Barva, barevné obrazy a správa barev
|
|
- Ondřej Kopecký
- před 9 lety
- Počet zobrazení:
Transkript
1 Barva, barevné obrazy a správa barev Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání hlavac, hlavac@fel.cvut.cz Poděkování: K. Ikeuchi, T. Darrell, T. Muenzer, L. Cerman za inspiraci a některé obrázky. Osnova přednášky: Barva, souhra tří jevů. Barva, fyzikální podstata. Barva, subjektivní vjem. Barevný trojúhelník. Barevné prostory. Správa barev.
2 Barva 2/60 Barva popisuje vjemy vznikající souhrou tří jevů: Barva souvisí s vlastnostmi pozorovaného objektu. Barva souvisí se zdroji osvětlení scény a jejich vlastnostmi. Barva souvisí s mechanismy vnímání člověkem. Barva charakterizuje vjem pozorovatele na základě (viditelného) záření původně přicházejícího ze světelného zdroje (směs záření o různých vlnových délkách) a změněného díky vlastnostem pozorovaných objektů.
3 Barva a její využití Barva se studuje v několika disciplínách: 3/60 Fyzika. Lidské vidění. Fyziologie. Psychofyzika, vnímání. Počítačové vidění. Malba, fotografie, film, počítačová grafika. Barva v analýze obrazu Pořízení obrazu, odraz a prostup světla z fyzikálního hlediska. Segmentatace, tj. rozdělení obrazu na oblasti se smysluplným významem. Vyhledávání obrazu, např. v databázi obrazů.
4 Subjektivní vnímání barvy 4/60 Vnímání barvy člověkem přidává subjektivní vrstvu nad objektivní fyzikální pozorování, tj. vlnovou délku elektromagnetického záření. Barva tedy představuje psychofyzikální jev. Sama o sobe barva neexistuje, jde o lidský vjem. Lidský vizuální systém není příliš přesným absolutním měřičem barvy. Pokud chceme barvu vyjádřit přesněji, činíme tak relativně vůči nějakému standardu (často běžnému objektu), např. červený jako hasičská stříkačka.
5 Správa barev, neformálně 5/60 Správa barev dovolí zajistit, aby barvy vypadaly přirozeně a velmi podobně na různých zobrazovacích a tiskových zařízeních. Správa barev se opírá o způsob, jakým člověk vnímá barvy. Vnímání barev člověkem je potřebné kvantifikovat. Nejdříve si vysvětlíme: (a) co je barva, (b) jak ji člověk vnímá a (c) jak se barva kvantifikuje. Potom budeme moci vysvětlit, jak zajistit věrný přenos barvy mezi zařízeními. K tomu slouží barevné profily zařízení.
6 Fotony a vlny 6/60 Světlo se v některých experimentech chová jako částice (Isaac Newton, 1670) a někdy jako vlna (Christian Huygens, 1670). Rozpor vyřešila až kvantová mechanika (Max Planck, Albert Einstein) zavedením pojmu foton. Foton si lze představit jako pulsující kvantum energie šířící se prostorem (rychlostí světla ve vakuu). Každý foton nese určitou energii, která určuje, jak rychle foton pulsuje, což odpovídá vlnové délce fotonu. vlnová délka nízká energie, dlouhá vlnová délka vysoká energie, krátká vlnová délka
7 Spektrum záření 7/60
8 Ze zápisníku Issaca Newtona z roku /60 Na svou dobu šlo o velmi radikální myšlenku. Ještě dalších sto let jí někteří vlivní vědci a myslitelé odmítali uvěřit.
9 Barevné spektrum 9/60
10 Některé Newtonovy výsledky 10/60 Isaac Newton ( ) studoval podstatu světla pomocí skleněného hranolu. Na konci 60. let 17. století objevil, že bílé světlo je multispektrální směsí. (Chybně si myslel, že je sedm základních barev.) Ve své době byly Newtonovy myšlenky radikální a obecně nepřijímané. Ještě o 100 let později vlivní vědci a filozofové vysvětlení odmítali uvěřit, např. Johann Wolfgang Goethe ( ). Newton navrhl barevný kruh pro předvídání, jak bude barva vypadat po smíchání ze základních barev (pomocí lineární kombinace). Newtonův kruh (1709). Velká písmena odpovídají notám v diatonické hudební stupnici.
11 Spektrometr - měření barevného spektra 11/60 Princip Bunsenova monochromátoru. Bunsenův-Kirchhoffův spektrometr (1859). Používá se především v astronomii a chemii pro identifikaci materiálů. Nazývá se také spektrofotometr, spektrograf nebo spektroskop.
12 Spektrální křivky tří různých objektů 12/60
13 Příklad: spektrální odrazivost květin 13/60
14 Barva z fyzikálního hlediska 14/60 Světlo = elektromagnetické záření. Senzory nemají přímý přístup k barvě, tj. vlnové délce λ. Výjimka: monochromátor nebo spektrometr. Odezva senzoru v rozsahu vlnových délek [λ1, λ2] λ 2 s = s(λ) r(λ) dλ, kde λ 1 r(λ) je spektrální citlivost senzoru, s(λ) je spektrum světla.
15 Vliv osvětlení 15/60
16 Vliv osvětlení (2) 16/60
17 Zdroje světla, fyzikálně 17/60 Ideální zářič, černé těleso světlo je vyzařováno na základě tepelné energie atomů. Přibližně: žárovka s horkým vláknem, hvězdy, např. Slunce. Spektrum světla závisí pouze na teplotě pojem: barevná teplota. Denní světlo záření Slunce (černé těleso) silně filtrované zemskou atmosférou. Pro toto osvětlení se vyvinulo lidské vidění, a proto je důležité pro fotografování. Elektrická výbojka (spec. případ zářivka) plyn (např. rtuť, xenon) excitovaný elektrickým nábojem vysílá světelnou energii. Ve spektru jsou výrazné špičky. Počítačové monitory - vakuová obrazovka (cathode ray tube, CRT), LCD displej, tj. s tekutými krystaly (liquid-crystal display) (osvětleny ze zadu zářivkami nebo LED), plasmové.
18 Spektra podle teploty 18/60
19 Spektrum zdrojů světla, kvalitativně 19/60
20 Změřená spektra zdrojů světla 20/60
21 Normalizované osvětlovače podle CIE 21/60 CIE = Commission Internationale de l Eclairage. Osvětlovač A typické spektrum obyčejné žárovky s wolframovým vláknem (zelená křivka na předchozí průsvitce). Osvětlovač B sluneční světlo při teplotě 4874 K. Používá se zřídka. Osvětlovač C starší model denního světla pro teplotu 6874 K. Nyní převážně nahrazen osvětlovačem D. Osvětlovač D řada osvětlovačů modelující různá denní světla. Nejčastější D50 (pro teplotu 5000 K) a D65 (pro teplotu 6504 K). Příklady viz příští průsvitka. Osvětlovač E celková energie, má teoretický význam při výpočtech. Osvětlovač F modeluje osvětlovače s fluorescencí. Nejčastěji jsou používané F2, F3,..., F12.
22 Radiometrie, malé opakování 22/60 n V L zář. E ozáření. L E n úhel normály k povrchu. V směr k pozorovateli. Bidirectional Reflectance Distribution Function, Dvojsměrová distribuční funkce odrazivosti BRDF = f(θ i, Φ i, Θ e, Φ e ) = dl(θ i, Φ i ) de(θ e, Φ e )
23 Radiometrie pro případ barvy 23/60 Všechny definice se změní tak, že jsou vyjádřeny v jednotkách na jednotku vlnové délky. Všechny veličiny mají přívlastek spektrální. Zář se stává spektrální září [watt na čtvereční metr a jednotku vlnové délky]. Ozáření se stává spektrálním ozářením [watt na čtvereční metr a jednotku vlnové délky].
24 Radiometrie pro barvu (2) 24/60 Ve dvojsměrové distribuční funkci odrazivosti (BRDF) se objeví závislost na vlnové délce λ [m]. L se stává spektrální září. E se stává spektrálním ozářením. BRDF = f(θ i, Φ i, Θ e, Φ e, λ) = dl(θ i, Φ i, λ) de(θ e, Φ e, λ) V počítačovém vidění se často používají zjednodušené modely, které místo absolutních měření používají relativně vyjádřené veličiny.
25 Součinitel odrazivost 25/60
26 Součinitel propustnosti 26/60
27 Proč vidíme objekty barevně? 27/60 Odraz z povrchu se chová jako zrcadlo. Model se hodí pro kovy. Téměř nemá vliv na spektrum. Kovy nemají barvu. Odrazy uvnitř objektu převládají v dielektricích, především u plastů a barev (ve smyslu k natírání). Matematický model difúze. Viděná barva je způsobena vlastnostmi pigmentů (částic), které pohltí některé vlnové délky ze spektra přicházejícího světla. vzduch směr od zdroje osvětlení normála k povrchu n odraz od povrchu odraz z vnitřku tělesa těleso barevný pigment
28 Fluorescence 28/60 Zhouba pro správu barev. Fluorescence popisuje jev, kdy některé atomy přijmou foton s určitou energií ( vlnové délce) a vyzáří fotony s nižší energií (větší vlnovou délkou). Fluorescence se také používá schválně pro zjasňování. Část blízkého ultrafialového záření se přemění na viditelné záření, obvykle fialové či modré. Toto je princip zjasňovačů v pracích prášcích, zubních pastách a také tiskových papírech, inkoustech, voscích, tonerech tiskáren.
29 Spektrum viděné člověkem 29/60 Sítnice obsahuje čtyři typy receptorů světla. R, G, B čípky pro barevné vidění. Tyčinky pro monochromatické vidění s vyšší citlivostí. Odezva receptorů na intenzitu světla má logaritmickou závislost citlivost. Proč? Receptory barvy objevil Hermann von Helmholtz. Jeho kniha z 1867 modeluje situaci na sítnici. Existuje alternativní teorie, 3 dvojice protikladných barev (červená-zelená, žlutá-modrá, bílá-černá), Ewald Hering, Potvrzeno 1970 Edwin Land, teorie Retinex jako model zpracování barvy v mozku. rohovka duhovka oční nerv čočka sítnice slepá skvrna optická osa sítnice žlutá skvrna
30 Trichromatické vidění u lidí 30/60 Oko měří v daném pixelu vlnové délky pomocí R, G, B čípků a poskytuje odezvu složením tohoto vjemu.
31 RGB složky barevného obrazu 31/60
32 Citlivost lidského oka na λ 32/60 CIE - Commission Internationale de l Eclairage (Mezinárodní komise pro osvětlování, Laussane, Švýcarsko). Podle měření na mnoha lidech. Standardní pozorovatel. Základní norma z 1931 a její opakované pozdější vylepšování.
33 Barevný metamerismus 33/60 Metamerismus je obecně definován jako dva různé jevy, které jsou vnímány stejně. Smícháním červené a zelené vznikne žlutá (metamerismus). Žlutou lze také získat pomocí spektrální barvy, což je záření jediné vlnové délky mezi zelenou a červenou. Lidské vnímání barev je tedy klamáno, že směs červené a zelené je totéž jako fyzikálně vytvořená žlutá. Tento výsledek vývoje druhů je ale geniální, protože dovoluje jednoduchým mechanismem tří receptorů vidět velké množství nespektrálních barev.
34 Barvoslepost, Ishiharovy obrazy 34/60
35 Jak definovat barevný prostor? 35/60 Tři typy čípků na sítnici vybízejí definovat barvu jako veličinu ve trojrozměrném (3D) vektorovém prostoru. Jak takový barevný prostor definovat? Myšlenka experimentálního postupu: Posvítit světlem jedné vlnové délky λ na promítací plátno. Člověk nastavuje tři potenciometry ovlivňující intenzitu tří základních světel (tzv. funkce vyvažující barvy) R=645,2 nm; G=525,3 nm; B=444,4 nm, až se mu podaří dosáhnout stejného vjemu. Víme již, že je to možné právě díky barevnému metamerismu.
36 Funkce vyvažující RGB barvy 36/60 Vytvořeny a normalizovány CIE. Základní barvy X=700,0 nm; Y=546,1 nm; Z=435,8 nm, otvor pro pozorovatele odpovídající úhlu 2 o. Záporný lalok v červené! To znamená, že je potřebné zvýšit intenzitu referenční spektrální barvy vůči třem složkovým barvám, aby se dosáhlo stejného vjemu. Ze základních RGB barev nelze generovat barvy všech vlnový délek spektra přirozeného bílého světla. Řešení: převést barvy do nového umělého souřadného systému X, Y, Z, v němž je úkol reprezentace barev jednodušší. Průběh funkcí vyvažující RGB barvy.
37 Barevný prostor CIE XYZ 37/60 CIE vytvořila barevný model jako matematickou abstrakci. XYZ souřadnice odpovídají (imaginárním) barvám, jejichž složením podle funkcí vyrovnávajících barvy by vznikl vjem odpovídající spektrální barvě. Absolutní standard, protože je vztažen k vnímání standardního pozorovatele. Existují novější standardy CIE LAB 1976 (ISO 13665) a používaný komerční HunterLab. Tristimulus value Z Y X [nm] Nezáporné hodnoty. Y (λ) odpovídá jasu. Normalizace, aby plocha pod křivkami byla stejná.
38 Barevný rozsah vnímaných barev 38/60 Barevný rozsah (angl. gamut) všech člověkem vnímatelných barev je 3D podprostorem všech možných barev v X, Y, Z souřadnicích. Y Barva = cx X + cy Y + cz Z, kde 0 c X, c Y, c Z 1 jsou váhy v této konvexní kombinaci. Barevný rozsah se obvykle promítá do dvojrozměrné roviny, a to po normalizaci X + Y + Z = 1. X Z
39 Barevný rozsah ve 2D barevmý trojúhelník CIE 39/60 Souřadnice x, y. x = y = X X + Y + Z Y X + Y + Z z = 1 x y Všechny viditelné spektrální barvy jsou na okraji podkovy, též nepřesně barevného trojúhelníku. Všechny viditelné barvy, které lze namíchat, leží uvnitř podkovy. y CIE Chromaticity Diagram degrees observer λ x
40 Barevný rozsah různých zařízení 40/60 y CIE Chromaticity Diagram CRT monitor gamut λ y CIE Chromaticity Diagram Color printer gamut λ y CIE Chromaticity Diagram Color film gamut λ x x x vakuový monitor tiskárna film
41 Míchání barev 41/60
42 Aditivní míchání barev 42/60 RED 400 nm 500 nm 600 nm 700 nm + GREEN 400 nm 500 nm 600 nm 700 nm Prázdné spektrum + červená + zelená = žlutá. Model aditivního míchání barev platí pro luminofory vakuových obrazovek, vícenásobnou projekci na plátno a čípky na lidské sítnici. = YELLOW 400 nm 500 nm 600 nm 700 nm
43 Subtraktivní míchání barev 43/60 CYAN 400 nm 500 nm 600 nm 700 nm - YELLOW 400 nm 500 nm 600 nm 700 nm = GREEN 400 nm 500 nm 600 nm 700 nm Uplatňuje se, když se barvy míchají tak, že např. od plného spektra bílé se postupně odečítají díky filtraci (vlastně jde o násobení) jednotlivé části spektra V příkladu: plné spektrum bílé - modrozelená (též tyrkysová, angl. cyan) - žlutá = zelená. Model subtraktivního mícháníní barev platí pro většinu fotografických filmů, nátěry (barvy), barevné pastelky, tisk a kaskádně řazené optické filtry.
44 Barevné kamery 44/60 1-čipová kamera + barevné filtry 3-čipová camera Kamera s Bayerovým filtrem na čipu
45 Sytost barvy v barevném spektru 45/60
46 Další relativní barevné prostory 46/60 RGB původně se vztahoval k barevné televizi. YIQ používaný v barevné televizi v USA, Japonsku. Složka Y odpovídá jasu (angl. luminance), zbylé dvě složky popisují barvu (angl. chrominance). CMYK Cyan, Magenta, Yellow, black. Vhodné pro zařízení se subtraktivním modelem, Magenta (k,0,k) R Black (0,0,0) Red (k,0,0) hue B Blue (0,0,k) Cyan (0,k,k) White (k,k,k) G Green (0,k,0) Yellow (k,k,0) hue HSV Hue=barevný odstín, Saturation=sytost barvy, Value=jas. Vhodné pro digitální zpracování obrazu. value saturation (chroma) value saturation (chroma)
47 Ilustrace: Barevné složky HSV odstín, sytost, (jas) 47/60 Motivace: Míchání barev na malířově paletě. Odstín barvy (angl. hue) odpovídá dominantní vlnové délce, projekci barvy na okraje barevného trojúhelníka, kde jsou spektrální barvy. Jména barev vlastně odpovídají odstínům. Liší se ovšem v různých kulturách. Sytost barvy (angl. saturation) popisuje, jak je barva vzdálena od neutrální šedé. Popisuje také, jak je dominantní vlnová délka (odstín) znečištěna jinými vlnovými délkami.
48 Barevný prostor CIE LAB 48/60 Nejpoužívanější absolutní barevný prostor při správě barev. Vznikl nelineární transformací CIE XYZ prostoru. Napodobuje způsob, jak člověk posuzuje barvu, aby byl vjem barvy rovnoměrný. Základní barvy jsou L* (světlo, angl. light), a* popisuje dvojici červená-zelená, b* popisuje dvojici modrá-žlutá). Viz Heringovy protichůdné barvy. Změna základní barvy o určitý přírůstek by měla způsobit podobnou změnu vizuálního vjemu. Nedokonalosti, viz obr. vpravo. Používá se jako základní prostor pro převod barevných prostorů zařízení, což je podstatou správy barev. Odstín je zobrazen jako polární úhel. Sytost je zobrazena jako vzdálenost od středu (neutrální šedé). Bílé čárkované čáry by měly odpovídat konstantnímu odstínu, ale vnímané odstíny jsou nepřesné (plné černé čáry).
49 Základní parametry zobrazovacích a vstupních zařízení Pro správu barev je potřebné znát (změřit) základní parametry monitorů, fotoaparátů, skenerů, tiskáren,... Tři základní barvy (angl. colorants), jejich barvu a jas základních barev. Bílý bod, jeho barvu a jas. K bílé barvě se v lidském vnímání nevědomě vztahují ostatní barvy. Proto je při kalibraci zařízení u bílého bodu důležitější barva než jas. Černý bod, jeho barvu a jas. Černota (hustota) černé udává mez dynamického rozsahu, které je zařízení schopné zobrazit nebo sejmout. Dynamický rozsah je důležitý pro vnímání detailů v jasu. Proto se pro tisk přidává zvlášť černá složka, viz CMYK. Černý bod nejde nastavovat na LCD monitorech. Převodní charakteristiky základních barev (angl. tone reproduction curve) udávají, jak se mezi barevnými prostory dvou zařízení převádějí intenzity v jednotlivých barevných složkách. Charakteristiky jsou obvykle nelineární a implementují se přes vyhledávací tabulky (angl. LUT, look-up tables). 49/60
50 Přenos barev mezi zařízeními, omezení 50/60 Správa barev slouží k věrnému přenosu barev ze zdroje, přes náš obrazový soubor do cílového zobrazovacího nebo tiskového zařízení. Fyzikální zákony brání, aby byly zobrazeny všechny barvy, ve všech odstínech, sytostech a intenzitách. Obdobně je tomu s dynamickým rozsahem. Potřeba transformovat výchozí rozsah barev na cílový rozsah barev. Jejich průnik je často jen částí původních rozsahů barev. Nelineární transformace v barevných složkách dané převodními tabulkami základních barev také nebývají přímo kompatibilní.
51 Správa barev zjednodušení díky mezilehlé reprezentaci 51/60 m n možností m + n možností Spojovníkem mezi zařízeními je prostor profilů barev, angl. PCS, Profile Connection Space, tj. reprezentace barvy nezávislá na konkrétním zařízení, obvykle CIE LAB nebo CIE XYZ.
52 ICC, International Color Consortium 52/60 Kolem roku 1980 mnoho firem, zejména Adobe, Agfa, HP, Kodak, Tektronix vyřešili správu barev přes profily mezi dvojicí zařízení. Apple Computer zavedl v roce 1993 ColorSync pro operační systém Mackintosh a sdružil konsorcium firem. Později známé jako ICC, International Color Consortium. Hlavním dokumentem ICC je otevřený Profile Connection Space.
53 Součásti systému správy barev Prostor propojení profilů barev, PCS (angl. Profile Connection Space) byl již vysvětlen. Profily. Profil popisuje zobrazení mezi souřadnicemi (např. v RGB nebo CMYK barevném prostoru) a skutečnými barvami, které souřadnicím odpovídají. Jednotlivým vstupním RGB nebo CMYK barvám se přes profily vypočítají odpovídající souřadnice v CIE LAB nebo CIE XYZ barevném prostoru. Modul správy barev CMM (angl. Color Management Module) je program, který přepočítává RGB nebo CMYK souřadnice na požadované CIE LAB nebo CIE XYZ souřadnice. CMM pracuje s informacemi o barvách v barevných profilech. Záměry reprodukce (angl. rendering intents) řeší problém, když barva ocitne mimo zobrazitelný barevný rozsah pro příslušné zařízení. V ICC specifikaci jsou uloženy čtyři záměry reprodukce. 53/60
54 Záměry reprodukce (Rendering intents) Součástí specificace Profile Connection Space konsorcia firem ICC (International Color Consortium). 54/60 Popisuje, jak vyřešit problém, když požadovaná barva leží mimo rozsah barev, tj. jak ji nahradit jinou dostupnou barvou na výstupním zařízení. Norma obsahuje 4 metody a ty jsou implemementovány v editorech obrazů, např. ve PhotoShopu: 1. Perceptuální pokouší se zachovat celkový barevný vjem. Vhodné pro obrazy, kde mnoho barev leží mimo barevný rozsah. 2. Sytost (saturation) upřednostňuje živé barvy, aniž hledí na přesnost. Hodí se pro umělé obrázky, obchodní grafiku, digitální modely terénu, atd. 3. Relativní kolorimetrický využívá skutečnosti, že lidské vidění se vždy adaptuje na bílou. Záměr převede zdrojovou bílou na cílovou bílou (např. nažloutlou papíru), barvy uvnitř barevného rozsahu zobrazí přesně a barvy vně zobrazí jako nejbližší odstín. Pro fotografie je lepší než perceptuální. 4. Absolutní kolorimetrický liší se od předchozího tím, se ve výstupním barevném prostoru snaží simulovat bílou vstupního prostoru. Hodí se pro ověřování budoucího tisku na jiném zařízení, např. monitoru.
55 Správa barev, prakticky 55/60 Nyní jsme se naučili potřebnému, abychom mohli správu barev realizovat prakticky, např. proto, že budete chtít vytisknout malý fotografický projekt v minilabu ve Výpočetním a informačním centru ČVUT, k němuž budete znát barevný profil. K tomu potřebujeme s pomocí speciální sondy nakalibrovat používaný monitor a potom ve vybraném fotoeditoru (např. Photoshopu) úpravy realizovat. Obojímu se naučíme ve cvičeních. Jeden z cvičících Ing. Lukáš Cerman k tomu napsal pro cvičení stručné a výstižné vysvětlení, viz cm-v2.pdf (860 kb)
56 Konstantnost barev, motivace Konstantnost barev vyjadřuje schopnost člověka potlačit vliv různého osvětlení při vnímání barev objektů. 56/60 Kolorimetrie vnímání barvy.
57 Iluze konstantosti barev 57/60
58 Iluze konstantosti barev (2) 58/60
59 Iluze konstantosti barev (3) 59/60
60 Iluze způsobená okraji 60/60 Bezoldův jev
Světlo. Podstata světla. Elektromagnetické záření Korpuskulární charakter. Rychlost světla. Vlnová délka. Vlnění, foton. c = 1 079 252 848,8 km/h
Světlo Světlo Podstata světla Elektromagnetické záření Korpuskulární charakter Vlnění, foton Rychlost světla c = 1 079 252 848,8 km/h Vlnová délka Elektromagnetické spektrum Rádiové vlny Mikrovlny Infračervené
Barevné modely, práce s barvou. Martin Klíma
Barevné modely, práce s barvou Martin Klíma Proč je barva důležitá Důležitý vizuální atribut Různá zařízení, aplikace, média Monitor Tiskárna Video Televize Světlo a barvy Elektromagnetické vlnění Viditelná
Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem
Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová
Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V
Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené
Barvy. Radek Fiala. Podpořeno z projektu FRVŠ 584/2011
fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Kde se berou barvy? Co je barva Světlo jako elmg. záření nemá barvu. Jednou z vlastností světla je tzv. spektrální rozdělení (Spectral Power Distribution,
Grafické systémy. Obrázek 1. Znázornění elektromagnetického spektra.
1. 1.5 Světlo a vnímání barev Pro vnímání barev je nezbytné světlo. Viditelné světlo je elektromagnetické záření o vlnové délce 400 750 nm. Různé frekvence světla vidíme jako barvy, od červeného světla
Barva. v počítačové grafice. Poznámky k přednášce předmětu Počítačová grafika
Barva v počítačové grafice Poznámky k přednášce předmětu Počítačová grafika Martina Mudrová 2007 Barvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové
Práce na počítači. Bc. Veronika Tomsová
Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující
Gamut. - souřadný systém, ve kterém udáváme barvy (CIE, CMYK,RGB )
Přežiju to? 1 Gamut CMYK,RGB ) - souřadný systém, ve kterém udáváme barvy (CIE, dosažitelná oblast barev v barevném prostoru Vyjadřuje Rozsah barevného snímání (rozlišitelné barvy) Barevnou reprodukci
Barvy v počítačové grafice
arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 arvy v počítačové grafice Co je barva? světlo = elmg. vlnění v rozsahu 4,3.10 14-7,5.10 14 Hz rentgenové zář ení zář
Barvy a barevné modely. Počítačová grafika
Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač
Viditelné elektromagnetické záření
Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie
Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha
Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev
ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU
ZÁKLADNÍ TERMINOLOGIE V COLOR MANAGEMENTU V Colormanagementu se neustále operuje s několika termíny: a) barevný gamut, b) barevné prostory CMYK a RGB, c) nezávislý barevný prostor, d) ICC profil S těmito
Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová
Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu
Multimediální systémy. 02 Reprezentace barev v počítači
Multimediální systémy 02 Reprezentace barev v počítači Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Reprezentace barev v PC Způsoby míchání barev Barevné modely Bitová hloubka Barvy
Barvy v počítačové grafice
arvy v počítačové grafice 2. přednáška předmětu Zpracování obrazů Martina Mudrová 24 arvy v počítačové grafice o je barva? světlo = elmg. vlnění v rozsahu 4,3. 4-7,5. 4 Hz viditelná č ást spektra rentgenové
Přednáška kurzu MPOV. Barevné modely
Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,
Úvod do počítačové grafiky
Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev
Montážní program XMF
Montážní program Slovníček pojmů www.isspolygr.cz Vytvořila: Eva Bartoňková Vytvořila dne: 2. 4. 2013 Strana: 1/9 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces
Správa barev při digitalizaci archiválií. Magdalena Buriánková
Magdalena Buriánková 21. 6. 2012 Význam správy barev při digitalizaci archiválií Základní vlastnosti barev a práce s nimi Správa barev při digitalizaci archiválií v praxi Jedním z důležitých požadavků
Počítačová grafika. Studijní text. Karel Novotný
Počítačová grafika Studijní text Karel Novotný P 1 Počítačová grafika očítačová grafika je z technického hlediska obor informatiky 1, který používá počítače k tvorbě umělých grafických objektů a dále také
Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška 4. z předmětu
Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška 4. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/19 Obsah přednášky Přednáška 4 Barvy
Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Barvy a barevné prostory I BI-MGA, 2010, Přednáška 3 1/32 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2014 Dva úhly pohledu v DF se na barvy můžeme dívat ze dvou pohledů estetický působení na člověka jejich využití v kompozici
Rozšíření bakalářské práce
Rozšíření bakalářské práce Vojtěch Vlkovský 2011 1 Obsah Seznam obrázků... 3 1 Barevné modely... 4 1.1 RGB barevný model... 4 1.2 Barevný model CMY(K)... 4 1.3 Další barevné modely... 4 1.3.1 Model CIE
Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát
Mýty a omyly v systému správy barev aneb dodržováním několika principů se správy barev nemusím bát Jan Kaiser Fomei a.s., Hradec Králové Kaiser@fomei.com, +420 603 587 898 červen 2012 Který obraz je správný?
Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.
12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012
PV156 Digitální fotografie Barvy Tomáš Slavíček / Vít Kovalčík FI MU, podzim 2012 Barva jako součást kompozice barva hraje důležitou roli barva je samostatným prvkem kompozice, který má na diváka (estetický)
světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.
Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří
Omyly, mýty a skutečnost
Omyly, mýty a skutečnost - není pouze jedno RGB - neexistuje cosi jako standardní CMYK - konverze RGB > CMYK není pouhým převodem - existuje cosi jako ICC profil tiskového papíru Color Management (CMS)
Barva a barevné modely
Počítačová grafika Elektromagnetické spektrum Barva a barevné modely Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Zdroj: Svět barev, Albatros 2 Elektromagnetické spektrum
Teorie barev. 1. Barvený model. 2. Gamut. 3. Barevný prostor. Barevný prostor různých zařízení
Teorie barev 1. Barvený model Barevný model představuje metodu (obvykle číselnou) popisu barev. Různé barevné modely popisují barvy, které vidíme a se kterými pracujeme v digitálních obrazech a při jejich
08 - Optika a Akustika
08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než
Color Management System
Semestrální práce z předmětu Kartografická polygrafie a reprografie Color Management System Autor: Lenka Bajusová, Stanislava Balcarová Editor: Václav Kysela Praha, červen 2010 Katedra mapování a kartografie
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám
Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření: 17. 1. 2013 Autor: MgA.
Barevné prostory. RGB, CMYK, HSV a Lab gamut
J. Vrzal, 1.0 Barevné prostory RGB, CMYK, HSV a Lab gamut rozsah všech barev, které jsou dosažitelné v určitém barevném prostoru barvy mimo oblast gamutu jsou reprodukovány nejbližší dostupnou barvou z
ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika
ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí
5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru
Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 25 5 LABORATORNÍ ÚLOHY ZE SVĚTELNÉ A OSVĚTLOVACÍ TECHNIKY 5.1 Měření barevných souřadnic světla pomocí Donaldsonova kolorimetru 5.1.1 Úvod
Přednáška kurzu BZVS. Barevné modely
Přednáška kurzu BZVS Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář SD3.152, tel. 6434, Technická 12, VUT v Brně - 1/16 - Barvy v počítačové grafice Barevné modely Aditivní
Barvy. Vítězslav Otruba doc. Otruba 1
Barvy Vítězslav Otruba 2006 doc. Otruba 1 Elektromagnetické záření 2006 doc. Otruba 2 Achromatické světlo Bílé světlo : signál složený ze záření všech vlnových délek viditelného spektra Difúzní odraz dopadajícího
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE. Barvové prostory.
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Barvové prostory semestrální práce Jana Pospíšilová Lenka Roušarová V Praze dne 26. 4. 2010
Úloha č. 1: CD spektroskopie
Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho
Spektrální charakteristiky
Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
DIGITÁLNÍ FOTOGRAFIE
DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do
IVT. 8. ročník. listopad, prosinec 2013. Autor: Mgr. Dana Kaprálová
IVT Počítačová grafika - úvod 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443
5.3.1 Disperze světla, barvy
5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,
Obsah. Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11
Obsah Úvod 9 Co v knize najdete 9 Komu je kniha určena 9 Konvence užité v knize 9 Vzkaz čtenářům 10 Typografické konvence použité v knize 11 KAPITOLA 1 Působení barev 13 Fyzikální působení barev 15 Spektrum
Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol:
Název: Řízení robota pomocí senzoru barev. Tematický celek: Světlo. Úkol: Zopakuj si, čím je daná barva předmětu a jak se míchají barvy ve fyzice a výpočetní technice. Zjisti, jak pracuje senzor barev.
Barvy a barevné systémy. Ivo Peterka
Barvy a barevné systémy Ivo Peterka Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konktrétním světle zastoupeny složky všech vlnových délek, vnímáme toto světlo
VOLBA BAREVNÝCH SEPARACÍ
VOLBA BAREVNÝCH SEPARACÍ SOURAL Ivo Fakulta chemická, Ústav fyzikální a spotřební chemie Vysoké učení technické v Brně, Purkyňova 118, 612 00 Brno E-mail : Pavouk.P@centrum.cz K tomu aby byly pochopitelné
DUM 01 téma: Úvod do počítačové grafiky
DUM 01 téma: Úvod do počítačové grafiky ze sady: 02 tematický okruh sady: Bitmapová grafika ze šablony: 09 Počítačová grafika určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu: anotace:
Kde se používá počítačová grafika
POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY
ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ
VYUŽITÍ POČÍTAČOVÉ GRAFIKY
POČÍTAČOVÁ GRAFIKA VYUŽITÍ POČÍTAČOVÉ GRAFIKY ÚPRAVA FOTOGRAFIÍ NAFOCENÉ FOTOGRAFIE Z DIGITÁLNÍHO FOTOAPARÁTU MŮŽEME NEJEN PROHLÍŽET, ALE TAKÉ UPRAVOVAT JAS KONTRAST BAREVNOST OŘÍZNUTÍ ODSTRANĚNÍ ČERVENÝCH
Správa barev. Složky správy barev. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 3. prosince 2012. www.isspolygr.cz
Složky správy barev www.isspolygr.cz Vytvořila: Jana Zavadilová Vytvořila dne: 3. prosince 2012 Strana: 1/11 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace
B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY
B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY RNDr. Jana Štanclová, Ph.D. jana.stanclova@ruk.cuni.cz ZS 2/0 Z Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah seminářů 03.10.2011 [1]
Michal Vik a Martina Viková: Základy koloristiky ZKO10. Správa barev
Správa barev Přenos barevné a obrazové informace I Každodenn dodenní problémy s přenosem... p en samý dokument vypadá jinak, když: je vytištěn na různých tiskárnách je vyobrazen na různých monitorech je
(15) Výstupní zařízení
(15) Výstupní zařízení Osnova 1. Panely LCD, plasmová zobrazovače, projektory 1. Připojení 2. LCD monitory 3. Plasmový displej 4. Dataprojektor 2. Tiskárny 1. Kvalita tisku, rozlišení (DPI), připojení
Správa barev. Měřící přístroje. Správa barev. Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013. www.isspolygr.cz
Měřící přístroje www.isspolygr.cz Vytvořila: Jana Zavadilová Vytvořila dne: 14. února 2013 Strana: 1/12 Škola Ročník 4. ročník (SOŠ, SOU) Název projektu Interaktivní metody zdokonalující proces edukace
84. Barvové profily (monitory, skenery)
Semestrální práce z předmětu Kartografická polygrafie a reprografie 84. Barvové profily (monitory, skenery) Autor: Tomáš Kysilko, Zdeněk Sovadina Editor: Jakub Kozák Praha, květen 2010 Katedra mapování
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
Barvy v počítačové grafice
Barvy v počítačové grafice KAPITOLA 4 V této kapitole: Reprezentace barev v počítači Barevné prostory Barvy na periferiích počítače Barvy a design webových stránek Počítačová grafika je velmi široký pojem
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence schopnost, který je spolufinancován
Barevné vidění Josef Pelikán CGG MFF UK Praha
Barevné vidění 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorPerception 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 15 Co je světlo? Špatnota
Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:
Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen
1. Zpracování barev v publikacích
1. Zpracování barev v publikacích Studijní cíl V tomto bloku kurzu se budeme zabývat problematikou zpracování barev, vnímání barev, rozlišení barev a vlastnostmi barev. Vysvětlíme si co je to barvový model,
Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití
OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla
Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO
Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO 1 Základní dělení 3D grafika 2D grafika vektorová rastrová grafika 2/29 Vektorová grafika Jednotlivé objekty jsou tvořeny křivkami Využití: tvorba diagramů,
Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření
OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří
DTP 2. Radek Fiala. fialar@kma.zcu.cz. Podpořeno z projektu FRVŠ 584/2011. Radek Fiala DTP 2
DTP 2 Radek Fiala fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 PostScript Požadavky na obsah PS dokumentu PS dokument je program, který může být (stejně jako program v jiných programovacích jazycích)
Mezipředmětové výukové téma Barvy kolem nás I.
Školská fyzika 2013/3 Na pomoc školské praxi Mezipředmětové výukové téma Barvy kolem nás I. Václav Kohout 1, Nakladatelství Fraus, s. r. o., Plzeň V minulých číslech časopisu školská fyzika jste měli možnost
Color Management System
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Color Management System semestrální práce Lena Bajusová Stanislava Balcarová V Praze dne
O čem si něco povíme
1 O čem si něco povíme co to vlastně je předtisková příprava (prepress) různé způsoby tisku (offset, flexo, digital printing,...) správa barev inkousty, barevné prostory, profily RIP (raster image processor),
Michal Bílek Karel Johanovský. Zobrazovací jednotky
Michal Bílek Karel Johanovský SPŠ - JIA Zobrazovací jednotky CRT, LCD, Plazma, OLED E-papír papír, dataprojektory 1 OBSAH Úvodem Aditivní model Gamut Pozorovací úhel CRT LCD Plazma OLED E-Paper Dataprojektory
Co je počítačová grafika
Počítačová grafika Co je počítačová grafika Počítačovou grafikou rozumíme vše, co zpracovává počítač a co lze sledovat očima Využití počítačové grafiky Tiskoviny - časopisy, noviny, knihy, letáky Reklama
Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc
Světlo a barvy v počítačové grafice Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc EM spektrum λ = c f, E = h f c... rychlost světla (300000 km/h) h... Planckova konstanta
Michal Vik a Martina Viková: Základy koloristiky ZKO3
Fyziologie vnímání barev Příklady vizuáln lních iluzí: Vliv barvy pozadí I Jsou tyto kruhy barevně shodné? Příklady vizuáln lních iluzí: Vliv barvy pozadí II Jsou tyto kruhy barevně shodné? Příklady vizuáln
Barvy a barevné systémy Formáty obrázků pro WWW
Barvy a barevné systémy Formáty obrázků pro WWW Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konkrétním světle zastoupeny složky všech vlnových délek, vnímáme
Počítačová grafika - úvod
Autor: Mgr. Dana Kaprálová Počítačová grafika - úvod Datum (období) tvorby: listopad, prosinec 2013 Ročník: osmý Vzdělávací oblast: IVT 1 Anotace: Žáci se seznámí se základními pojmy počítačové grafiky,
TELEVIZNÍ ZÁZNAM A REPRODUKCE OBRAZU
TELEVIZNÍ ZÁZNAM A REPRODUKCE OBRAZU Hystorie Alexander Bain (Skot) 1843 vynalezl fax (na principu vodivé desky s napsaným textem nevodivým, který se snímal kyvadlem opatřeným jehlou s posunem po malých
Barvy a barevné systémy Formáty obrázků pro WWW
Barvy a barevné systémy Formáty obrázků pro WWW Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konkrétním světle zastoupeny složky všech vlnových délek, vnímáme
Úvod do správy barev a profilace monitorů a fotoaparátů. Ing. Tomáš Syrový, Ph.D.
Úvod do správy barev a profilace monitorů a fotoaparátů Ing. Tomáš Syrový, Ph.D. Barva Barva je subjektivní zrakový vjem a je dána třemi aspekty Lidský zrak (subjektivní), záznamové médium sensor spektrofotometru,
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
DTP1. (příprava textu pomocí počítače) Kapitola 9 / Barevný tisk
DTP1 (příprava textu pomocí počítače) Kapitola 9 / Barevný tisk Petr Lobaz, 18. 4. 2013 Barva běžné světlo směs mnoha vlnových délek ~ 400 nm modrá ~ 550 nm zelená ~ 700 nm červená receptory v oku tyčinky
DTP1. (příprava textu pomocí počítače) Kapitola 10 / Barevný tisk
DTP1 (příprava textu pomocí počítače) Kapitola 10 / Barevný tisk Petr Lobaz, 30. 4. 2009 Barva běžné světlo směs mnoha vlnových délek ~ 400 nm modrá ~ 550 nm zelená ~ 700 nm červená receptory v oku tyčinky
Digitální učební materiál
Střední hotelová škola, s.r.o. Floriánské náměstí 350, 272 01 Kladno Digitální učební materiál Číslo projektu Název projektu Název školy Předmět Tematický okruh Téma CZ.1.07/1.5.00/34.0112 Moderní škola
Stanovení povrchových vlastností (barva, lesk) materiálů exponovaných za podmínek simulující vnější prostředí v QUV panelu
Stanovení povrchových vlastností (barva, lesk materiálů exponovaných za podmínek simulující vnější prostředí v QUV panelu Cíle práce: Cílem této práce je stanovení optických změn povrchu vzorků během dlouhodobých
Pavel Roubal Výukový modul projektu: Nové formy výuky ve školách kraje Vysočina
Pavel Roubal 2009 Výukový modul projektu: Nové formy výuky ve školách kraje Vysočina Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Pavel Roubal 2009 1. Výukový
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
5. Zobrazovací jednotky
5. Zobrazovací jednotky CRT, LCD, Plazma, OLED E-papír, diaprojektory Zobrazovací jednotky Pro připojení zobrazovacích jednotek se používá grafická karta nebo také video adaptér. Úkolem grafické karty
FYZIKA Světelné vlnění
Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Světelné
Úvod do počítačové grafiky
Úvod do počíta tačové grafiky Počíta tačová grafika zobrazování popis objektů obraz modelování (model světa) rekostrukce zpracování obrazu Popis obrazu rastrový neboli bitmapový obraz = matice bodů vektorový
Charakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
Správa barev pro digitální fotografii
Správa barev pro digitální fotografii Seminární cvičení Lukáš Cerman Czech Technical University, Faculty of Electrical Engineering Department of Cybernetics, Center for Machine Perception 121 35 Praha
Počítačová grafika. OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely
Počítačová grafika OBSAH Grafické formy: Vektorová grafika Bitmapová (rastrová grafika) Barevné modely Vektorová grafika Vektorová grafika Příklad vektorové grafiky Zpět na Obsah Vektorová grafika Vektorový
Konstrukce zdroje záření a jeho využití ve výuce optiky
Konstrukce zdroje záření a jeho využití ve výuce optiky LENKA TICHÁČKOVÁ, LENKA HÖNIGOVÁ Ostravská univerzita v Ostravě Abstrakt Tento článek se věnuje zdroji záření viditelné oblasti a UV. Jak tento levný
zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se
Kapitola 3 Úpravy obrazu V následující kapitole se seznámíme se základními typy úpravy obrazu. První z nich je transformace barev pro výstupní zařízení, dále práce s barvami a expozicí pomocí histogramu