10. Měření síly, tlaku, hladiny a průtoku
|
|
- Zuzana Pavlíková
- před 9 lety
- Počet zobrazení:
Transkript
1 10. Měření síly, tlaku, hladiny a průtoku přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček: Elektrická měření a skripta Ripka, Ďaďo, Kreidl, Novák: Senzory P. Ripka 1
2 Senzory síly Deformační Obsah přednášky Přímé: piezoelektrické, magnetoelastické, optické Senzory tlaku Senzory průtoku Rychlostní senzory objemový průtok Hmotnostní průtok Senzory hladiny Kontaktní Bezkontaktní: radarový, ultrazvukový 2
3 Senzory mechanického napětí - Hook: měření mechanického napětí v závislosti na deformaci - typy: 1. rezonanční senzory struna: závislost f na F 2. odporové tenzometry (viz přednáška 4) 3
4 Senzory síly a hmotnosti - princip využití fyzikálních účinků síly převod: síla deformace Newtonův zákon F() t = ma speciální případ - tíhová síla G = mg Převod e na: převod F fi e přímý (intrinsický) (ε velmi malá) náboj piezoelektrické vlastnosti magnetické vlastnosti optické vlastnosti - OVS tvar členu vetknutý nosník pružný člen válec pružný rám ohyb tah, tlak smyk krut druh deformace e 4
5 Pružné (deformační) členy - užití odporových tenzometrů - zásady geometrie pružných členů: 1. směrovost 2. převod měř. síly na deformace opačných znamének pro užití 4 tenzometrů 3. transformace deformace v rozsahu linearity + ochrana proti přetížení pružný člen typu vetknutý nosník pro měření malých sil (desítky kn) e = s E = M W o oe = FL W E o 5
6 měření smykového napětí měření větších sil F - princip dvojitého nosníku R 1 R 2 R 3 R 4 F pružný člen typu S 6
7 High Accuracy Tension and Compression 'S' Beam Load Cells 100 to 9000 kg Linearity: 0.03% FS Repeatability: 0.01% FS 0-10 to 0-20 kg Linearity:±0.25% FSO Repeatability: ±0.10%FSO Miniature Industrial Load Cell 7
8 Pružné členy pro senzory hmotnosti (vážení) - optimalizované pro hromadnou výrobu (tzn. přesnost + min náklady) přeložený nosník: -při zatížení vznikají deformace s opač. znaménkem na vrchní straně a proto se tam umístní fóliový tenzometric. můstek 8
9 Senzory síly s převodem deformace na polohu 9
10 Senzory síly s převodem deformace na polohu F
11 Senzory síly s přímým (intrinsickým) převodem deformace - typy: piezoelektrický magnetoelastický rezonanční na fotoelastickém principu 11
12 1. Piezoelektrické senzory přímý piezoelektrický jev = polarizace některých dielektrik, působí-li na ně mechanické napětí nepřímý piezoel. jev (piezostrikce) = deformace vlivem vnějšího el. pole - užití: ultrazvukové generátory, akční člen pro posuvy (měřící a regulační technika) - o tom zda piezoelelektrický jev nastane nebo ne rozhoduje poloha středu symetrie základní buňky krystalové mřížky 12
13 - klidový stav - deformovaný stav - polarizace obou stavů této mřížky je: P = fi P 1 i fi p i = 0 p r i - vektory dipólmomentů 13
14 - klidový stav - deformovaný stav - pro tuto 6ti úhelníkovou mřížku (např. SiO 2 ) nastává polarizace vzniká piezoelektrický jev 14
15 - mechanické napětí působí na elektrody: 1. kolmo (ve směru elektrické osy) = podélný jev 2. rovnoběžně (ve směru mechanické osy) = příčný jev 3. smyková deformace -větší citlivost, menší rušivé účinky teplot. dilatací -náboj nezávislý na rozměrech: Q = d 11 F x -náboj závislý na rozměrech: Q = d 11 F y b a 15
16 Materiály pro piezoelektrické senzory: -monokrystaly SiO 2, triglycinsulfát TGS, titaničitan lithia LiTaO 3 -polykrystalické keramické materiály - titaničitan barnatý LiTiO 3, titaničitan olovnatý PbTiO 3, tuhé roztoky typu zirkonát olova PbZRO 3, niobáty -organické polymery- např. polyvinylidendifluorid PVDF feroelektrické materiály - nelineární závislost polarizace na el. poli hysterezní smyčka - zůstanou piezoelektrickými i bez el. vnějšího pole - užití: zdroje stálého el. pole Výbrus SiO 2 jako piezoelektrický element 16
17 Elektrický náhradní obvod senzoru: - vychází z Nortonova teorému: U( jw) = I( jw) 1 jwc = jwq( jw) jwc = Q( jw) C 17
18 Měřicí obvody pro piezoelektrické senzory - náhr. obvod spojení piezoelektrického senzoru s napěťovým zesilovačem - piezoel. senzory nelze užít pro sledování statických veličin - přenos K( jw) = U 1( jw) jwt Q( jw) = = U( jw) 1 + jwt C Rk R i - odpor kabelu - odpor vstupu měřidla U( jw) = t = Q( jw) C C R c C c R S C K C i - svodový odpor - kapacita kabelu - kapacita vstupu 18
19 - obvody se zesilovači (tranzistory řízené polem FET, MISFET) 1. napěťové s velkým vstupním odporem elektrometrické 2. nábojové - integrující přenos: impedanční konvertor neinvertující elektrometrický zesilovač pro piezoel. dvojče jwt Q( jw) U2( jw) = Aj ( w) Kj ( w) U1( jw) = Aj ( w) 1 + jwt CC - nevýhoda závislost výstupního napětí na C C 19
20 Impedanční konvertor v pouzdře senzoru: - nevýhoda závislost výstupního napětí na C C řešení: zabudovat zesilovač do pouzdra senzoru elektrometrické zesilovače: - jednoduché - užití: napěťové sledovače pro značné napěťové úrovně výstup. signálů 20
21 2. nábojové zesilovače i + u R g + C g du 2 = 0 dt R g fi u 2 1 = - idt C g i = dq dt u2 = - Q C g výhoda výstupní napětí nezávisí na C C Vybíjení náboje: u2 ( t) Q = - C 0 g e t - R g C g 21
22 Rozdílový nábojový zesilovač - uzemnění pouzdra senzoru a vstupu zesilovače může vyvolat rušení průtokem zemnících proudů náprava rozdílový zesilovač senzor pouzdro stínění C - + R C R u V U Z + - -triboelektrické jevy: - rušení u koax. kabelu vzniká třením vnitřního vodiče o izolaci 22
23 Piezoelektrické senzory síly T P 23
24 2. Magnetoizotropní senzor síly 24
25 3. Optické vláknové senzory síly a) změna geometrie: Braggova mřížka prodloužení se měří prostřednictvím změny rez. frekvence b) změna indexu lomu 4. Rezonanční senzory sil např. jeřáby 5. Senzory síly na fotoelastickém principu -vznik dvojlomu při působní mechanického napětí -rychlost světla se mění vzhledem k směru hlavních napětí a současně k rozdílu mezi hlavními napětími - pozoruje se obrazec tmavých a světlých oblastí užití CCD senzoru 25
26 Senzory kroutícího momentu Moment síly: r - rameno síly z definice: M = Fr F - síla M = Ja = J 2 d Q 2 dt a - úhlové zrychlení J - moment setrvačnosti tělesa - výkon rotujícího tělesa: P = Mw w - úhlová rychlost 26
27 Nepřímá měření = určení momentu měřením příčin vzniku nebo účinků př. elektrické motory (podobně se dá postupovat u pneumatických a hydraulických akčních členů): M = ki i nevýhoda této metody nerespektují se ztráty během přenosu momentu k zátěži a b Účinky kroutícího momentu vhodné pro transdukci úhlové zrychlení gyroskopické senzory deformace reakční síly dynamometry mechanické napětí odporové tenzometry poloha, úhel indukčnostně kapacitně opticky piezoelektrický náboj monokrystal piezofilm (PVDF) magnetické vlastnosti reluktance magnetoanizotropie Wiedemanův jev 27
28 1. senzory s odporovými tenzometry - měří deformaci hřídele mezi motorem a zátěží nebo deformaci vloženého torzního pružného členu deformace: e = r 2GJ M G - modul pružnosti ve smyku Mechanická napětí při torzním namáhání 28
29 29
30 2. senzory s převodem momentu na úhel - měří se měna úhlu vyvolaná deformací - na hřídeli/vloženém pružném členu jsou ve vzdálenosti L umístěny značky (na indukčnostním a optickém principu) vztah pro moment: senzor kroutícího momentu s úhlovou deformací: M = L GJ Q -bezdotykové snímání polohy zubů: např senzory na principu Hallova jevu 30
31 změna magnetické reluktance 3. Magnetické senzory momentu - kroutící moment způsobí zvětšení štěrbin u jedné a zmenšení štěrbin u druhé řady, častěji změnu permeability 31
32 Přenos měronosného signálu momentu z rotující části - odporové tenzometry jsou nalepené na hřídeli nebo na pružném členu vloženém mezi stroj a zátěž - snaha o vyloučení rušení omezit počet sběrných kontaktů na 2 a na hřídel umístnit převodník R/I - speciální napájení transformátorovou vazbou - prstenec 2 převod výstup. u můstku na frekvenci pulsů 32
33 Rotating Torquemeters 33
34 Senzory tlaku - definice tlaku: p = df ds F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa 2 způsoby měření tlaku: p fi F fi pružný člen fi změna rozměrů přímý (intrinsický) senzor (v prostředích, kde působí smykové napětí, se tlakem označuje normálová složka) 34
35 typy tlaků: -nulový tlak vakuum -absolutní tlak tlak měřený od nuly -atmosférický tlak - absolutní statický tlak zemského (barometrický) ovzduší měřený u zemského povrchu -přetlak/podtlak rozdíly měřeného a barometrického tlaku -rozdílový (diferenční) tlak rozdíl hodnot 2 současně působících tlaků u proudících prostředí: -celkový tlak součet statického a dynamického tlaku -dynamický tlak fi p d = fi 2 v 2 r v Force (kn) Force plate Time (s) 35
36 Základní principy senzorů tlaku převod pfif převod Ffie přímý (intrinsický) převod e na náboj piezoelektrické magnetické vlastnosti (L,F) optické vlastnosti (OVS) elektrický odpor druh namáhání převod e na: tvar pružného členu: pružný člen ohyb tah, tlak smyk krut mechanické napětí: tenzometry rezonátory polohu: kapacitní indukční optické membrána trubka vlnovec, krabice nosník 36
37 1. Membránové tlakoměry s tenzometry - nejužívanější - deformace membrány: rozložení radiálního a tengenciálního napětí při tlakové deformaci s r = f r ( r / R) s t = f t ( r / R) kovová membrána: nalepené polovodičové tenzometry kovový foliový tenzometr tenzometr nanesen tlustovrstvou technologií 37
38 tenzometrická rozeta - ideální tenzometr (-folie) pro membrány - 2 senzory na kraji a 2 uprostřed 38
39 Membránový senzor s oddělovací kapalinou 39
40 2. Deformační senzory tlaku - trubicové Bourdonova trubice 40
41 3. Kapacitní senzory tlaku - kapacitor diferenční, - pružný člen = předpjatá kovová membrána (zároveň tvoří uzemněnou elektrodu), - pracovní rozsah: Dp = 1 mbar 10 bar, p až 400 bar diferenční kapacitor s oddělovací kapalinou 41
42 mikromechanický kapacitní senzor tlaku sklo elektrody p Si - kombinace křemíkové membrány a kapacitního senzoru - přesnější než křemíková membrána a polovodičovým tenzometrem - malá teplotní závislost 42
43 4. Piezoelektrický senzor tlaku konektor zesilovač - nutné mechanické předpětí krystalu - kompenzace vibrací - vhodný pro měření rychlých tlakových změn (např. ve válcích) kompenzace zrychlení křemenné výbrusy M membrána předpětí vývody elektrod 43
44 Resonanční senzor tlaku krycí vrstva rezonátor velmi nízká hystereze teplotní koeficient citlivosti 10 ppm/k přesnost pod 0,1 %. 44
45 Příklady tlakových senzorů (oddělovací kovová membrána) křemíková měřicí membrána, piezorezistory, (integrovaný zesilovač): PTX 120 Procesní tlakoměr: HART nebo proudová smyčka: Kapacitní STX 2100 Resonanční snímač double fork Cressto, Druck, Yokogawa, 45
46 46
47 Měření velmi nízkých tlaků princip LVDT SCHAEVITZ 47
48 Piezorezistivní senzor tlaku KELLER SPECIFICATIONS (at 4 ma excitation) Pressure Ranges (FS Linearity Stability Operating Temperature Range Storage Temperature Temperature-Coefficients of - Zero (without Comp.) - Sensitivity 1-20 bar 0,25 % FS typ. 1 % FS max. 0,5 mv typ. 2 mv max C (optionally) C 0,05 mv/k typ. 0,2 mv/k max. 0,01%/K typ. 0,02 %/K max. 48
49 EPROM s parametry senzoru obvod pulsní šířkové modulace teplotní senzor budič snímač rezonance Yokogawa DPharp 49
50 Integrovaný tlakový senzor Pure CMOS based sensor calibrated to automotive specifications 50
51 Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření - přímé: dávkovací senzory, čerpadla - nepřímé: měření rychlosti nebo kinetické energie 51
52 Senzory průtoku tekutin Rozdělení senzorů podle vztahů: a) objemové b) hmotnostní c) rychlostní Q V, t Q v = m = Q m = m t V r t Q = vs, Q v m = vsr 52
53 Senzory průtoku uzavřené kanály přímé nepřímé otevřené kanály přepady hráze objemové hmotnostní plováčkové rychlostní dávkovací Coriolisova tepelné síla turbínkové vírové indukční ultrazvukové značkovací škrtící orgány rotující píst ozubená kola bubnové U - trubice přímé gyroskop kalorimetrické anemometry 53
54 Rychlostní senzory průtoku Rotametr (plováčkový průtokoměr) Využití plováku jako indikátoru rovnováhy sil. L citlivost na viskozitu => tvarem plováčku lze potlačit až o dva řády 54
55 Rychlostní senzory průtoku Turbínkový průtokoměr linearita 0 1 % threshold 2 3 % rozsahu 55
56 Rychlostní senzory průtoku Turbínkové senzory Měří se frekvence impulsů f : f = KQv K konstanta senzoru Spodní mez správnosti: 3 5 % linearita: 0,1 % 56
57 Rychlostní senzory průtoku Senzor s lopatkovými koly 57
58 Rychlostní senzory průtoku 58
59 Rychlostní senzory průtoku Vírový senzor průtoku f = Sr a v Detekce vírů: tepelné anemometry ultrazvukové detektory tlakové detektory f frekvence vírů A charakt. rozměr překážky Sr Strouhalovo číslo (char. pro určité překážky) Přesnost ~ 1 % 59
60 Ultrazvukové průtokoměry Pulsní ultrazvukový průtokoměr je založen na skládání rychlosti kapaliny w a rychlosti šíření ultrazvuku. Měří se doba šíření pulsu od vysílače k přijímači. Přesnost závisí na délce dráhy. v = L Dt2 - D 1 t 2cosa Dt Dt 1 2 Δt 1 doba šíření od (V 2,P 2 ) k (V 1,P 1 ) Δt 2 doba šíření od (V 1,P 1 ) k (V 2,P 2 ) 60
61 Ultrazvukové průtokoměry a - = D a + = D cos ; cos v c L t v c L t a - a = - D D cos cos 2 v c v L t t ( ) cos 2 t t L c v D - D SME přednáška 10
62 Ultrazvukové průtokoměry TRANSMITTING ELEMENT RECEIVING ELEMENT FLOW DIRECTION REFLECTORS Tento typ využívá odrazu od bublin nebo rozptýlených pevných částic Dopplerovský ultrazvukový průtokoměr (tento je příložného typu) Pracuje v kontinuálním režimu (stojatá vlna). Podobně jako silniční radarový rychloměr měří dopplerovský posuv frekvence. 62
63 Rychlostní senzory průtoku Indukční průtokoměry U q vb = q E = q ; U = D D Bv Obvyklá přesnost: průtočný typ 0,2 %, ponorný typ 2 % 63
64 Indukční průtokoměry Konstrukce průchozího indukčního průtokoměru se sedlovými cívkami. 64
65 Senzory průtoku se škrticími orgány Měření tlakového spádu v místě škrticího orgánu 2 pd p1 - p2 Q v = ae 2 4 r Q v objem. průtok α expanzní součinitel ε průměr škrt.orgánu Přesnost 2 % (0,5 %) 65
66 Senzory s převodem průtoku na deformaci V cestě proudící kapaliny je destička, na kterou působí síla: F d = C d S r 2 2 v C d konstanta terčíku S plocha průřezu ρ hustota v rychlost Přesnost několik % J dobré dynamické vlastnosti - rezonanční frekvence až 200 Hz 66
67 Dávkovací senzory Badgermeter co. Dávkovací - senzor - čerpadlo 1 dm 3 /h 10 3 dm 3 /h 67
68 Značkovací senzory průtoku Značka - vodivostní (vstřik elektrolytu do tekutiny) - optická (vstřik barviva) - tepelná - ionizační (příměsi radioizotopu) Princip měření čas. intervalu mezi průchodem značky dvěma body ve směru proudění tekutiny Korelační metoda 68
69 Coriolisův průtokoměr Coriolisova síla F c je kolmá na osu otáčení a směr pohybu F C závisí na - rychlosti otáčení f (ot/s) - hmotnosti tělesa m (kg) - rychlosti pohybu tělesa w (m/s) F C = 2 m (w w) = 4p m w f 69
70 Coriolisův průtokoměr Dl D FC = 2vwD m= 2 wd m= 2QmwDl Dt Trubice s kapalinou tekoucí rychlostí w: jestliže se otáčí kolem osy z, působí na kapalinu Coriolisova síla F c F c je kolmá na osu otáčení a směr proudění a má tendenci ohýbat trubici 70
71 typ s rovnou trubicí Coriolisův průtokoměr Trubice je rozkmitávána magnetickou silou kolem osy w. F c vyvolá její zkroucení. Měří přímo hmotnostní průtok. Přesnost až 0,1 % z naměřené hodnoty (20 až 100 % rozsahu) Nezávislost na viskozitě, tlaku, teplotě SME přednáška
72 Tepelné senzory hmotnostního průtoku Výměna tepla mezi zdrojem a okolím (proudící tekutina) - měření ochlazení zdroje (termoanemometry) Měřicí obvod termoanemometru s konstantní teplotou drátku 72
73 Tepelné senzory hmotnostního průtoku Režimy činnosti termoanemometrů -konst. proud (změna rychlosti proudění => změna teploty => => změna odporu) -konst. teplota drátku (pokles v => menší ochlazení => => zmenšení napájecího proudu) Pro výstupní proud i platí: 2 i = a + b Q m a <= odvody tepla do okolí b <= fyzik. vlastnosti tekutiny 73
74 Tepelné senzory hmotnostního průtoku Diferenční termoanemometr Při v=0 platí R 1 =R 2 Při v>0 dochází k ochlazení R 1 a ohřátí R 2 (<= teplo z R H ) J zvýšená citlivost, vyloučení vlivu teploty tekutiny, vhodné pro malé průtoky (10-4 mm 3 s -1 ) SME přednáška 10
75 Senzory hladiny Senzory hladiny nespojité plovákové vibrační ultrazvuk tepelné optické vodivost kapacitní záření hmotnost síla tlak spojité elektromechanické ultrazvuk kapacitní zpožďovací vodivostní indukčnostní linka 75
76 Nespojité senzory hladiny 76
77 Vztlakové senzory hladiny Fz = m g - r 2 g S h - r1 g S ( l - h) = m g - h g S ( r 2 - r1) - r1 g S l senzor síly p 1, p 2 senzory tlaku F Z Tlakový senzor hladiny p2 - p1 = r2 g h x p 1 l h h X p 1 p 2 p 2 77
78 Kapacitní senzor hladiny V případě vodivých kapalin musí být střední tyčová elektroda (SE) opatřena izolační vrstvou. 78
79 Radarové hladinoměry: kontinuální režim s frekvenční modulací f 2 f T (t) Vysílaný signál f 1 T t f R (t) t Přijímaný signál s anténou s vlnovodem 79
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
Senzory síly a hmotnosti
Senzory síly a hmotnosti - princip využití fyzikálních účinků síly převod síla x deformace Newtonův zákon F (t) = ma speciální případ - tíhová síla G = mg převod tvar členu F ε přímý (intrinsický) vetknutý
Senzory síly a tlaku. Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti.
Senzory síly a tlaku Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. P. ipka, 2010 Senzory mechanického napětí - Hook: měření mechanického napětí v závislosti na deformaci - typy:
Senzory tlaku. df ds. p = F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa. - definice tlaku: 2 způsoby měření tlaku: změna rozměrů.
Senzory tlaku - definice tlaku: 2 způsoby měření tlaku: p = df ds F.. síla [N] S.. plocha [m 3 ] 1 atm = 100 kpa p F pružný člen změna rozměrů přímý (intrinsický) senzor senzor mechanického napětí (v prostředích,
1 SENZORY SÍLY, TLAKU A HMOTNOSTI
1 SENZORY SÍLY, TLAKU A HMOTNOSTI Senzory používající ve většině případů princip převodu síly, tlaku a tíhy na deformaci. Využívají fyzikálních účinků síly. Časově proměnná síla vyvolá zrychlení a hmotnosti
Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak.
Základní pojmy Definice tlaku: Síla působící kolmo na jednotku plochy F p= [Pa, N, m S 2 ] p Přetlak tlaková diference atmosférický tlak absolutní tlak Podtlak absolutní nula t 2 ozdělení tlakoměrů Podle
O ptoelektronické senzory polohy 75
O bsah Str. 1. ÚVOD (M. Kreitll) 13 1.1. Senzor 13 1.2. Technologie výroby senzorů 14 1.3. M ěřicí řetězec 14 1.4. Inteligentní senzor 16 1.5. Technické p aram etry senzorů 17 1.5.1. Statické vlastnosti
9. ČIDLA A PŘEVODNÍKY
Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2012/2013 8.8 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření
Vzorkovací zesilovač základní princip všech digitálních osciloskopů, záznamníků, převodníků,
5. října 2015 1 TYPY SIGNÁLŮ Vzorkovací zesilovač základní princip všech digitálních osciloskopů, záznamníků, převodníků, http://www.tek.com/products/oscilloscopes/dpo4000/ 5. října 2015 2 II. ÚPRAVA SIGNÁLŮ
Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot
Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah
Měřicí princip hmotnostních průtokoměrů
Měřicí princip hmotnostních průtokoměrů 30.7.2006 Petr Komp 1 Úvod Department once on the title page Co to je hmotnostní průtokoměr? Proč měřit hmotnostní průtok? Měření hmotnostního průtoku s využitím
Kapacitní senzory. ε r2. Změna kapacity důsledkem změny X. b) c) ε r1. a) aktivní plochy elektrod. b)vzdálenosti elektrod
Kapacitní senzory a) b) c) ε r1 Změna kapacity důsledkem změny a) aktivní plochy elektrod d) ε r2 ε r1 e) ε r2 b)vzdálenosti elektrod c)plochy dvou dielektrik s různou permitivitou d) tloušťky dvou dielektrik
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače
9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM
9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: 1. Změřte převodní charakteristiku deformačního snímače síly v rozsahu 0 10 kg 1. 2. Určete hmotnost neznámého závaží. 3. Ověřte, zda lze měření zpřesnit
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření rychlosti a rychlosti
TENZOMETRY tenzometr Použití tenzometrie Popis tenzometru a druhy odporovými polovodičovými
TENZOMETRY V současnosti obvyklý elektrický tenzometr je pasivní elektrotechnická součástka používaná k nepřímému měření mechanického napětí na povrchu součásti prostřednictvím měření její deformace. Souvislost
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
Generátorové senzory. Termoelektrický článek Piezoelektrické senzory Indukční senzory
Generátorové senzory Termoelektrický článek Piezoelektrické senzory Indukční senzory Obecné vlastnosti termoelektrických článků využívá Seebeckova efektu vodivé spojení dvou různých vodivých materiálů
elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech
Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se
6. Měření veličin v mechanice tuhých a poddajných látek
6. Měření veličin v mechanice tuhých a poddajných látek Pro účely měření mechanických veličin (síla, tlak, mechanický moment, změna polohy, rychlost změny polohy, amplituda, frekvence a zrychlení mechanických
ROZDĚLENÍ PODLE VELIKOSTI
MĚŘENÍ TLAKU 1 ROZDĚLENÍ TLAKU p = ROZDĚLENÍ PODLE VELIKOSTI : Podtlak Přetlak tlak určitého prostředí proti normálnímu atmosférickému okolí ROZDĚLENÍ PODLE CHARAKTERU : Atmosférický tlak = Tlak barometrický
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
SNÍMAČE PRO MĚŘENÍ DEFORMACE
SNÍMAČE PRO MĚŘENÍ DEFORMACE 8.1. Odporové tenzometry 8.2. Optické tenzometry 8.3. Bezkontaktní optické metody 8.1. ODOPROVÉ TENZOMETRY 8.1.1. Princip měření deformace 8.1.2. Kovové tenzometry 8.1.3. Polovodičové
7. Měření lineární a úhlové polohy. Optoelektronické a ultrazvukové senzory
7. Měření lineární a úhlové polohy. Optoelektronické a ultrazvukové senzory Prof. Pavel Ripka Katedra měření ČVUT v Praze, FEL Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 2014 A3B38SME
Vzorkovací zesilovač základní princip všech digitálních osciloskopů, záznamníků, převodníků,
5. října 2015 1 TYPY SIGNÁLŮ Vzorkovací zesilovač základní princip všech digitálních osciloskopů, záznamníků, převodníků, http://www.tek.com/products/oscilloscopes/dpo4000/ 5. října 2015 2 II. ÚPRAVA SIGNÁLŮ
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Senzorika a senzorické soustavy
Senzorika a senzorické soustavy Snímače mechanických napětí, síly, kroutícího momentu a hmotnosti Tato publikace vznikla jako součást projektu CZ.04.1.03/3.2.15.2/0285 Inovace VŠ oborů strojního zaměření,
Vírový průtokoměr Optiswirl 4070 C Měřicí princip Petr Komp,
Vírový průtokoměr Optiswirl 4070 C Měřicí princip Petr Komp, 17.10. 2009 1 Úvod Víry vznikají při obtékání těles Kurilské ostrovy v oceánu 2 Vlajka ve větru 3 Schéma vírové stezky 4 Vysvětlení mechanismu
e, přičemž R Pro termistor, který máte k dispozici, platí rovnice
Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu
Obsah. Předmluva 7. 1 Úvod 9. 2 Rozdělení prostředků a vlastnosti médií 19. 3 Prostředky pro získávání informace 33
Obsah Předmluva 7 1 Úvod 9 1.1 Základní pojmy automatizační techniky 9 1.2 Klasifikace regulačních obvodů 14 2 Rozdělení prostředků a vlastnosti médií 19 2.1 Rozdělení prostředků 19 2.2 Statické vlastnosti
9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM
9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM Úkoly měření: A) Měření převodní charakteristiky snímače typu S 1. Změřte převodní charakteristiku deformačního snímače síly při zatížení v rozsahu 0 10 kg v zapojení
PARAMETRY MĚŘENÉ NA DVOUPROUDÉM MOTORU
PARAMETRY MĚŘENÉ NA DVOUPROUDÉM MOTORU EPR vstup NACT OLEJ OP,OT, OQ FF/ FU FP PALIVO EGT EPR výstup Obr.1 NK - nízkotlaký kompresor, VK - vysokotlaký kompresor, VT - vysokotlaká turbina, NT - nízkotlaká
Mikrosenzory a mikroelektromechanické systémy. Odporové senzory
Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové
Vážicí technologie. Tenzometrické snímače zatížení. Thomas Hesse Thomas.hesse@hbm.com. www.hbm.com
Vážicí technologie Tenzometrické snímače zatížení Thomas Hesse Thomas.hesse@hbm.com www.hbm.com Referenční kilogramové závaží 31.07.09, Slide 2 Hottinger Baldwin Messtechnik GmbH Thomas Hesse Co je to
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
snímače využívají trvalé nebo pružné deformace měřicích členů
MĚŘENÍ SÍLY snímače využívají trvalé nebo pružné deformace měřicích členů a) Měřiče s trvalou deformací měřicích členů Jsou málo přesné Proto se používají především pro orientační měření tvářecích sil,
Obr. 3.1 K principu odporových tenzometrů. = ρ. l l. l l
1. SENZORY MECHANICKÉHO NAPĚTÍ A SÍLY 1.1 SENZORY MECHANICKÉHO NAPĚTÍ (TENZOMETRY) Přímé měření mechanického napětí není prakticky možné jinak, než využitím jeho závislosti na deformaci, jak v r. 1678
Měření a automatizace
Měření a automatizace Číslicové měřící přístroje - princip činnosti - metody převodu napětí na číslo - chyby číslicových měřících přístrojů Základní pojmy v automatizaci - řízení, ovládání, regulace -
7b. Tlakové senzory II piezoelektrické kapacitní pn přechod s Hallovým senzorem optické. 1. Piezoelektrické tlakové senzory. Tlakové senzory II
POLOVODIČOVÉ TLAKOVÉ SENZORY Přednášející: 7b. Tlakové senzory II piezoelektrické kapacitní pn přechod s Hallovým senzorem optické Prof. Ing. Miroslav Husák, CSc. husak@fel.cvut.cz tel.: 2 2435 2267 http://micro.feld.cvut.cz
Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování
Měření neelektrických veličin Fakulta strojního inženýrství VUT v Brně Ústav konstruování Obsah Struktura měřicího řetězce Senzory Technické parametry senzorů Obrazová příloha Měření neelektrických veličin
Prezentace Siemens PD PA PI Procesní instrumentace Siemens, s.r.o Všechna práva vyhrazena.
Prezentace Siemens PD PA PI Procesní instrumentace 2017 siemens.cz/pi SITRANS - přehled procesní instrumentace SIEMENS Měření průtoku Pozicionéry elektromagnetické hmotnostní ultrazvukové příložné ultrazvukové
8. Senzory a převodníky pro měření otáček, rychlosti a zrychlení. Měření vibrací.
8. Senzory a převodníky pro měření otáček, rychlosti a zrychlení. Měření vibrací. přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček:
9. MĚŘENÍ SÍLY TENZOMETRICKÝM MŮSTKEM
9. MĚŘENÍ SÍLY TENZOMETICKÝM MŮSTKEM Úvod: Tenzometry se používají např. pro: Měření deformací objektů. Měření síly, tlaku, krouticího momentu, momentu síly, mechanického napětí spojů. Měření zatížení
PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.
1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A
Anemometrie - žhavené senzory
Anemometrie - žhavené senzory Fyzikální princip metody Metoda je založena na ochlazování žhaveného senzoru proudícím médiem. Teplota senzoru: 50 300 C Ochlazování závisí na: Vlastnostech senzoru Fyzikálních
Výhody/Použití. Neomezená mez únavy při ± 100% jmenovitého zatížení. Nanejvýš odolný vůči příčným silám a ohybovým momentům
Datový list Snímač síly Série RF-I (160 kn 4000 kn) Výhody/Použití Třída přesnosti 0,05 Pro statické i dynamické síly v tahu a tlaku Neomezená mez únavy při ± 100% jmenovitého zatížení Obzvláště odolný
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření hladiny 2 P-10b-hl ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Hladinoměry Principy, vlastnosti, použití Jedním ze základních
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
SNÍMAČE. - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení).
SNÍMAČE - čidla, senzory snímají měří skutečnou hodnotu regulované veličiny (dávají informace o stavu technického zařízení). Rozdělení snímačů přímé- snímaná veličina je i na výstupu snímače nepřímé -
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
7. Měření výšky hladiny
7. Měření výšky hladiny Při měření výšky hladiny se jedná o určení polohy rozhraní kapaliny a plynnou látkou (voda - vzduch), mezi dvěma nemísitelnými kapalinami, nebo o signalizaci hladiny sypkých látek.
EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA 4. KAPITOLY Úvod do problematiky měření tlaků Kapalinové tlakoměry
Václav Uruba, Ústav termomechaniky AV ČR. Vzduch lze považovat za ideální Všechny ostatní fyzikální veličiny jsou funkcí P a T: T K ms
Měření tlaků Václav Uruba, Ústav termomechaniky AV ČR Stavové veličiny určující stav plynu: Tlak p Teplota T Pro ideální plyn stavová rovnice: PV = RT Vzduch lze považovat za ideální Všechny ostatní fyzikální
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce)
Kovove a) Snimače prilozne (obr) dratkove (navinuty drat) foliove (kovova folie na podlozce) b) Snimace lepene dratkove (navinuty drat na podlozce) foliove (kovova folie na podlozce) Ad a) Odporove dratky
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
Zapojení odporových tenzometrů
Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní
Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013
1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného
Základní pojmy a jednotky
Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar
7. Měření lineární a úhlové polohy. Optoelektronické a ultrazvukové senzory
7. Měření lineární a úhlové polohy. Optoelektronické a ultrazvukové senzory přednášky A3B38SME Senzory a měření zdroje převzatých obrázků: pokud není uvedeno jinak, zdrojem je monografie Haasz, Sedláček:
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
D a t o v ý l i s t. S n í m ač síly. S é r i e K. ( 4 k N k N ) Výhody/Použití. Varianty. Pro statické i dynamické síly v tahu a tlaku
D a t o v ý l i s t S n í m ač síly S é r i e K ( k N 6 3 0 k N ) Výhody/Použití Pro statické i dynamické síly v tahu a tlaku Hermeticky těsný Necitlivý vůči změně působení síly Neomezená mez únavy při
Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace
Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné
Rychlostní a objemové snímače průtoku tekutin
Rychlostní a objemové snímače průtoku tekutin Rychlostní snímače průtoku Rychlostní snímače průtoku vyhodnocují průtok nepřímo měřením střední rychlosti proudu tekutiny v STŘ. Ta závisí vzhledem k rychlostnímu
EXPERIMENTÁLNÍ MECHANIKA 2
EXPERIMENTÁLNÍ MECHANIKA 2 2. přednáška Jan Krystek 28. února 2018 EXPERIMENTÁLNÍ MECHANIKA Experiment slouží k tomu, abychom pomocí experimentální metody vyšetřili systém veličin nutných k řešení problému.
Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole
Akustické přijímače Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole jeho součástí je elektromechanický měnič Při přeměně kmitů plynu = mikrofon Při přeměně
EXPERIMENTÁLNÍ METODY I 6. Měření rychlostí proudění
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 6. Měření rychlostí proudění OSNOVA 6. KAPITOLY Úvod do měření rychlosti
DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN
DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN y y g v H y x x v vodorovná rovina H z z z x g vodorovná rovina vztažné úrovně Z J V S z g MĚŘENÍ VÝŠKY LETU DEFINICE VÝŠEK METODY MĚŘENÍ VÝŠEKY
Technická diagnostika, chyby měření
Technická diagnostika, chyby měření Obsah přednášky Technická diagnostika Měřicí řetězec Typy chyb měření Příklad diagnostiky: termovize ložisko 95 C měření 2/21 Co to je? Technická diagnostika Obdoba
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
Přehled měřicích přístrojů vyráběných firmou KROHNE Plováčkové průtokoměry jsou použitelné pro kapaliny a plyny. Mají skleněný, keramický nebo kovový měřicí kónus (příp. s výstelkou z PTFE), mohou být
Vakuová fyzika 1 1 / 40
Měření tlaku Měření celkových tlaků Měření parciálních tlaků Rozdělení měřících metod Vakuová fyzika 1 1 / 40 Absolutní metody - hodnota tlaku je určena přímo z údaje měřícího přístroje, nebo výpočtem
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
Testové otázky za 2 body
Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
LMK 351. LMK 351 Vestavná sonda
LMK 5 Výhody kapacitní keramický senzor bez olejové náplně s vysokou odolností proti agresivním médiím jako jsou kyseliny a louhy nízká teplotní chyba dlouhodobá stabilita provedení Ex: (nerezová tlaková
Kontaktní měření deformací
Kontaktní měření deformací Druhy tenzometrických snímačů rozdělení podle principu Mechanické Elektrické (odporové, induktivní, kapacitní) Optické (fotoelasticimetrie, moaré, ESPI, optická vlákna) Další
Výhody/Použití. Neomezená mez únavy při ± 80% jmenovitého zatížení. Jednoduchá montáž, rozličné způsoby připojení
D a t o v ý l i s t S n í m ač momentu síly S é r i e M ( 2 N m 1 0 0 0 0 N m ) Výhody/Použití Pro statické i dynamické momenty Nerezavějící provedení Neomezená mez únavy při ± 80% jmenovitého zatížení
11/18/2012. Snímače ve VPM. Snímače ve VPM obsah prezentace. Snímače ve VPM. Konstrukce polovodičových měničů
Snímače ve VPM Konstrukce polovodičových měničů Snímače ve VPM obsah prezentace Vlastnosti snímačů s Hallovým generátorem Proudová čidla smínač s Hallovým generátorem s otevřenou smyčkou smínač s Hallovým
VŠB-TU Ostrava 2006/2007. Měřící a senzorová technika Návrh měřícího řetězce. Ondřej Winkler
VŠB-TU Ostrava 2006/2007 Měřící a senzorová technika Návrh měřícího řetězce Ondřej Winkler SN171 Zadání: Navrhněte měřicí řetězec měření deformace zajišťující zjištění modulu pružnosti kompozitního materiálu.
LMP 307 LMP 307. Nerezová ponorná sonda pro měření výšky hladiny
pro měření výšky hladiny Polovodičový tenzometr s nerezovou oddělovací membránou průměr 27 mm měření výšky hladiny vody a čistých nebo lehce znečištěných kapalin jmenovité rozsahy od 0... 1 mh 2 O do 0...
8. TLAKOMĚRY. Úkol měření. Popis přípravků a přístrojů
Úkol měření 8. TLAKOMĚRY 1. Ověřte funkci diferenčního kapacitního tlakoměru pro měření malých tlakových rozdílů. 2. Změřte závislost obou kapacit na tlakovém rozdílu.. Údaje porovnejte s průmyslovým diferenčním
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Výhody/Použití. Pro statické i dynamické síly v tahu a tlaku. Jednoduchá montáž, rozličné způsoby připojení. Druhý záložní měřící můstek
D a t o v ý l i s t S n í m ač síly S é r i e R F ( 2 5 k N 0 M N ) Výhody/Použití Pro statické i dynamické síly v tahu a tlaku Obzvláště odolný při přetížení Neomezená mez únavy při ± 80% jmenovitého
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
Předmět: FYZIKA Ročník: 6.
Ročník: 6. Látky a tělesa - uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí - na konkrétním příkladu rozezná těleso a látku, určí skupenství
MATURITNÍ TÉMATA Z FYZIKY
MATURITNÍ TÉMATA Z FYZIKY Školní rok 2016 / 2017 Struktura zkoušky: příprava ke zkoušce trvá 15 minut; ústní zkouška trvá 15 minut - její součástí je i řešení fyzikálních úloh Pomůcky: Matematické, fyzikální
Elektronický tlakový spínač s procesním připojením. - Heslo - Paměť maximální a minimální hodnoty Na přání polní pouzdro s průhledem displeje
s procesním připojením Polovodičový tenzometr Různá procesní připojení Pro potravinářský, chemický a farmaceutický průmysl Teplota média do 00 C Jmenovité rozsahy od 0... 00 mbar do 0... 0 bar DS 00 P
Hmotnostní měření malých průtoků tekutin v uzavřených kanálech
Hmotnostní měření malých průtoků tekutin v uzavřených kanálech Adámek, Milan 1 & Vavruša, Svatomír 2 1 Mgr., Ústav automatizace, FT-Zlín, VUT Brno, nám. T.G.M. 275, 762 72 Zlín adamek@zlin.vutbr.cz, http://ft3.zlin.vutbr.cz/adamek/home.htm
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace snímače princip 2 P-s3.(5) ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Pokračování o dalších principech snímačů Princip těchto čidel