Úvod do laserové techniky

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do laserové techniky"

Transkript

1 Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze 6. října 016

2 Kontakty Ing. Jan Šulc, Ph.D. Trojanova, místnost 37 Tel.: Prof. Ing. Helena Jelínková, DrSc. Trojanova, místnost 36 Tel.: Ing. Michal Němec, Ph.D. Trojanova, místnost 37 Tel.: Materiály k přednášce a k cvičení:

3 Světlo jako elektromagnetické záření opakování Světlo elektromagnetická vlna částice (foton) Periodické harmonické kmity elektrického a magnetického pole E(x, y, z, t) = i ye 0 cos(ωt k r + Φ) Amplituda fáze, fázový člen, fázová konstanta Φ, vlnoplocha Frekvence f, kruhová frekvence ω = πf perioda T = f 1 Rychlost šíření c, vlnové číslo k = ω/c, vlnový vektor k, směr šíření Vlnová délka λ = ct = c/f Polarizace i y lineární eliptická (kruhová) Intenzita elektrického pole E [V/m] Intenzita záření I [W/m ] I = 1 cεe 0 Superpozice elektromagnetických vln interferenční jevy

4 Příklad superpozice dvou vlnění Dvě elemag. vlny různých frekvencí, ale stejné polarizace a směru šíření Pracujeme s elektrickou složkou pole (magnetické umíme dopočítat) E 1 (x, y, z, t) = i ye 0 cos (ω 1 t k 1 z + Φ 1 ), E (x, y, z, t) = i ye 0 cos (ω t k z + Φ ) α 1 α Provedeme superpozici v každém čase a bodě E = E 1 + E = i ye 0 cos α 1 + α Využili jsme součtový vzorec pro cos cos α 1 α cos α 1 + cos α = cos α 1 + α cos α 1 α

5 Příklad superpozice dvou vlnění (stejný směr, různé frekvence) Matematický popis pole vzniklého superpozicí E = E 1 + E = i ye 0 cos α 1 + α cos α 1 α Upravíme nové fázové členy (původní α 1, = ω 1, t k 1, z + Φ 1, ) α 1 + α = ω 1 + ω ω t k 1 + k k z + Φ 1 + Φ Φ (průměr) α 1 α = ω 1 ω ω/ t k 1 k k/ z + Φ 1 Φ Φ/ (rozdíl) Výsledné pole ω E = i ye 0 cos t k z + Φ cos ωt kz + Φ

6 Příklad superpozice dvou vlnění (stejný směr, různé frekvence) ω E = i ye 0 cos t k z + Φ cos ωt kz + Φ Intereference E y z. Zázněje pro ω 1 = ω je ω ω 1, ω, resp. k k 1, k amplitudová periodická modulace pole vznikající v důsledku superpozice E = i ya(z, t)cos ωt kz + Φ Rychlost fázová rychlost šíření nosné vlny (vlnoplochy) prostředím ωt kz = 0 v f z t = ω k = ν λ Rychlost grupová rychlost šíření maxima obálky (impulsu) energie ω t k z = 0 vg z t = ω k dω dk

7 Příklad superpozice dvou vlnění Stejné frekvence a polarizace, šíření v různých směrech E 1 ( r, t) = i ye 0 cos(ωt k 1 r + Φ 1 ) k1 = ( k x, 0, k z) E ( r, t) = i ye 0 cos(ωt k r + Φ ) k = (k x, 0, k z) Výsledné pole E = i ye 0 cos Stejné frekvence (ω 1 = ω ω)! ω t k Φ r + cos ωt k r + Φ ω = ω 1 ω = 0, ω = (ω 1 + ω )/ = ω Různé směry: k 1 = ( k x, 0, k z) šíří se podél osy z mírně dolů pod úhlem θ, k = (k x, 0, k z) šíří se podél osy z mírně vzhůru pod úhlem θ, k = k 1 k = ( k x, 0, 0), k = k 1 + k = (0, 0, k z)

8 Příklad superpozice dvou vlnění (stejné frekvence, různý směr) Výsledné pole E = i ye 0 cos! ω t k Φ r + cos ωt k r + Φ Po dosazení: ω = 0, ω = ω, k/ = ( k x, 0, 0), k = (0, 0, kz), r = (x, y, z) E = E 1 + E = i ye 0 cos k xx + Φ cos ωt k zz + Φ vlna ve směru osy z A(x) Amplituda nové vlny A(x) je modulovaná ve směru osy x Intenzita záření I je úměrná A (x) I(x) = 1 cεa (x) = 1 cε4e 0 cos k xx + Φ = cεe0 [1 + cos(k xx + Φ)] I(x) = I 0 + I 0 cos(k xx + Φ) interferenční člen I 0 = 1 cεe 0 (intenzita jedné samostatné vlny)

9 Příklad superpozice dvou vlnění (stejné frekvence, různý směr) Intenzita I(x) = I 0 + I 0 cos(k xx + Φ) interferenční člen Vzdálenost maxim (minim) interferenčních proužků k xλ = π: Λ = π = π k x k sin θ = λ sin θ

10

11 Koherence optického záření Koherence uspořádanost, souvislost Každé optické pole může být charakterizováno jistým parametrem, který určuje míru statistické neuspořádanosti. Koherence optického záření = míra jeho statistického uspořádání. Jestliže frekvence, polarizace nebo fáze skládajících se vln nejsou navzájem nijak vázány, vzniká velmi neuspořádané elektromagnetické pole. Má charakter náhodných fluktuací (šumů). Takové optické záření označujeme jako nekoherentní. Pokud jsou jednotlivé složky pole vzájemně vázány (korelovány), má výsledné pole uspořádanější strukturu a mluvíme o něm jako o poli koherentním. Koherentní jsou světelná vlnění stejné frekvence, jejichž fázový rozdíl je v uvažovaném bodě prostoru konstantní. Koherence je základním předpokladem pozorovatelné interference světla. Zdroje, které vysílají nekoherentní záření, nazýváme nekoherentními zdroji (Slunce, žárovka, výbojka). Příkladem zdrojů koherentního záření jsou laser a parametrický generátor. koherenční doba, koherenční délka, kohereční plocha časová prostorová koherence

12 Časová koherence optického záření Časově koherentní vlny zachovávají si konstantní rozdíl fáze Vlny částečně koherentní postupně se fázový rozdíl zvětšuje

13 Prostorová koherence optického záření Prostorová koherence vzájemná uspořádanost vlnoploch Prostorově koherentní rovinná vlna Prostorově koherentní obecná vlnoplocha Částečně koherentní obecná vlnoplocha

14 Superpozice vln před zrcadlem Vlna šířící se směrem k zrcadlu k + = (0, 0, k) E +( r, t) = i ee 0 cos(ωt kz + Φ +) Vlna po odrazu (beze ztrát) šířící se směrem od zrcadla k = (0, 0, k) E ( r, t) = i ee 0 cos(ωt + kz + Φ ) Výsledné pole E = E + + E ω = i ye 0 cos t k z + Φ cos ωt kz + Φ Stejné frekvence ω = 0, ω = ω Různé směry (opačné, k = k +): k = (0, 0, k), k = (0, 0, 0) Výsledná vlna je vlna stojatá uzly & kmitny (v místě zrcadla uzel) E = E + + E = i ye 0 cos kz Φ cos ωt + Φ modulace v čase modulace v prostoru

15 Superpozice vln před zrcadlem Výsledná vlna je vlna stojatá uzly & kmitny (v místě zrcadla uzel) E = E + + E = i ye 0 cos kz Φ cos ωt + Φ modulace v čase modulace v prostoru Stojatá vlna na rozdíl od postupné vlny je závislost na čase a prostoru v argumentu jiné harmonické funkce, uzly a kmitny se nepohybují

16 Fabryův-Perotův rezonátor (FPR) Dvě polopropustná nekonečně rozlehlá zrcadla umístěná rovnoběžně ve volném prostoru nejjednodušší otevřený rezonátor Rezonátor Obecně těleso schopné akumulace energie, které může být zdrojem kmitů, působí-li na něj periodická vnější síla. Kmitání rezonátoru vyvolané touto vnější silou se nazývá vynucené. Amplituda vynucených kmitů prudce stoupá, přibližuje-li se frekvence vnějšího působení tzv. vlastním (rezonančním) frekvencím rezonátoru. Otevřený rezonátor Soustava odrazných ploch a opt. prvků, ve které může být vybuzeno stojaté vlnění s vlnovou délkou podstatně menší, než jsou geometrické rozměry prvků a vzdálenost mezi nimi. Otevřený rezonátor je nedílnou součástí laseru, kde vytváří kladnou zpětnou vazbu. Optický rezonátor Otevřený rezonátor s vlastními frekvencemi odpovídajícími frekvencím optického záření. Uvnitř FPR dochází k interferenci nekonečného počtu vln vzniklých mnohonásobnými odrazy uvnitř FPR Intenzita záření prošlého FPR či odraženého od FPR závisí na vzájemné vzdálenosti odrazných ploch FPR, na vlnové délce dopadajícího záření a na úhlu dopadu záření na FPR Rezonance, rezonanční frekvence, fázové zpoždění

17 Rezona tory a oscila tory

18 Superpozice vln ve Fabryově-Perotově rezonátoru FPR: zrcadla Z 1, Z vzdálenost mezi nimi L amplitudová odrazivost zrcadel r 1, r. Vlna šířící se FPR zleva doprava: E + 0 = i ye 0 cos(ωt kz + Φ +) Po odrazu od Z : E 0 = iyr E 0 cos(ωt + kz + Φ ) Po odrazu od Z 1 : E + 1 = i yr 1 r E 0 cos(ω(t τ) + kz + Φ ) časové zpoždění na jeden průchod τ = L/c, 1 fázová změna při odrazu Složením E + 0 a E + 1 : E E p + 1 = i y E R + R cos δ cos(ωt kz + Φ + + β) amplituda vlny A(x)

19 Superpozice vln ve Fabryově-Perotově rezonátoru Pole v rezonátoru E E + 1 = i y E 0 q1 + R + Rcos(δ) cos(ωt kz + Φ + + β) amplituda vlny A(x) kde R = r 1 r je odrazivost pro intenzitu záření, δ = ωτ + 1 fázové zpoždění po oběhu rezonátorem Amplituda vlny A(x) bude maximální, pokud cos(δ) bude co největší, tj. pokud δ = nπ (n je libovolné celé číslo) Zanedbáme 1 vzhledem k ωτ. Podmínka maximalizace A(x): δ = ω L c = nπ Podmínka rezonance na jeden oběh rezonátoru (L) připadá sudý počet půlvln (pole v rezonátoru úměrné 1/(1 R)) L = n λn nc, νn = (n-tá rezonanční frekvence), L ν = c L Rozladění nastává pro lichý počet půlvln na oběh rezonátorem δ = (n + 1)π (pole v rezonátoru úměrné 1/(1 + R))

20 Ztráty optického rezonátoru Energie, kterou lze uložit v rezonátoru je úměrná objemu tohoto rezonátoru Relaxace energie, doba života fotonu v rezonátoru τ c, ztráty rezonátoru U(t) = U(0) exp t, τ c = L 1 τ c c ln 1 R 1 R Činitel jakosti rezonátoru Q poměr energie uložené v rezonátoru ku energii uvolněné z rezonátoru za periodu vlastních kmitů 1/ω rez U(0) Q = U(0) U(1/ω = 1 h rez) 1 exp ω 1 i =. ω rezτ c = πν nτ c rezτ c Čím menší ztráty rezonátoru (R 1, R 1), tím větší τ c a Q

21 Otevřený rezonátor, Sférické otevřené rezonátory L délka rezonátoru r 1, r poloměr křivosti zrcadel a 1, a charakteristický rozměr zrcadel (průměr, délka hrany... ) Obvykle se rezonátor pro zvýšení stability realizuje pomocí kulových zrcadel Pasivní ztráty činné ztráty difrakční ztráty Fresnelovo číslo N F = a 1a 4λL Geometrické podobnostní parametry rezonátoru (rovinné zrcadlo má r = ) a1 G 1 = 1 Lr1 G = a a a 1 1 Lr Ekvivalentní rezonátory mají stejné hodnoty G 1, G a N F

22 Diagram stability pro otevřený sférický rezonátor Stabilní nestabilní rezonátory, podmínka stability 0 < g 1 g < 1 g 1 = 1 L r 1, g = 1 L r Diagram stability grafické vyjádření podmínky stability 0 < g 1 g < 1 Uvnitř šrafované oblasti jsou rezonátory stabilní. Mimo šrafovanou oblast jsou nestabilní. Na hranici jsou stabilní rezonátory citlivé na rozladění.

23 Shrnutí Světlo elektromagnetická vlna částice (foton) Intenzita elektrického pole E [V/m] Intenzita záření I [W/m ] Superpozice elektromagnetických vln interferenční jevy Koherence optického záření Rezonátor optický rezonátor Rezonance při jednom oběhu se v rezonátoru se naskládá sudý počet půlvln (pro lineární rezonátor L = celočíselný násobek vlnových délek) Ztráty, doba života fotonu v rezonátoru Stabilita rezonátoru, diagram stability

24 Literatura VRBOVÁ M., JELÍNKOVÁ H., GAVRILOV P.: Úvod do laserové techniky, Skriptum FJFI ČVUT, Praha, 1994 ( VRBOVÁ M. a kol.: Lasery a moderní optika - Oborová encyklopedie, Prometheus, Praha, 1994 Sochor V.: Lasery a koherentní svazky, Academia, Praha, 1990 ( Engst P., Horák M.: Aplikace laserů, SNTL, Praha, 1989 ( Přednášky:

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5.

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky.

Fyzika laserů. 4. dubna Katedra fyzikální elektroniky. Fyzika laserů Přitahováni frekvencí. Spektrum laserového záření. Modelocking Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 4. dubna 2013 Program přednášek 1.

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Interference vlnění

Interference vlnění 8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5

Více

Kmity a mechanické vlnění. neperiodický periodický

Kmity a mechanické vlnění. neperiodický periodický rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Fyzika II. Marek Procházka Vlnová optika II

Fyzika II. Marek Procházka Vlnová optika II Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)

(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2) Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném

Více

Fyzika laserů. 7. března Katedra fyzikální elektroniky.

Fyzika laserů. 7. března Katedra fyzikální elektroniky. Fyzika laserů Poloklasický popis šíření elmg. záření v rezonančním prostředí. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 7. března 2013 Program přednášek

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí

Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Laserová technika 1. Laser v aproximaci rychlostních rovnic. 22. prosince Katedra fyzikální elektroniky.

Laserová technika 1. Laser v aproximaci rychlostních rovnic. 22. prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Laser v aproximaci rychlostních rovnic Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek

Více

1 Rezonátorová optika

1 Rezonátorová optika 1 Rezonátorová optika Optické rezonátory jsou zařízení, ve kterých lze akumulovat optickou energii. Mohou také působit jako frekvenční filtr. Obojího se využívá v laseru, kde je aktivní prostředí, které

Více

Fabry Perotův interferometr

Fabry Perotův interferometr Fabry Perotův interferometr Princip Dvě zrcadla jsou sestavena tak aby tvořila tzv. Fabry Perotův interferometr, s jehož pomocí je vyšetřován svazek paprsků vycházejících z laseru. Při experimentu se pohybuje

Více

FYZIKA II. Marek Procházka 1. Přednáška

FYZIKA II. Marek Procházka 1. Přednáška FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení

Více

Rovinná harmonická elektromagnetická vlna

Rovinná harmonická elektromagnetická vlna Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy

Více

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH Úloha č. 6 MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH ÚKOL MĚŘENÍ: 1. V zapojení dvou RC generátorů nalezněte na obrazovce osciloskopu Lissajousovy obrazce pro frekvence 1:1, 2:1, 3:1, 2:3 a 1:4 a zakreslete

Více

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky.

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek

Více

Sylabus přednášky Kmity a vlny. Optika

Sylabus přednášky Kmity a vlny. Optika Sylabus přednášky Kmity a vlny. Optika Semestr zimní 4/2 PS, (4 společné konzultace + 2 pracovní semináře po 4 hodinách) z, zk - 7 KB Doporučeno pro 2. rok bakalářského studia. A. Kmity a vlny 1. Volné

Více

P5: Optické metody I

P5: Optické metody I P5: Optické metody I - V klasické optice jsou interferenční a difrakční jevy popisovány prostřednictvím ideálně koherentních, ideálně nekoherentních, později také částečně koherentních světelných svazků

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb 1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické

Více

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá. MECHANICKÉ VLNĚNÍ Dosud jsme při studiu uvažovali pouze harmonický pohyb izolované částice (hmotného bodu nebo tělesa), která konala kmitavý pohyb kolem rovnovážné polohy Jestliže takový objekt bude součástí

Více

Fyzika laserů. Aproximace rychlostních rovnic. 18. března Katedra fyzikální elektroniky.

Fyzika laserů. Aproximace rychlostních rovnic. 18. března Katedra fyzikální elektroniky. Fyzika laserů Aproximace rychlostních rovnic Metody generace nanosekundových impulsů. Q-spínání. Spínání ziskem Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz

Více

Zvuk. 1. základní kmitání. 2. šíření zvuku

Zvuk. 1. základní kmitání. 2. šíření zvuku Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického

Více

45 Vlnové vlastnosti světla

45 Vlnové vlastnosti světla 45 Vlnové vlastnosti světla ÚKOL 1. Zobrazte difrakční obrazec zadaných štěrbin a výpočtem stanovte jejich šířky podle fyziků Fresnela i Fraunhofera. 2. Zobrazte interferenční obrazec při Youngově pokusu,

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

27. Vlnové vlastnosti světla

27. Vlnové vlastnosti světla 27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

- Ideálně koherentním světelným svazkem se rozumí elektromagnetické vlnění o stejné frekvenci, stejném směru kmitání a stejné fázi.

- Ideálně koherentním světelným svazkem se rozumí elektromagnetické vlnění o stejné frekvenci, stejném směru kmitání a stejné fázi. P7: Optické metody - V klasické optice jsou interferenční a difrakční jevy popisovány prostřednictvím ideálně koherentních, ideálně nekoherentních, později také částečně koherentních světelných svazků

Více

Praktikum školních pokusů 2

Praktikum školních pokusů 2 Praktikum školních pokusů 2 Optika 3A Interference a difrakce světla Jana Jurmanová Přírodovědecká fakulta Masarykovy univerzity, Brno I Interference na dvojštěrbině Odvod te vztah pro polohu interferenčních

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův

Více

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser

Jméno a příjmení. Ročník. Měřeno dne Příprava Opravy Učitel Hodnocení. Vlnové vlastnosti světla difrakce, laser FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Lukáš Teuer 8.4.2013 22.4.2013 Příprava Opravy

Více

Fyzikální podstata zvuku

Fyzikální podstata zvuku Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění

Více

Podpora rozvoje praktické výchovy ve fyzice a chemii

Podpora rozvoje praktické výchovy ve fyzice a chemii VLNOVÁ DÉLKA A FREKVENCE SVĚTLA 1) Vypočítejte frekvenci fialového světla, je-li jeho vlnová délka 390 nm. Rychlost světla ve vakuu je 3 10 8 m s 1. = 390 nm = 390 10 9 m c = 3 10 8 m s 1 f=? (Hz) Pro

Více

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí) Vlnění vlnění kmitavý pohyb částic se šíří prostředím přenos energie bez přenosu látky Vázané oscilátory druhy vlnění: Druhy vlnění podélné a příčné 1. a. mechanické vlnění (v hmotném prostředí) b. elektromagnetické

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Lom světla na kapce, lom 1., 2. a 3. řádu Lom světla na kapce, jenž je reprezentována kulovou plochou rozhraní, je složitý mechanismus rozptylu dopada

Lom světla na kapce, lom 1., 2. a 3. řádu Lom světla na kapce, jenž je reprezentována kulovou plochou rozhraní, je složitý mechanismus rozptylu dopada Fázový Dopplerův analyzátor (PDA) Základy geometrické optiky Index lomu látky pro světlo o vlnové délce λ je definován jako poměr rychlosti světla ve vakuu k rychlosti světla v látce. cv n = [-] (1) c

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu Název DUMu 1 Vznik a druhy vlnění 2 Rychlost vlnění, vlnová délka 3 Rovnice postupné vlny 4 Interference vlnění 5 Stojaté vlnění 6 Šíření vlnění v prostoru 7 Odraz a

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

24. Elektromagnetické kmitání a vlnění

24. Elektromagnetické kmitání a vlnění 24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Akustooptický modulátor s postupnou a stojatou akustickou vlnou Úloha č. 8 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské cely,

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení

Více

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika 336 28 NELINEÁRNÍ OPTIKA Nelineární optické jevy Holografie a optoelektronika Světelná vlna (jako každá jiná vlna) vyjádřená ve tvaru y=y o sin (út - ) je charakterizována základními charakteristikami:

Více

Lasery základy optiky

Lasery základy optiky LASERY Lasery se staly jedním ze základních nástrojů moderních strojírenských technologií. Optimální využití laserových technologií předpokládá znalosti o jejich principech a o vlastnostech laserového

Více

Youngův dvouštěrbinový experiment

Youngův dvouštěrbinový experiment Youngův dvouštěrbinový experiment Cíl laboratorní úlohy: Cílem laboratorní úlohy je pochopit princip dvouštěrbinové interference a určit vlnovou délku světla na základě rozteče pozorovaných interferenčních

Více

(test version, not revised) 16. prosince 2009

(test version, not revised) 16. prosince 2009 Mechanické vlnění (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 16. prosince 2009 Obsah Vznik a druhy vlnění Interference Odraz vlnění. Stojaté vlnění Vlnění v izotropním prostředí Akustika

Více

OPTIKA. I. Elektromagnetické kmity

OPTIKA. I. Elektromagnetické kmity OPTIKA Optika se studuje elektromagnetické vlnění v určitém intervalu vlnových délek, které můžeme vnímat zrakem, a sice jevy světelné Rozlišujeme základní pojmy: Optické prostředí prostředí, kterým se

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické

1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické Úloha č. 1 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 16. prosince 2013. Katedra fyzikální elektroniky. jan.sulc@fjfi.cvut.

Laserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 16. prosince 2013. Katedra fyzikální elektroniky. jan.sulc@fjfi.cvut. Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 16. prosince 2013 Program přednášek

Více

Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS XIV. Interference a ohyb Obsah 14 INTERFERENCE A OHYB 14.1 SUPERPOZICE VLN 14. YOUNGŮV DVOJŠTĚRBINOVÝ EXPERIMENT 4 14.3 ROZLOŽENÍ INTENZITY 7 14.4 OHYB (DIFRAKCE) 11 14.5 OHYB NA

Více

Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky

Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím

Více

24. Elektromagnetické kmitání a vlnění

24. Elektromagnetické kmitání a vlnění 24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

Úloha č.3 Interferometry a vlastnosti laserového záření

Úloha č.3 Interferometry a vlastnosti laserového záření Úloha č.3 Interferometry a vlastnosti ového záření 1 Teoretický úvod Vyskytují-li se ve stejném prostoru a čase současně dvě (nebo více) optických vln, dochází k interferenci světla, kdy je výsledná vlnová

Více

Tepelná vodivost pevných látek

Tepelná vodivost pevných látek Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné

Více

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 14 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 04.05.2014 Ročník: 1. ročník Anotace DUMu: Mechanické vlnění, zvuk Materiály

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný

Více

2. Difrakce elektronů na krystalu

2. Difrakce elektronů na krystalu 2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA

FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 2. VLNOVÁ OPTIKA Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu OPVK,

Více

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Akustooptický modulátor s postupnou a stojatou akustickou vlnou Úloha č. 8 pro laserová praktika (ZPLT) KFE, FJFI, ČVUT, Praha v. 2017/2018 Akustooptický modulátor s postupnou a stojatou akustickou vlnou Akustooptické modulátory (AOM), někdy též nazývané Braggovské

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

Fyzikální korespondenční seminář UK MFF 22. II. S

Fyzikální korespondenční seminář UK MFF  22. II. S Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku

Více

Zakončení viskózním tlumičem. Charakteristická impedance.

Zakončení viskózním tlumičem. Charakteristická impedance. Kapitola 1 Odraz vln 1.1 Korektní zakončení struny Zakončení viskózním tlumičem. Charakteristická impedance. V mnoha praktických situacích požadujeme, aby prostředím postupovaly signály pouze jedním směrem,

Více

Úloha č.3 Interferometry a vlastnosti laserového záření

Úloha č.3 Interferometry a vlastnosti laserového záření Úloha č.3 Interferometry a vlastnosti ového záření Optické interferometry jsou přístroje pro velmi přesná měření, jejiž princip je založen na interferenci světla. Interferometry se dnes používají k měření

Více

Fyzika laserů. Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Katedra fyzikální elektroniky.

Fyzika laserů. Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Katedra fyzikální elektroniky. Fyzika laserů Koherentní šíření impulzů Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 25.

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více