 Pavel KOVÁŘ

23 3 Stanovení hlavních rozměrů motoru [3] Mezi hlavní rozměry pístového spalovacího motoru patří: Vrtání (průměr) válce - D Zdvih pístu - Z počet pístů motoru i Vycházíme ze zadaného výkonu a otáček motoru. Motor, podle kterého jsou zadané parametry zvoleny je čtyřdobý nepřeplňovaný deseti válec o obsahu 4999 cm 3 z BMW M Zadání úlohy Zpracujte výpočtový návrh a konstrukční řešení pístu pro čtyřdobý záţehový motor o výkonu 373kW při otáčkách n = /min. 3.2 Stanovení hlavních rozměrů pístového spalovacího motoru Zdvihový objem válce Objemový (litrový) výkon Brno 2008 Strana 18 Pavel KOVÁŘ

24 3.2.3 Stanovení průměru pístu D FAKULTA STROJNÍHO INŽENÝRSTVÍ Pro stanovení průměru pístu pouţijeme vztah pro zdvihový objem válce. - zavedeme veličinu Zdvihový poměr k - volím k = 0,8 dle tab. 3 Tab. 3 Charakteristické parametry zážehových motorů[3] - po dosazení do rovnice (5) dostaneme: Zdvih pístu Střední pístová rychlost Brno 2008 Strana 19 Pavel KOVÁŘ

25 3.3 Návrh hlavních rozměrů pístu ØD H P H K - Průměr vrtání válce - Výška pístu - Kompresní výška pístu H O H Č H m1 H m2 ØD Č δ - Vzdálenost mezi nálitky - Délka pístního čepu - Výška prvního můstku - Výška druhého můstku - Průměr pístního čepu - Šířka dna pístu Obr. 18 Základní rozměry pístu[3] Tab. 4 Doporučené meze rozměrů pístu[3] Určení jednotlivých rozměrů pístu vychází z vrtání válce. Pro návrh pístu jsou rozměry vyjádřeny v procentuální závislosti na vrtání válce. Tab. 5 Tabulka rozměrů pístu Brno 2008 Strana 20 Pavel KOVÁŘ

26 3.4 Drážky pro pístní kroužky FAKULTA STROJNÍHO INŽENÝRSTVÍ Nejčastěji pouţívaná koncepce rozloţení pístních krouţků na pístu, vyuţívá dvou pístních krouţků těsnících a jednoho stíracího Radiální vůle pístních kroužků Mezi pístním krouţkem a pístem musí zůstat vůle. Tato vůle musí být zvolena tak, aby nevznikl příliš velký prostor, do kterého v průběhu hoření a expanze vnikají spaliny a nespálené palivo, které zvyšují mnoţství škodlivin ve spalinách motoru. D R = D Vnější průměr krouţku v zamontovaném stavu d R Vnitřní průměr krouţku v zamontovaném stavu d N Průměr dráţky pro pístový krouţek S P Radiální vůle pístového krouţku Obr. 19 Radiální vůle pístního kroužku[3] 1. Radiální vůle 1. pístního krouţku S P dle doporučení S P = 0,6 0,8 volím S P = 0,7 mm a dle normy DIN volím a = 3,7 mm Brno 2008 Strana 21 Pavel KOVÁŘ

27 2. Radiální vůle 2. pístního krouţku 3. Radiální vůle stíracího pístního krouţku Axiální vůle pístních kroužků Rozhodujícím faktorem při volbě axiální vůle je moţnost vzniku karbonových usazenin v dráţce pro pístní krouţek. V důsledku větší pravděpodobnosti tvorby těchto usazenin u prvního pístního krouţku se volí vůle větší neţ u druhého. Volba rozměrů dle normy DIN : 1. Axiální vůle 1. pístního krouţku Drážka pro kroužek: Pístní kroužek: mm maximální vůle krouţku v dráţce - 0,072 mm minimální vůle krouţku v dráţce - 0,045 mm 2. Axiální vůle 2. pístního krouţku Drážka pro kroužek: Pístní kroužek: mm maximální vůle krouţku v dráţce - 0,062 mm Brno 2008 Strana 22 Pavel KOVÁŘ

28 minimální vůle krouţku v dráţce - 0,035 mm 3. Axiální vůle stíracího pístního krouţku Drážka pro kroužek: Pístní kroužek: mm maximální vůle krouţku v dráţce - 0,062 mm minimální vůle krouţku v dráţce - 0,035 mm Drážka pro stírací kroužek Součástí dráţky pro stírací krouţek je i průřez pro odvod setřeného oleje. Rozměr otvoru pro odvod oleje je asi o 1 mm menší neţ šířka dráţky. Nevhodné umístění otvoru můţe u pístu chlazeným nástřikem oleje vyvolat opačné proudění oleje a zvyšovat tak jeho spotřebu. Otvory pro odvod oleje zvyšují, v důsledku vrubového účinku, napětí a s dráţkou pro stírací krouţek vytváří minimální příčný průřez pláště pístu, přenášející síly od tlaku plynů a setrvačné síly. Obr. 20 Otvor stíracího pro odvod oleje z drážky pístu[3] Brno 2008 Strana 23 Pavel KOVÁŘ

29 3.5 Pevnostní výpočet pístu FAKULTA STROJNÍHO INŽENÝRSTVÍ Kvůli sloţitosti tvaru pístu i jeho namáhání je tento výpočet spíše informativní. Výpočet zahrnuje základní namáhání vyvolané tlakem plynů při spalování a setrvačnými silami, které na píst působí. Do výpočtu nelze zahrnout další zatěţující faktory jako je například tepelná bilance v jednotlivých místech pístu nebo vlivy vrubových účinků. Kontrolní pevnostní výpočet pístu vychází z podobnosti jiţ provedených a osvědčených konstrukcí pístu. Obr. 21 Výpočtový model zatížení dna pístu[3] Pevnostní výpočet dna pístu Pevnostní výpočet dna je prováděn na ohyb. Model slouţící pro výpočet je kruhová deska, zatíţená po obvodě rovnoměrným spojitým zatíţením od tlaku plynu. Deska je podepřená nebo vetknutá. Při výpočtu je zanedbán vliv setrvačných síl. Pro přibliţný výpočet maximálního ohybového napětí je moţno nahradit kruhovou desku přímým nosníkem. Maximální síla tlaků plynů: r[m] - poloměr vetknutí (podepření) desky p max [Nm -2 ] - maximální tlak plynů ve válci motoru Brno 2008 Strana 24 Pavel KOVÁŘ

30 Maximální tlak p max se určuje z indikátorového diagramu. Obr. 22 Indikátorový diagram Maximální ohybový moment: Brno 2008 Strana 25 Pavel KOVÁŘ

31 Moment odporu v ohybu (modul průřezu): Maximální ohybové napětí: δ[m] - tloušťka dna pístu Vypočtená hodnota maximálního ohybového napětí je ovlivněna podepřením nebo vetknutím desky na obvodě. Pro desku vetknutou je maximální ohybové napětí desky: Dovolené hodnoty napětí pro písty z hliníkové slitiny pro dno s nízkými ţebry: Nejslabší místo pláště pístu Nejslabší místo pláště pístu bývá u většiny pístů v dráţce pro stírací krouţek. V tomto místě je plášť zeslaben nejen dráţkou, ale i otvory pro odvod setřeného oleje do klikové skříně. Brno 2008 Strana 26 Pavel KOVÁŘ

32 Namáhání tlakem plynů nad pístem: F p max [N] S X [m 2 ] - maximální síla od tlaků plynů ve spalovacím prostoru - průřez pístu v rovině dráţky pro stírací pístní krouţek - Hodnota průřezu pístu vypočtena: - Po dosazení F p max a S x do rovnice (14): Dovolená hodnota napětí pro současné hliníkové slitiny se pohybuje v rozmezí 30 aţ 40 [MPa]. Setrvačná síla: - Při doběhu pístu do horní úvrati dochází k namáhání vyšetřovaného průřezu na tah. Toto namáhání je vyvoláno setrvačnou silou od hmotnosti koruny pístu. m x [kg] r k [m] - hmotnost koruny pístu nad řezem x-x - poloměr klikového hřídele Brno 2008 Strana 27 Pavel KOVÁŘ

33 λ o [-] - ojniční poměr pro současné motory v rozmezí 0,2 0,3 ω max [s -1 ] - maximální úhlová rychlost otáčení klikového hřídele - Hmotnost koruny pístu byla vypočtena m x = 0,38 kg - Ojniční poměr byl zvolen 0,2 - Po dosazení těchto hodnot do rovnice (16) : Tahové napětí: Dovolené napětí pro hliníkové slitiny σ T, dov = 4 10 [MPa] Brno 2008 Strana 28 Pavel KOVÁŘ

34 3.5.3 Měrný tlak na plášti pístu FAKULTA STROJNÍHO INŽENÝRSTVÍ Měrný tlak je vyvolán normálovou silou, působící na stěnu válce. Maximální velikost dosahuje síla při expanzním zdvihu poblíţ horní úvratě. Síla je určována kinematikou klikového mechanizmu a průběhem tlaků plynů při hoření ve válci motoru. Při natočení klikové hřídele o 378º dosahuje tlak ve spalovacím prostoru maximální hodnoty. Úhel natočení hřídele α je tedy 18º. 1 kliková hřídel 2 stěna válce 3 ojnice 4 píst Obr. 23 Síly působící na klikový mechanismus Brno 2008 Strana 29 Pavel KOVÁŘ

35 Měrný tlak na plášti pístu: F B [N] D pl [m] L pl [m] - normálová síla - vrtání pístu - nosná délka pláště Velikost síly F B : - Po dosazení do rovnice (20) získáme: Maximální velikost výsledné síly F C : - Výpočet síly F S : - Výpočet síly F P : Brno 2008 Strana 30 Pavel KOVÁŘ

36 - Po dosazení do rovnice (22) získáme: - Po dosazení do rovnice (20) získáme: - Po dosazení do rovnice (19) získáme: Vypočtená hodnota měrného tlaku spadá do intervalu hodnot p dop = 0,6 1,4 [MPa] Brno 2008 Strana 31 Pavel KOVÁŘ

37 3.5.4 Mústek mezi prvním a druhým těsnícím kroužkem Můstek je ve spalovacím prostoru vystaven velmi vysokému namáhání od působících tlaků plynů a působení značně vysokých teplot. p 1 = 0,76 p max p 2 = 0,2 p max p 3 = 0,9 p max p 4 =1,1 p max Obr. 24 Rozložení tlaku v mezikroužkových objemech[3] Můstek je namáhán jako vetknutý nosník na ohyb a střih. Výsledný silový účinek na můstek mezi prvním a druhým těsnícím krouţkem je určen rozloţením tlaků plynů v mezikrouţkových mezerách. Tato síla namáhá můstek jako vetknutý nosník na ohyb a střih. Brno 2008 Strana 32 Pavel KOVÁŘ

38 Výpočet síly F m : FAKULTA STROJNÍHO INŽENÝRSTVÍ Výpočet ohybového napětí: H M2 [m] - Výška druhého můstku - Po dosazení do rovnice (26) získáme: Brno 2008 Strana 33 Pavel KOVÁŘ

39 Výpočet smykového napětí : S [m 2 ] - prúřez v místě vetknutí - Po dosazení do rovnice (29) získáme: Výpočet výsledného redukovaného napětí : [MPa]. Hodnota σ RED nepřesahuje dovolenou hodnotu, která se pohybuje v rozmezí Brno 2008 Strana 34 Pavel KOVÁŘ

40 Výkres: Navrţený píst byl narýsován takto. Řez pístem je znázorněn na obrázku 25. a 26. Pro nákres byl pouţit rýsovací program AutoCAD Obrázek 25 Řez pístem Obrázek 26 Znázornění pístu Brno 2008 Strana 35 Pavel KOVÁŘ

41 4 Závěr Úkolem této bakalářské práce bylo provést návrh základních rozměrů pístu pro čtyřdobý záţehový motor o výkonu 373 kw a následně provést pevnostní kontrolu navrţeného pístu. Pro zadání parametrů byl pouţit motor BMW M6. Kvůli sloţitosti dané problematiky není moţné provézt návrh se všemi potřebnými náleţitostmi. V práci je nastíněn postup, dle kterého lze píst navrhnout, ale nebylo by moţné ho pouţít pro motor, na jehoţ parametry byl navrhnut. Při výpočtu nebylo bráno v potaz teplotní zatíţení, které na píst ve spalovacím prostoru působí. Proto nelze s určitostí říci, zda by píst splnil poţadavky, které by na něj byly kladeny v zadaném motoru. V první části bakalářské práce je se zaměřena na problematiku prvků pístní skupiny, kterou tvoří píst, pístní krouţky, pístní čep a pojistné krouţky. U kaţdého z prvků pístní skupiny jsou zaznamenány a popsány funkce, které v motoru respektive ve spalovacím motoru plní, a také konstrukční provedení s pouţitými materiály. Druhá část práce je zaměřena na samotný výpočet pístu. Výpočet zahrnuje kontrolu namáhání dna pístu, kontrolu nejslabšího místa pláště pístu tj. prostor dráţky pro stírací krouţek. Dalšími kroky v postupu výpočtu jsou, kontrola pro tlakové namáhání pláště pístu a namáhání můstku mezi prvním a druhým těsnícím krouţkem. Kontroly, provedené na navrţeném pístu, vyšli v intervalech dovolených hodnot, které byli součástí literatury. Byly splněny všechny poţadované úkoly dle zadání. Brno 2008 Strana 36 Pavel KOVÁŘ

42 5 Literatura [1] Rauscher, J.: Spalovací motory (studijní opory), Brno, Učební texty vysokých škol [2] Koţoušek, J.: Výpočet a konstrukce spalovacích motorů II, Praha, SNTL 1983 [3] Rauscher, J.: Ročníkový projekt (studijní opory), Brno, Učební texty vysokých škol [4] Ing. Pavel Brabec: Vliv tuhosti pístního čepu na deformaci pláště. Dostupné na WWW: Pistni_cep.pdf [5] GOETZE Praktický průvodce: Pístní krouţky. Dostupné na WWW: Brno 2008 Strana 37 Pavel KOVÁŘ

43 6 Použité symboly FAKULTA STROJNÍHO INŽENÝRSTVÍ c s [m.s-1] střední pístová rychlost d N [mm] průměr dráţky pro pístový krouţek v pístu d R [mm] vnitřní průměr pístového krouţku v zamontovaném stavu D [mm] vrtání válce motoru D a [mm] vnější průměr pístového čepu D i [mm] vnitřní průměr pístového čepu D R [mm] vnější průměr pístového krouţku v zamontovaném stavu F B [N] normálová síla, kterou působí píst na stěnu válce F C [N] výsledná síla působící na píst ve vertikálním směru F m [N] výsledný silový účinek působící na můstek F P [N] sila od tlaku plynů působící na píst ve vertikálním směru F P max [N] maximální síla od tlaku plynů F s [N] sekundární síla působící na píst ve vertikálním směru F SP,X [N] setrvačná síla pístu H Č [mm] vzdálenost segerových krouţků H K [mm] kompresní výška pístu H m1 [mm] výška prvního můstku pístu H m2 [mm] výška druhého můstku pístu H O [mm] vzdálenost mezi nálitky pro pístní čap H pl [mm] výška plášťe pístu H P [mm] výška pístu i [-] počet válců motoru k [-] zdvihový poměr m [mm] minimální hloubka pláště za stíracím pístovým krouţkem m pístu [kg] hmotnost pístu m x [kg] hmotnost koruny nad řezem vyšetřovaného průřezu M O [N.m] ohybový moment M Omax [N.m] maximální ohybový moment Brno 2008 Strana 38 Pavel KOVÁŘ

44 n [min-1] jmenovité otáčky motoru n max [min-1] maximální otáčky motoru p e [Pa] střední efektivní tlak p max [Pa] maximální tlak plynů ve válci motoru p pl [MPa] měrný tlak na plášť pístu P e [W] výkon motoru r [m] poloměr podepření desky r k [m] poloměr klikového hřídele S [m2] průřez v místě vetknutí Sp [mm] radiální vůle pístového krouţku S X [m2] minimální příčný průřez pístu v dráţce pro stírací krouţek V Z [m3] zdvihový objem jednoho válce motoru W O [m3] modul odporu v ohybu W O [m3] moment odporu v ohybu (průřezový modul) Z [m] zdvih pístu α [ ] úhel natočení klikového hřídele β [ ] úhel mezi osou pístu a ojnicí δ [mm] hloubka dna pístu λ O [-] ojniční poměr π [-] Ludolfovo číslo ρ [kg/m3] hustota materiálu σ O [Pa] ohybové napětí σ Omax [Pa] σ Omax [Pa] maximální ohybové napětí pro desku vetknutou maximální ohybové napětí σ t [Pa] tahové napětí ve vyšetřovaném průřezu σ tl max [Pa] napětí vyvolané tlakem plynů τ [Pa] smykové napětí τ [-] taktnost motoru ω max [s-1] maximální uhlová rychlost Brno 2008 Strana 39 Pavel KOVÁŘ

45 7 Seznam příloh FAKULTA STROJNÍHO INŽENÝRSTVÍ [1] 1 3P22 BP P, PÍST Brno 2008 Strana 40 Pavel KOVÁŘ

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

PÍST ČTYŘDOBÉHO VZNĚTOVÉHO MOTORU O VÝKONU 485KW

PÍST ČTYŘDOBÉHO VZNĚTOVÉHO MOTORU O VÝKONU 485KW VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY O TECHNOLOGY AKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ ACULTY O MECHANICAL ENGINEERING INSTITUTE O AUTOMOTIVE ENGINEERING PÍST

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

KONSTUKCE PÍSTU HLAVNÍ ROZMĚRY PÍSTŮ

KONSTUKCE PÍSTU HLAVNÍ ROZMĚRY PÍSTŮ KONSTUKCE PÍSTU Namáhání pístu mechanickým a tepelným zatížením závisí především na režimu motoru, velikosti vrtání válce a zvolených konstrukčních rozměrech. HLAVNÍ ROZMĚRY PÍSTŮ Průměr Kompresní výška

Více

Praktický průvodce. Pístní kroužky

Praktický průvodce. Pístní kroužky Praktický průvodce Pístní kroužky Praktický průvodce 1 2 3 4 5 Konstrukce pístních kroužků GOETZE NORMFORM pro aftermarket Nejčastější konstrukční řešení kroužků 2.1. Kroužky se skosením nebo ústupkem

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

PÍST DVOUDOBÉHO MOTOCYKLOVÉHO MOTORU O VÝKONU 25KW

PÍST DVOUDOBÉHO MOTOCYKLOVÉHO MOTORU O VÝKONU 25KW VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459.

Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459. Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459 Autor: Ing. Jaroslav Zikmund Datum vytvoření: 2. 11. 2012 Ročník: II. Předmět: Motorová

Více

PÍSTNÍ KROUŽKY. Dnes standard: 2 těsnící a jeden stírací (oba nad PČ) 4-dobé motory Zvýšený přítlak v zámku Pozitivní ovalita hruška

PÍSTNÍ KROUŽKY. Dnes standard: 2 těsnící a jeden stírací (oba nad PČ) 4-dobé motory Zvýšený přítlak v zámku Pozitivní ovalita hruška PÍSTNÍ KROUŽKY Zabezpečují těsnost mezi spalovacím prostorem a karterem: - profuky do karteru (stírací účinek plynů na olejový plyn -Blow-by) - spotřebu oleje (z karteru do spalovacího prostoru) Dnes standard:

Více

ÚPRAVA PÍSTU PRO VZNĚTOVÝ MOTOR BMW 2,5 TDS

ÚPRAVA PÍSTU PRO VZNĚTOVÝ MOTOR BMW 2,5 TDS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING ÚPRAVA PÍSTU PRO VZNĚTOVÝ MOTOR BMW 2,5 TDS ARRANGEMENT OF PISTON FOR BMW

Více

VY_32_INOVACE_C 08 14

VY_32_INOVACE_C 08 14 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

PÍST ČTYŘDOBÉHO ZÁŽEHOVÉHO MOTORU

PÍST ČTYŘDOBÉHO ZÁŽEHOVÉHO MOTORU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

CHLAZENÍ PÍSTU. Pohonné jednotky II - Scholz, Brabec

CHLAZENÍ PÍSTU. Pohonné jednotky II - Scholz, Brabec CHLAZENÍ PÍSTU 1 CHLAZENÍ PÍSTU 2 CHLAZENÍ PÍSTU bez chl. kanálem dno pístu 1. PK náboj PČ dole s chl. kanálem Chladící kanál pumpující efekt v kanále se stupňovitým průřezem po obvodě. Cílem je zvýšení

Více

Pístové spalovací motory-pevné části

Pístové spalovací motory-pevné části Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Definice spalovacího motoru Název zpracovaného celku: Pístové spalovací motory-pevné části Spalovací motory jsou tepelné stroje,

Více

PÍST ZÁŽEHOVÉHO MOTORU ZÁVODNÍ VERZE ŠKODA 110

PÍST ZÁŽEHOVÉHO MOTORU ZÁVODNÍ VERZE ŠKODA 110 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING PÍST

Více

Nové trendy v konstrukci pístů spalovacích motorů z hlediska tribologie

Nové trendy v konstrukci pístů spalovacích motorů z hlediska tribologie Tribologie Nové trendy v konstrukci pístů spalovacích motorů z hlediska tribologie (Prezentace přehledového článku) Autor práce: Vedoucí práce: Pavel Chlup prof. Ing. Martin Hartl, Ph.D. Obsah 1. Tření

Více

PÍSTNÍ A OJNIČNÍ SKUPINA VZNĚTOVÉHO MOTORU

PÍSTNÍ A OJNIČNÍ SKUPINA VZNĚTOVÉHO MOTORU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459.

Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459. Tento dokument vznikl v rámci projektu Zkvalitnění výuky prostřednictvím ICT Registrační číslo: CZ.1.07/1.5.00/34.0459 Autor: Ing. Jaroslav Zikmund Datum vytvoření: 12. 11. 2012 Ročník: II. Předmět: Motorová

Více

Vytvořeno dne: Metodický popis, (anotace):

Vytvořeno dne: Metodický popis, (anotace): Ročník: Typ šablony Vzdělávací obor: 2. Ročník Opravář zemědělských strojů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Opravárenství Téma: Jméno autora: Písty Ing. Milan Axman Vytvořeno dne:

Více

ČTYŘDOBÝ MOTOR PRO MALOU MECHANIZACI FOUR-STROKE ENGINE FOR SMALL MECHANIZATION

ČTYŘDOBÝ MOTOR PRO MALOU MECHANIZACI FOUR-STROKE ENGINE FOR SMALL MECHANIZATION VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

ANOTACE ANNOTATION. Klíčová slova: Motor, klikový mechanismus, pístní skupina, píst, pístní kroužky, pístní čep.

ANOTACE ANNOTATION. Klíčová slova: Motor, klikový mechanismus, pístní skupina, píst, pístní kroužky, pístní čep. ANOTACE Tato bakalářská práce se zabývá výpočtovým návrhem a konstrukčním řešením pístu čtyřdobého, zážehového motoru o výkonu 75 kw. Součástí konstrukčního řešení je zpracovat návrh základních rozměrů

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 1 Čepy,

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové SPALOVACÍ MOTORY Druhy spalovacích motorů rozdělení podle způsobu zapalování podle počtu dob oběhu podle chlazení - zážehové = zvláštním zdrojem (svíčkou) - vznětové = samovznícením - čtyřdobé - dvoudobé

Více

Témata pro zkoušky profilové části maturitní zkoušky. Strojírenství, varianta vzdělávání konstruování s podporou počítače

Témata pro zkoušky profilové části maturitní zkoušky. Strojírenství, varianta vzdělávání konstruování s podporou počítače Témata pro zkoušky profilové části maturitní zkoušky Strojírenství, varianta vzdělávání konstruování s podporou počítače 1. povinná zkouška Stavba a provoz strojů 1. Pružiny 2. Převody ozubenými koly 3.

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ 4.2.Uložení Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Pro otočné uložení hřídelí, hřídelových čepů se používají ložiska. K realizaci posuvného přímočarého

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOBILE ENGINEERING PÍST ČTYŘDOBÉHO ZÁŽEHOVÉHO

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

Spoje pery a klíny. Charakteristika (konstrukční znaky)

Spoje pery a klíny. Charakteristika (konstrukční znaky) Spoje pery a klíny Charakteristika (konstrukční znaky) Jednoduše rozebíratelná spojení pomocí per, příp. klínů hranolového tvaru (u klínů se skosením na jedné z ploch) vložených do podélných vybrání nebo

Více

VÁLCOVÁ JEDNOTKA DVOUDOBÉHO MOTOCYKLOVÉHO MOTORU

VÁLCOVÁ JEDNOTKA DVOUDOBÉHO MOTOCYKLOVÉHO MOTORU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRO UIVERSITY OF TECHOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Pružné spoje 21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují

Pružné spoje 21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03-TP ing. Jan Šritr ing. Jan Šritr 2 1 ohybem

Více

15.10 Zkrácený klikový mechanismus

15.10 Zkrácený klikový mechanismus Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Pístové spalovací motory 2 pohyblivé části motoru

Pístové spalovací motory 2 pohyblivé části motoru Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Název zpracovaného celku: Pístové spalovací motory 2 pohyblivé části motoru Pohyblivé části motoru rozdělíme na dvě skupiny:

Více

PEVNÉ DÍLY MOTORU Střední odborná škola a Gymnázium Staré Město

PEVNÉ DÍLY MOTORU Střední odborná škola a Gymnázium Staré Město Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Střední odborná škola a Gymnázium Staré Město CZ.1.07/1.5.00/34.1007 Ing. Radek Opravil III/2 Inovace a zkvalitnění výuky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.20 Integrovaná střední

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Profil Typ Popis Rozsah teplot ( C) Vodicí pás z tvrzené polyesterové tkaniny. Vynikající parametry únosnosti. Profil Typ Popis Rozsah teplot ( C)

Profil Typ Popis Rozsah teplot ( C) Vodicí pás z tvrzené polyesterové tkaniny. Vynikající parametry únosnosti. Profil Typ Popis Rozsah teplot ( C) KONSTRUKÈNÍ ÚDAJE STANDARDNÍ SORTIMENT Profil Typ Popis Rozsah teplot ( C) F 506 Vodicí pás z tvrzené polyesterové tkaniny. Vynikající parametry únosnosti. +120 +100-40 Číslo stránky 5.7 4.1 F 87 Vodicí

Více

TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ

TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál

Více

VÝCHODISKA PRO ZADÁNÍ PROJEKTU

VÝCHODISKA PRO ZADÁNÍ PROJEKTU VÝCHODISKA PRO ZADÁNÍ PROJEKTU 1. uspořádání a plnění válců Např.: průzkum v použití, trend (N3, M3) 2. další druhy konstrukce Např.: ZM/VM, 4/2 dobé, OHV/OHC, tvorba směsi, počet ventilů, 1 VÝCHODISKA

Více

Přednáška č.8 Hřídele, osy, pera, klíny

Přednáška č.8 Hřídele, osy, pera, klíny Fakulta strojní VŠB-TUO Přednáška č.8 Hřídele, osy, pera, klíny HŘÍDELE A OSY Hřídele jsou obvykle válcové strojní součásti umožňující a přenášející rotační pohyb. Rozdělujeme je podle: 1) typu namáhání

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL. Příloha č.1.: Výpočtová zpráva - převodovka I Návrh čelních ozubených kol Návrh rozměru čelních ozubených kol je proveden podle ČSN 01 4686 ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL. Návrhovým výpočtem

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Vysoké teploty, univerzální

Vysoké teploty, univerzální Vysoké teploty, univerzální Vynikající koeficient tření na oceli Trvalá provozní teplota do +180 C Pro střední a vysoké zatížení Zvláště vhodné pro rotační pohyb HENNLICH s.r.o. Tel. 416 711 338 Fax 416

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

VUT FSI Ústav automobilního a dopravního inženýrství strana 8 1. Obsah

VUT FSI Ústav automobilního a dopravního inženýrství strana 8 1. Obsah VUT FSI Ústav automobilního a dopravního inženýrství strana 8 1. Obsah 1. Obsah....8. Úvod.......9 3. Základní parametry vznětového motoru..1 4. Pístní skupina vznětového motoru....11 4.1. Charakteristika

Více

VÝCHODISKA PRO ZADÁNÍ PROJEKTU

VÝCHODISKA PRO ZADÁNÍ PROJEKTU VÝCHODISKA PRO ZADÁNÍ PROJEKTU 1. uspořádání a plnění válců Např.: průzkum v použití, trend (N3, M3) 1 VÝCHODISKA PRO ZADÁNÍ PROJEKTU 2. měrný výkon motoru Př. pro N3 Měrný výkon projektovaných motorů

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Norma Tvar Materiál Provozní podmínky Typ* Použití. PN NBR P píst/pístnice. ČSN NBR ,5 H píst/pístnice

Norma Tvar Materiál Provozní podmínky Typ* Použití. PN NBR P píst/pístnice. ČSN NBR ,5 H píst/pístnice MANŽETY Manžety patří mezi nejdůležitější typy těsnění pohyblivých částí hydraulických i pneumatických zařízení při přímočarém posuvném pohybu. Symetrické manžety lze použít jak k utěsnění pístů, tak i

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu

Více

Ing. Hana Ilkivová Hotelová škola, Obchodní akademie a Střední průmyslová škola, Benešovo náměstí 1., příspěvková organizace

Ing. Hana Ilkivová Hotelová škola, Obchodní akademie a Střední průmyslová škola, Benešovo náměstí 1., příspěvková organizace Chlazení motorů Autor: Škola: Kód: Ing. Hana Ilkivová Hotelová škola, Obchodní akademie a Střední průmyslová škola, Benešovo náměstí 1., příspěvková organizace VY_32_INOVACE_SPS_959 Datum vytvoření 14.

Více

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost Elektricky vodivý Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost 59 Elektricky vodivý. Materiál je extrémní tuhý a tvrdý, kromě

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost Elektricky vodivý iglidur Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost HENNLICH s.r.o. Tel. 416 711 338 ax 416 711 999 lin-tech@hennlich.cz

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty Energie Chemická Elektrická Tlaková POHONNÉ JEDNOTKY SPALOVACÍ MOTOR ELEKTROMOTOR HYDROMOTOR Mechanická energie Ztráty POHONNÉ JEDNOTKY - TRANSFORMÁTOR ENERGIE 20013/2014 Pohonné jednotky I. SCHOLZ 1 SPALOVACÍ

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY STUDIE TURBÍNY S VÍŘIVÝM OBĚŽNÝM KOLEM STUDY OF TURBINE WITH SIDE CHANNEL RUNNER

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY STUDIE TURBÍNY S VÍŘIVÝM OBĚŽNÝM KOLEM STUDY OF TURBINE WITH SIDE CHANNEL RUNNER VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE STUDIE TURBÍNY S VÍŘIVÝM OBĚŽNÝM KOLEM STUDY

Více

VALIVÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích

VALIVÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích VALIVÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů

Více

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa Strojírenské výpočty http://michal.kolesa.zde.cz michal.kolesa@seznam.cz Předmluva Publikace je určena jako pomocná kniha při konstrukčních cvičeních, ale v žádném případě nemá nahrazovat publikace typu

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 31

Více

Nízká cena při vysokých množstvích

Nízká cena při vysokých množstvích Nízká cena při vysokých množstvích iglidur Vhodné i pro statické zatížení Bezúdržbový provoz Cenově výhodné Odolný vůči nečistotám Odolnost proti vibracím 225 iglidur Nízká cena při vysokých množstvích.

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.16 Integrovaná střední

Více

Elektrostruskové svařování

Elektrostruskové svařování Nekonvenční technologie svařování Elektrostruskové svařování doc. Ing. Ivo Hlavatý, Ph.D. ivo.hlavaty@vsb.cz http://fs1.vsb.cz/~hla80 1 Elektroda zasahuje do tavidla, které je v pevném skupenství nevodivé.

Více

Procesy ve spalovacích motorech

Procesy ve spalovacích motorech Procesy ve spalovacích motorech Spalovací motory přeměňují energii chemicky vázanou v palivu na mechanickou práci. Výkon, který motory vytvářejí, vzniká přeměnou chemické energie vázané v palivu na teplo

Více

D 2 KONSTUKCE PÍSTU HLAVNÍ ROZMĚRY PÍSTŮ

D 2 KONSTUKCE PÍSTU HLAVNÍ ROZMĚRY PÍSTŮ KONSTUKCE PÍSTU Namáhání pístu mechanickým a tepelným zatížením závisí především na režimu motoru, velikosti vrtání válce a zvolených konstrukčních rozměrech. HLAVNÍ ROZMĚRY PÍSTŮ Průměr Kompresní výška

Více

Pro vysoké rychlosti iglidur L250

Pro vysoké rychlosti iglidur L250 Pro vysoké rychlosti Produktová řada Pro rotační aplikace Velmi nízký koeficient tření Vynikající odolnost proti opotřebení HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz

Více

Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje

Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje C 1 INFORMACE O VÝROBKU Určení velikosti hřídelových kloubů Pro výběr hřídelových kloubů není rozhodující pouze největší přenášený kroutící

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny Parametry Jako podklady pro výpočtovou dokumentaci byly zadavatelem dodány parametry: -hmotnost oběžného kola turbíny 2450 kg

Více

19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES

19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES 19. a 20. PÍSTOVÉ SPALOVACÍ MOTORY ZÁŽEHOVÉ A VZNĚTOVÉ 19. and 20. PETROL AND DIESEL PISTONE COMBUSTION ENGINES ROZDĚLENÍ SPLAOVACÍCH MOTORŮ mechanická funkčnost pístové nebo rotační Spalovací motor pracuje

Více

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy:

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy: zapis_spalovaci_motory_208/2012 STR Gd 1 z 5 29.1.4. Zapalování Zajišťuje zapálení směsi ve válci ve správném okamžiku (s určitým ) #1 Zapalování magneto Bateriové cívkové zapalování a) #2 generátorem

Více

PŘÍLOHA A. ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií 72 Vysoké učení technické v Brně

PŘÍLOHA A. ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY Fakulta elektrotechniky a komunikačních technologií 72 Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií 72 Vysoké učení technické v Brně PŘÍLOHA A Obrázek 1-A Rozměrový výkres - řez stroje Označení Název rozměru D kex Vnější průměr kostry D kvn Vnitřní

Více

PÍST DVOUDOBÉHO MOTOCYKLOVÉHO SPALOVACÍHO MOTORU

PÍST DVOUDOBÉHO MOTOCYKLOVÉHO SPALOVACÍHO MOTORU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby Cvičení 10. - Spoje pro přenos kroutícího momentu z hřídele na náboj 1 Spoje pro přenos kroutícího momentu z hřídele na náboj Zahrnuje širokou škálu typů a konstrukcí. Slouží k přenosu kroutícího momentu

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

Valivé ložisko klíč k vyšší účinnosti

Valivé ložisko klíč k vyšší účinnosti Valivé ložisko klíč k vyšší účinnosti Úvod» Novinky» Valivé ložisko klíč k vyšší účinnosti 17. 02. 2012 Valivé ložisko klíč k vyšší účinnosti Valivá ložiska a energetická účinnost tyto dva pojmy lze používat

Více

ASK AČR Registrační list motoru

ASK AČR Registrační list motoru ASK AČR Registrační list motoru Registrační list č.: M/01/08 Platné od: 01.01.2008 Platné do: 31.12.2010 1. Všeobecné 1.1 Výrobce: IAME spa - ZINGONIA (ITALY) 1.2 Obchodní označení -(Typ/model): PARILLA

Více

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty Nízká cena iglidur Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty 399 iglidur Nízká cena. Pro aplikace s vysokými požadavky na teplotní odolnost. Může být podmíněně

Více

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný

Více

Stroje - nástroje. nástroje - ohýbadla. stroje - lisy. (hydraulický lis pro automobilový průmysl)

Stroje - nástroje. nástroje - ohýbadla. stroje - lisy. (hydraulický lis pro automobilový průmysl) Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace materiálů. Děkuji Ing. D. Kavková

Více

MAZACÍ SOUSTAVA MOTORU

MAZACÍ SOUSTAVA MOTORU MAZACÍ SOUSTAVA MOTORU Hlavním úkolem mazací soustavy je zásobovat všechna kluzná uložení dostatečným množstvím oleje o příslušné teplotě (viskozitě) a tlaku. Standardní je oběhové tlakové mazání). Potřebné

Více

iglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby

iglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby Pro horké tekutiny iglidur Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby 341 iglidur Pro horké tekutiny. Kluzná pouzdra iglidur byla vyvinuta pro aplikace pod vodou při teplotách

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

VY_32_INOVACE_C 07 17

VY_32_INOVACE_C 07 17 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

VÝCHODISKA PRO ZADÁNÍ PROJEKTU

VÝCHODISKA PRO ZADÁNÍ PROJEKTU VÝCHODISKA PRO ZADÁNÍ PROJEKTU 1. uspořádání a plnění válců Např.: průzkum v použití, trend (N3, M3) 2. další druhy konstrukce Např.: ZM/VM, 4/2 dobé, OHV/OHC, tvorba směsi, počet ventilů, 1 VÝCHODISKA

Více

KLIKOVÉ ÚSTROJÍ ŘADOVÉHO TŘÍVÁLCOVÉHO VZNĚTOVÉHO MOTORU CRANK MECHANISM OF IN-LINE THREE-CYLINDER DIESEL ENGINE

KLIKOVÉ ÚSTROJÍ ŘADOVÉHO TŘÍVÁLCOVÉHO VZNĚTOVÉHO MOTORU CRANK MECHANISM OF IN-LINE THREE-CYLINDER DIESEL ENGINE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

Betonové konstrukce (S)

Betonové konstrukce (S) Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy

Více

Návrh základních parametrů pístového spalovacího motoru s přímočarým vratným pohybem pístu

Návrh základních parametrů pístového spalovacího motoru s přímočarým vratným pohybem pístu Univerzita Pardubice Dopravní fakulta Jana Pernera Návrh základních parametrů pístového spalovacího motoru s přímočarým vratným pohybem pístu Tomáš Světlík Bakalářská práce 2014 Prohlášení Tuto bakalářskou

Více

Anotace. Annotation. Klíčová slova. Key words

Anotace. Annotation. Klíčová slova. Key words Anotace Cílem této bakalářské práce je navrhnout ojnici pro čtyřdobý vznětový motor na základě daných parametrů motoru. Mojí úlohou bylo navrhnout rozměry ojnice a provést pevnostní výpočet pro jednotlivé

Více

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací

Více