45 Vlnové vlastnosti světla

Rozměr: px
Začít zobrazení ze stránky:

Download "45 Vlnové vlastnosti světla"

Transkript

1 45 Vlnové vlastnosti světla ÚKOL 1. Zobrazte difrakční obrazec zadaných štěrbin a výpočtem stanovte jejich šířky podle fyziků Fresnela i Fraunhofera. 2. Zobrazte interferenční obrazec při Youngově pokusu, po zastínění jedné štěrbiny pozorujte také difrakční obrazec. Z těchto pozorování stanovte charakteristické rozměry dvojštěrbiny. 3. Určete pro každé výše uvedené měření, v jaké oblasti bylo provedeno měření difrakce na štěrbině. TEORIE Jako viditelné světlo je označováno elektromagnetické vlnění v kmitočtovém pásmu THz, které se ve vakuu šíří rychlostí světla 299, ms -1, čemuž odpovídá rozsah vlnových délek nm. Od bodového zdroje se v homogenním izotropním prostředí šíří ve sférických (kulových) vlnoplochách. Vlnoplocha je plocha, na kterou dospěje za tutéž dobu světelné vlnění od zdroje, to znamená, že body vlnoplochy kmitají se stejnou fází. Ve velké vzdálenosti od bodového zdroje lze části kulových ploch považovat za rovinné. Homogenním a izotropním prostředím nazýváme takové prostředí, které má ve všech bodech stejné vlastnosti nezávislé na směru šíření světla. Dle Huygensova principu jsou body vlnoplochy sekundárními synchronními zdroji, přičemž Fresnel hypotézu doplnil o princip superpozice, tedy že každý bod vlnoplochy je superpozicí vln jednotlivých zdrojů. Obr : Huygensův princip, přechod od sférické vlnoplochy k rovinné Pokud vlnění při setkání s překážkou postupuje v jiných směrech, než ve směrech předvídatelných zákony geometrické optiky, hovoříme o ohybu neboli difrakci. V převážné většině případů nejsou pozorovatelné. Stávají se zřetelnými, jestliže se rozměry překážek blíží řádově vlnové délce použitého vlnění. Difrakční, stejně jako interferenční jevy tedy prokazují, že světlo má opravdu vlnové vlastnosti. K modelování šíření světla skrze aperturu lze použít Kirchoffovu difrakční formuli. Za určitých podmínek je možné použít také aproximaci Fresnelovu či Fraunhoferovu,

2 podle toho, zda se nacházíme v oblasti blízkého nebo vzdáleného pole. Platnost aproximace posuzujeme podle: Fresnelova difrakce Fraunhoferova difrakce aa 2 LLLL 1 aa 2 LLLL 1 (45.1) (45.2) kde a je velikost apertury, nebo štěrbiny, L je vzdálenost stínítka a apertury, λ je vlnová délka použitého světla. Rozsah platnosti aproximace je definován volně a pro oblasti blízké definované hranici lze většinou s určitou chybou uspokojivě použít aproximace obě. Základní uspořádání pro pozorování difrakce je ukázáno na obr. 2. V závislosti na hodnotě vzdálenosti L a velikosti apertury a, je možné považovat vzdálenosti s1 a s2 za shodné a dané paprsky za rovnoběžné, či nikoli. V nejjednodušším případě, kdy jsou paprsky rovnoběžné a na štěrbinu dopadá rovinná vlna (Fraunhoferova difrakce), je možné lehce odvodit pozici extrémů intenzit na stínítku s využitím goniometrických funkcí a požadavku na dráhový rozdíl paprsků s a s1 (případně s a s2), který musí být roven takové hodnotě, aby se paprsky na stínítku sečetly, nebo odečetly. V případě Fresnelovy difrakce, kdy již nejsou paprsky rovnoběžné a předpokládáme-li navíc, že dopadající vlna není rovinná, je nutné k řešení použít Fresnelovy integrály. Obr : K difrakci světla na štěrbině Obr : Rozložení intenzity na stínítku Podmínka pro minima xx nnnnnnnn = nnnnnn aa Podmínka pro maxima xx nnnnnnnn = (nn + 0.5) λλλλ aa Fresnelova difrakce Fraunhoferova difrakce aa sin(ββ) = nnnn aa sin(ββ) = (nn + 0.5)λλ (45.3) (45.4) kde n je přirozené číslo, λ je vlnová délka záření dopadajícího na aperturu, xn značí vzdálenost difrakčního minima/maxima od bodu x0. Lze tedy říci, že s rostoucí šířkou štěrbiny poroste prostorová frekvence difrakčních řádů (difrakční obrazec bude užší). Pro účely správného pochopení následujícího textu připomeňme, že světlo je elektromagnetické vlnění, jehož kmity vektoru elektrické intenzity, případně vektoru magnetické indukce, mohou být zapsány s využitím harmonických funkcí. Pro optiku je ovšem důležitá optická intenzita, která souvisí s transportem energie. Lze říci, že optická intenzita je úměrná druhé mocnině velikosti vektoru elektrické intenzity (více viz. Poyntingův vektor).

3 Světelné jevy jsou vyvolány šířením vln, a proto se u nich musí projevovat i jevy, které nazýváme interferencí. Pokud sečteme dvě harmonické vlny, nebude výsledná amplituda dána pouhým součtem amplitud jednotlivých vln, ale bude nutné uvažovat také člen obsahující rozdíl fází jednotlivých vln. Víme, že intenzita světelného vlnění je úměrná čtverci amplitudy vlny. Pro výslednou optickou intenzitu I světelného vlnění tedy můžeme psát II = KK AA AA AA 1 AA 2 cccccc(φφ 2 φφ 1 ), (45.5) kde φ1, φ2 jsou fáze jednotlivých vlnění, A1, A2 jsou amplitudy jednotlivých vlnění, K je obecná konstanta. Pro případ, kdy A1 = A2 bude výsledná hodnota intenzity mezi nulou a čtyřnásobkem původní intenzity v závislosti na fázovém rozdílu interferujících vln. Aby byla výsledná intenzita konstantní, musí být i fázový rozdíl konstantní v čase. Svazky, jejichž vzájemná fáze je v čase konstantní nazýváme koherentními. Koherence je základní podmínkou pro vznik interference, dále je nutné, aby obě vlny byly shodně polarizované. Interference je tedy vzájemné ovlivňování koherentních vln, jinak řečeno skládání světla. Slavný dvouštěrbinový experiment, kterým v roce 1801 dokázal Thomas Young vlnové vlastnosti světla je ukázán na obr. 4. Monochromatické světlo dopadá na clonu s otvorem P. Za clonou se dále šíří pouze koherentní záření bodového zdroje, které osvětlí dvě štěrbiny na druhé cloně. Každá z těchto štěrbin by na stínítku způsobila difrakční obrazec. Světlo z obou štěrbin je vzájemně koherentní a na stínítku tedy dochází také k interferenci. Pokud jednu ze štěrbin zakryjeme, interferenční obrazec vymizí a na stínítku budeme pozorovat pouze obrazec difrakční. Obr : K Youngově pokusu Obr : Rozložení intenzity na stínítku Zkoumáním vzdáleností z1 a z2 můžeme opět dojít k podmínkám pro polohu interferenčních minim a maxim. Dráhový rozdíl obou paprsků můžeme spočítat podle vztahu =d sinδ. (45.6) Maximum zaznamenáme v bodech, ve kterých je dráhový rozdíl paprsků roven sudému násobku půlvln, což je v tomto případě celistvý násobek vlnových délek: λ = 2 k = kλ, k = 0, 1, 2,.... (45.7) 2 Minimum najdeme v bodech, ve kterých je dráhový rozdíl paprsků roven lichému násobku půlvln: λ = (2k 1), k = 1, 2, 3,.... (45.8) 2

4 Úpravami výrazu pro dráhový rozdíl paprsků můžeme při určitých zjednodušeních odvodit vzdálenosti interferenčních proužků od bodu x0 jako světlé proužky xx kkkkkkkk = ± LL dd 2kk λλ 2, kk = 0, 1, 2, (45.8) tmavé proužky xx kkkkkkkk = ± LL dd (2kk 1) λλ 2, kk = 1, 2, 3, (45.9) kde d je vzdálenost mezi štěrbinami. Vzdálenost dvou nejbližších světlých nebo tmavých proužků Δx je pak dána vztahem xx = LL λλ. (45.10) dd Interference vzniká nejen při skládání dvou vln jako při Youngově pokusu, ale i při skládání mnoha vln, které vznikly při průchodu koherentního vlnění mnoha otvory v mřížce. Vzdálenost mezi těmito otvory se nazývá mřížková konstanta a je jedním z důležitých parametrů charakterizujících mřížku. POPIS PRACOVIŠTĚ Jako zdroj monochromatického záření je použit polovodičový laser o vlnové délce λ = 650 nm. Částečně polarizované koherentní světlo z laseru se šíří přes pevný lineární polarizátor, na jehož výstupu je světlo lineárně polarizované. Dále prochází druhým nastavitelným lineárním polarizátorem, který může být natočen do libovolného úhlu. Tímto způsobem je možné měnit intenzitu svazku. K rozšíření průměru svazku na několik milimetrů je použito následující uspořádání. Světlo prochází stavitelným mikroskopickým objektivem, který jej fokusuje do 25 μm apertury. Dále se ve vzdálenosti ohniskové vzdálenosti od apertury nachází spojná čočka. Po průchodu touto čočkou již paprsek není rozbíhavý a světlo lze považovat za rovinnou vlnu. Na otočném držáku je možné navolit různé štěrbiny, dvojštěrbiny, případně kruhové otvory. Před dvojštěrbinu je také umožněno zařadit clonu, která zastíní jednu ze štěrbin. Po průchodu clonou dopadá světlo na čip monochromatické kamery. Obraz kamery je zpracován s využitím programu v počítači. Obr. 6.: Uspořádání pracoviště Pro vyšetření difrakčních a interferenčních jevů nás bude mimo jiné zajímat vzdálenost mezi clonou a stínítkem. Tuto vzdálenost lze odečíst na pojezdové kolejnici. Odečtením hodnoty

5 u levé spodní strany pojezdu kolejnice a zvýšením této hodnoty o 10 mm, získáme vzdálenost mezi clonou a čipem kamery, který je pro nás stínítkem. Aby byly minimalizovány parazitní interferenční jevy, není mezi clonou a čipem kamery vložen žádný filtr. To má ovšem za následek možné ovlivnění okolním osvětlením, proto je nutné měření provádět v zatemněné místnosti. Manipulujte prosím jen s prvky, u kterých je to výslovně povoleno! Běžná manipulace zahrnuje otáčení s nastavitelným polarizačním filtrem pro úpravu intenzity svazku, měnit štěrbiny otočením rotačního držáku a vkládat předřadnou clonu, v případě potřeby posouvat kameru. POPIS PROGRAMU Program spustíme z plochy ikonou Vlnové vlastnosti světla. Otevře se okno, s modrým symbolem a nápisem uc480, který je po inicializaci kamery nahrazen živým obrazem. V levém spodním rohu je možnost zvýšit počet průměrovaných snímků (doporučené je 10 snímků). Dále se ve spodní části nachází tlačítko Zachytit snímek, které provede zachycení a zprůměrování daného počtu snímků a otevře nové okno, kde je možné se snímkem pracovat. Zprůměrování více snímků umožní potlačit šum kamery a tím zlepšit kvalitu výsledného snímku. Tlačítkem TISK je možné vytisknout naměřené hodnoty všech zachycených a uložených snímků. Obr. 7.: Výchozí okno aplikace Po zachycení snímku se otevře nové okno zpracování snímku. V horní části okna se nachází toolbar, na kterém lze pro účely ovládání aplikace použít jen lupu. Pod ním se nachází zachycený snímek. Modrá čára značí místo řezu obrázku. Místo řezu lze posouvat s využitím posuvníku umístěného vpravo vedle snímku, případně přímo zadáním hodnoty řádku do editačního okénka Řádek. Ve spodní části okna se nachází vykreslený průběh intenzity na zvoleném řádku. Tento průběh je možné filtrovat s využitím okénkového filtru za účelem potlačení nežádoucího šumu. Filtr se aktivuje zatržítkem Aplikovat filtr, v editačním okénku Velikost okna se volí velikost okna filtru. Velikost okna je nutné volit s ohledem na měřený průběh. Příliš velké okno může způsobit nežádoucí zkreslení průběhu a ztrátu relevantních dat. V okně průběhu intenzity jsou na ose x jednotky mm, osa y je bezjednotková, nicméně hodnota je přímo úměrná optické intenzitě. Studentům je umožněno v závěru laboratorního cvičení vytisknout si naměřené hodnoty ve tvaru náhled průběhu intenzity na zvoleném řádku a souřadnice vyznačených bodů. Proto je důležité, aby již během této fáze byly označeny všechny významné body průběhu nutné pro další zpracování.

6 K vyznačení bodů se použijí dva kurzory, které se pohybují s využitím tlačítek < a > příslušného kurzoru a to buď bod po bodu, nebo vyhledáním lokálních extrémů (pokud je zatrženo Vyhledávat extrémy ). Alternativně je možné změnit pozici kurzoru stlačením tlačítka Zadat pozici myší a kliknutím na požadované místo v grafu. Pokud je kurzor umístěn na správném místě, je možné přenést souřadnice tohoto bodu do tabulky hodnot (bude vytištěna) stlačením tlačítka Přidat data Kx. Po označení všech významných bodů je nezbytné provést uložení měření v pravé spodní části okna vyplněním názvu měření a stisknutím tlačítka Uložit. Pokud nebudou požadované hodnoty v tabulce a nebude před zavřením okna stlačeno tlačítko Uložit, měření bude ztraceno. Obr. 8.: Okno zpracování zachyceného snímku POSTUP PŘI MĚŘENÍ, ZPRACOVÁNÍ A VYHODNOCENÍ 1. Spusťte počítač, pokud není spuštěn 2. Spusťte program Vlnové vlastnosti světla, jehož ikona se nachází na ploše. 3. Nastavte na otočném zásobníku první štěrbinu (pozice 6) tak, aby jí procházel laserový svazek na detektor. 4. Nastavte vzdálenost zásobníku a detektoru na hodnotu 150 mm, pokud není toto již nastaveno. 5. Zvolte počet snímků pro průměrování (doporučená hodnota je 10 snímků). Po stisknutí tlačítka Zachytit se otevře okno pro vyhodnocení difrakčního obrazce. Pomocí vertikálního posuvníku ( scrollbar ) zvolte průběh intenzity světla na detektoru tak, abyste minimalizovali zkreslení signálu vlivem šumu či saturace.

7 6. Aplikujte filtr klouzavého průměru, jestliže nelze jednoznačně určit jednotlivé extrémy závislosti intenzity světla na poloze. Zvolte hodnotu filtru v rozmezí hodnot 5 40 (čím delší okna, tím hladší křivka). Příliš dlouhé okno může zásadně ovlivnit výsledek měření! 7. Nalezněte centrální maximum (nultý difrakční mód) a minimálně 4 další extrémy (minima a maxima) k přesnému odhadu charakteristických parametrů difrakčního obrazce. K odhadu extrémů použijte červený či zelený kurzor. Po výběru přibližného místa extrému pomocí myši (tlačítko Zadat pozici myší ), lze dále hledat jemně pomocí šipek pod výš uvedeným tlačítkem. Jednotlivé extrémy si zapisujte do příslušné tabulky a kolonky v záznamovém listu. 8. Stanovte šířku štěrbiny výpočtem z jednotlivých vzdáleností mezi centrálním maximem a extrémy (n-tá minima, n-tá maxima) podle fyziků Fresnela i Fraunhofera. Dále odhadněte střední hodnotu a směrodatnou odchylku. 9. Nastavte na otočném zásobníku druhou štěrbinu (pozice 1) tak, aby jí procházel laserový svazek na detektor, a zopakujte kroky 5 až Nastavte na otočném zásobníku dvojštěrbinu (pozice 4) tak, aby jí procházel laserový svazek na detektor. Zařaďte předřadnou clonu do optické cesty ke vzniku difrakce na štěrbině a zopakujte kroky 5 až Zobrazte interferenční obrazec při Youngově pokusu vyřazením předřadné clony z optické cesty. Zopakujte kroky 5 až Stanovte vzdálenost štěrbin výpočtem z jednotlivých vzdáleností mezi centrálním maximem a extrémy (n-tá minima, n-tá maxima) interferenčního obrazce. Dále odhadněte střední hodnotu a směrodatnou odchylku. 13. Určete pro každé výše uvedené měření, v jaké oblasti bylo provedeno měření difrakce na štěrbině. 14. Výsledky získané v krocích 8, 12 a 13 podložte v protokolu příkladem výpočtu. Do závěru mimo jiné se pokuste zdůvodnit rozdíl mezi Fresnelovou a Fraunhoferovou oblastí. Otázky k zamyšlení V testu připravenosti k úloze se objevují i příklady. Jsou to příklady typu: Jak velký je dráhový rozdíl dvou paprsků, vycházejících ze sousedních štěrbin, jsou-li štěrbiny od sebe vzdáleny 0,001 mm a za mřížkou se světlo ohýbá pod úhlem 30? Postup: Výsledek dostaneme použitím (rov. 45.6). = d sinδ. -dráhový rozdíl paprsků, d-vzdálenost štěrbin, δ -úhel, který svírají paprsky s normálou k mřížce. Δ = d sin δ = 0,001 sin 30 = 0,001 0,5 = 0,0005mm. Jaká je mřížková konstanta d (v mm) difrakční mřížky o velikosti D = 4 mm, která má 1000 štěrbin?

8 Postup: Vzdálenost mezi středy štěrbin mřížky se nazývá mřížková konstanta. Označíme ji d. 4 mm mm = 0,004 mm d = D = =

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Praktikum školních pokusů 2

Praktikum školních pokusů 2 Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních

Více

Fyzika II. Marek Procházka Vlnová optika II

Fyzika II. Marek Procházka Vlnová optika II Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

27. Vlnové vlastnosti světla

27. Vlnové vlastnosti světla 27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla

Více

Youngův dvouštěrbinový experiment

Youngův dvouštěrbinový experiment Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních

Více

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA

FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK,

Více

Fyzikální korespondenční seminář UK MFF 22. II. S

Fyzikální korespondenční seminář UK MFF  22. II. S Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku

Více

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb 1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev

Více

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového

Více

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých

Více

Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky

Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím

Více

Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

FYZIKA II. Marek Procházka 1. Přednáška

FYZIKA II. Marek Procházka 1. Přednáška FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie

Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie Cvičení Kmity, vlny, optika Část interference, difrakce, fotometrie přednášející: Zdeněk Bochníček Tento text obsahuje příklady ke cvičení k předmětu F3100 Kmity, vlny, optika. Příklady jsou rozděleny

Více

Podpora rozvoje praktické výchovy ve fyzice a chemii

Podpora rozvoje praktické výchovy ve fyzice a chemii VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro

Více

5.3.5 Ohyb světla na překážkách

5.3.5 Ohyb světla na překážkách 5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se

Více

Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]

Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3] Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev

Více

Název: Měření vlnové délky světla pomocí interference a difrakce

Název: Měření vlnové délky světla pomocí interference a difrakce Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika

Více

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS XIV. Interference a ohyb Obsah 14 INTERFERENCE A OHYB 14.1 SUPERPOZICE VLN 14. YOUNGŮV DVOJŠTĚRBINOVÝ EXPERIMENT 4 14.3 ROZLOŽENÍ INTENZITY 7 14.4 OHYB (DIFRAKCE) 11 14.5 OHYB NA

Více

OPTIKA. I. Elektromagnetické kmity

OPTIKA. I. Elektromagnetické kmity OPTIKA Optika se studuje elektromagnetické vlnění v určitém intervalu vlnových délek, které můžeme vnímat zrakem, a sice jevy světelné Rozlišujeme základní pojmy: Optické prostředí prostředí, kterým se

Více

Interference vlnění

Interference vlnění 8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým

Více

Úloha 10: Interference a ohyb světla

Úloha 10: Interference a ohyb světla Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 29.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán

Více

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti

Více

6.2.6 Dvojštěrbinový experiment

6.2.6 Dvojštěrbinový experiment 66 Dvojštěrbinový eperiment Předpoklady: 06005 Pedagogická poznámka: Následující dvě hodiny jsou z převážné části převyprávěním dvou kapitol z Feynmanových přednášek z fyziky V klasických učebnicích nic

Více

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium ohybových jevů v laserovém svazku Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 6 Název: Studium ohybových jevů v laserovém svazku Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 10.3.2014

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 25.3.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Mikrovlny Abstrakt V úloze je

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan

Více

Člověk a příroda Fyzika Cvičení z fyziky Laboratorní práce z fyziky 4. ročník vyššího gymnázia

Člověk a příroda Fyzika Cvičení z fyziky Laboratorní práce z fyziky 4. ročník vyššího gymnázia Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem

Více

odrazu. Ohyb světla je projevem jeho vlnové povahy a v praxi hraje velmi důležitou úlohu, nebot

odrazu. Ohyb světla je projevem jeho vlnové povahy a v praxi hraje velmi důležitou úlohu, nebot Laboratorní úloha Fraunhoferův ohyb světla na štěrbině a mřížce 1.1 Úkol měření 1. Pro dvě šířky štěrbiny a dvě vlnové délky ověřte platnost vzorce pro Fraunhoferův ohyb na štěrbině.. Určete mřížkovou

Více

Lasery základy optiky

Lasery základy optiky LASERY Lasery se staly jedním ze základních nástrojů moderních strojírenských technologií. Optimální využití laserových technologií předpokládá znalosti o jejich principech a o vlastnostech laserového

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Akustooptický modulátor s postupnou a stojatou akustickou vlnou Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

Teorie rentgenové difrakce

Teorie rentgenové difrakce Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární

Více

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Interference a ohyb světla

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Interference a ohyb světla FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 10: Interference a ohyb

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Akustooptický modulátor s postupnou a stojatou akustickou vlnou Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,

Více

Interference a ohyb světla

Interference a ohyb světla Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Interference a ohyb světla Jméno: Ondřej Ticháček Pracovní skupina: 7 Kruh: ZS 7 Datum měření: 25.3.2013 Klasifikace: Interference a ohyb světla 1 Zadání

Více

Lom světla na kapce, lom 1., 2. a 3. řádu Lom světla na kapce, jenž je reprezentována kulovou plochou rozhraní, je složitý mechanismus rozptylu dopada

Lom světla na kapce, lom 1., 2. a 3. řádu Lom světla na kapce, jenž je reprezentována kulovou plochou rozhraní, je složitý mechanismus rozptylu dopada Fázový Dopplerův analyzátor (PDA) Základy geometrické optiky Index lomu látky pro světlo o vlnové délce λ je definován jako poměr rychlosti světla ve vakuu k rychlosti světla v látce. cv n = [-] (1) c

Více

Měření optických vlastností materiálů

Měření optických vlastností materiálů E Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel a optických filtrů pomocí spektrofotometru 2. Určete spektrální odrazivost

Více

Balmerova série, určení mřížkové a Rydbergovy konstanty

Balmerova série, určení mřížkové a Rydbergovy konstanty Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Spektrální charakteristiky

Spektrální charakteristiky Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který

Více

Vlnové vlastnosti světla

Vlnové vlastnosti světla Vlnové vlastnosti světla Odraz a lom světla Disperze světla Interference světla Ohyb (difrakce) světla Polarizace světla Infračervené světlo je definováno jako a) podélné elektromagnetické kmity o frekvenci

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

13. Vlnová optika I. Interference a ohyb světla

13. Vlnová optika I. Interference a ohyb světla 13. Vlnová optika I. Interference a ohyb světla Od časů Isaaca Newtona si lidstvo láme hlavu problémem, je-li světlo vlnění nebo proud částic. Tento spor rozdělil svět vědy na dva zdánlivě nesmiřitelné

Více

1. Stanovte velikost rychlosti světla ve vzduchu. 2. Stanovte velikosti rychlostí světla v kapalinách a zjistěte odpovídající indexy lomu.

1. Stanovte velikost rychlosti světla ve vzduchu. 2. Stanovte velikosti rychlostí světla v kapalinách a zjistěte odpovídající indexy lomu. 46 Rychlost světla ÚKOL. Stanovte velikost rychlosti světla ve vzduchu. 2. Stanovte velikosti rychlostí světla v kapalinách a zjistěte odpovídající indexy lomu. TEORIE Připomeňme si některé základní poznatky.

Více

Fabry Perotův interferometr

Fabry Perotův interferometr Fabry Perotův interferometr Princip Dvě zrcadla jsou sestavena tak aby tvořila tzv. Fabry Perotův interferometr, s jehož pomocí je vyšetřován svazek paprsků vycházejících z laseru. Při experimentu se pohybuje

Více

Úloha 3: Mřížkový spektrometr

Úloha 3: Mřížkový spektrometr Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Najděte směr snadného průchodu polarizátoru užívaného v aparatuře. 2. Ověřte, že zdroj světla je polarizován kolmo k vodorovné rovině. 3. Na přiložených vzorcích proměřte závislost

Více

4 Příklady Fraunhoferových difrakčních jevů

4 Příklady Fraunhoferových difrakčních jevů 47 4 Příklady Fraunhoferových difrakčních jevů 4.1 Fraunhoferova difrakce na obdélníkovém otvoru 4.2 Fraunhoferova difrakce na stěrbině 4.3 Fraunhoferova difrakce na kruhovém otvoru 4.4 Fraunhoferova difrakce

Více

- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla

- studium jevů pozorovaných při průchodu světla prostředím: - absorpce - rozptyl (difúze) - rozklad světla VLNOVÁ OPTIKA - studium jevů založených na vlnové povaze světla: - interference (jev podmíněný skládáním vlnění) - polarizace - difrakce (ohyb) - disperze (jev související se závislostí n n ) - studium

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,

Více

Vlnová nádrž s LED stroboskopem Kat. Číslo 112.2064

Vlnová nádrž s LED stroboskopem Kat. Číslo 112.2064 Vlnová nádrž s LED stroboskopem Kat. Číslo 112.2064 Obsah Přehled strana 2 Dodané příslušenství strana 3 Funkční princip generování vln strana 3 Montáž vlnové vany strana 4 Řídicí jednotka strana 5 Provozní

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Měření optických vlastností materiálů

Měření optických vlastností materiálů E Měření optických vlastností materiálů Úkoly : 1. Určete spektrální propustnost vybraných materiálů různých typů stavebních skel a optických filtrů pomocí spektrofotometru 2. Určete spektrální odrazivost

Více

42 Polarizované světlo Malusův zákon a Brewsterův úhel

42 Polarizované světlo Malusův zákon a Brewsterův úhel 42 Polarizované světlo Malusův zákon a rewsterův úhel ÚKOL 1. Ověřte platnost Malusova 1 zákona. 2. Změřte rewsterův 2 úhel a nalezněte relativní index lomu dvou prostředí. (Výslovnost: rewster ['bru:stər,

Více

LMF 2. Optická aktivita látek. Postup :

LMF 2. Optická aktivita látek. Postup : LMF 2 Optická aktivita látek Úkoly : 1. Určete specifickou otáčivost látky měřením pro známou koncentraci roztoku 2. Měření opakujte pro různé koncentrace a vyneste závislost úhlu stočení polarizační roviny

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Sylabus přednášky Kmity a vlny. Optika

Sylabus přednášky Kmity a vlny. Optika Sylabus přednášky Kmity a vlny. Optika Semestr zimní 4/2 PS, (4 společné konzultace + 2 pracovní semináře po 4 hodinách) z, zk - 7 KB Doporučeno pro 2. rok bakalářského studia. A. Kmity a vlny 1. Volné

Více

Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí

Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí 1 Petr Šafařík Astrofyzika Druhý Třetí 1,5 11 99,1kPa 61% Fyzikální praktika 11 Měření tloušt ky tenkých vrstev Tolanského metodou Průchod světla planparalelní deskou a hranolem Petr Šafařík 0. listopadu

Více

Polarizace čtvrtvlnovou destičkou

Polarizace čtvrtvlnovou destičkou Úkol : 1. Proměřte intenzitu lineárně polarizovaného světla jako funkci pozice analyzátoru. 2. Proměřte napětí na fotorezistoru ozářenou intenzitou světla za analyzátorem jako funkci úhlu mezi optickou

Více

Fotorezistor. , kde G 0 je vodivost fotorezistoru bez přítomnosti filtru a G je vodivost. vypočítáme 100%

Fotorezistor. , kde G 0 je vodivost fotorezistoru bez přítomnosti filtru a G je vodivost. vypočítáme 100% Pomůcky: Systém ISES, modul ohmmetr, fotorezistor, 2 spojovací vodiče, barevné filtry (modrý, zelený, žlutý, červený pro jedno pracoviště 8 filtrů stejné barvy), zářivka, soubory: fotorez1.icfg, fotorez2.icfg,

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

Mikrovlny. K. Kopecká*, J. Vondráček**, T. Pokorný***, O. Skowronek****, O. Jelínek*****

Mikrovlny. K. Kopecká*, J. Vondráček**, T. Pokorný***, O. Skowronek****, O. Jelínek***** Mikrovlny K. Kopecká*, J. Vondráček**, T. Pokorný***, O. Skowronek****, O. Jelínek***** *Gymnázium Česká Lípa, **,*****Gymnázium Děčín, ***Gymnázium, Brno, tř. Kpt. Jaroše,**** Gymnázium Františka Hajdy,

Více

Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK

Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK Optika Co je světlo? Laser vlastnosti a využití Josef Štěpánek Fyzikální ústav MFF UK Optika Vědecká disciplína zabývající se světlem a zářením obdobných vlastností (optické záření) z hlediska jeho vzniku,

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan

Více

27 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace

27 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace 325 27 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Do fyzikální optiky zahrnujeme ty jevy, které vznikají v souvislosti se světlem, v kterých se zjevně projevuje jeho vlnová podstata. Jde především o

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka Příklady použití tenkých vrstev Jaromír Křepelka Příklad 01 Spočtěte odrazivost prostého rozhraní dvou izotropních homogenních materiálů s indexy lomu n 0 = 1 a n 1 = 1,52 v závislosti na úhlu dopadu pro

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

L a b o r a t o r n í c v i č e n í z f y z i k y

L a b o r a t o r n í c v i č e n í z f y z i k y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K ATEDRA FYZIKY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 15.11.2006 Stud. rok 2006/2007 Ročník 2. Datum odevzdání 29.11.2006

Více

3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU

3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU 3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU Měřicí potřeby 1) spektrometr ) optická mřížka 3) sodíková výbojka 4) Balmerova lampa Teorie Optická mřížka na průchod světla je skleněná destička, na níž

Více

Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7

Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7 Úloha č. 7 Difrakce na mřížce Úkoly měření: 1. Prostudujte difrakci na mřížce, štěrbině a dvojštěrbině. 2. Na základě měření určete: a) Vzdálenost štěrbin u zvolených mřížek. b) Změřte a vypočítejte úhlovou

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Sada Optika. Kat. číslo 100.7200

Sada Optika. Kat. číslo 100.7200 Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,

Více

Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako

Podle studijních textů k úloze [1] se divergence laserového svaku definuje jako Úkoly 1. Změřte divergenci laserového svazku. 2. Z optické stavebnice sestavte Michelsonův interferometr. K rozšíření svazku sestavte Galileův teleskop. Ze známých ohniskových délek použitých čoček spočtěte,

Více