Systémy pro podporu rozhodování. Modelování a analýza
|
|
- Jakub Marek
- před 9 lety
- Počet zobrazení:
Transkript
1 Systémy pro podporu rozhodování Modelování a analýza 1
2 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí, personální) Sběr dat a související problémy Internet a komerční databázové služby Systémy pro řízení databází v DSS Organizace a struktura databází Datové sklady 2
3 Připomenutí obsahu minulé přednášky Architektury datových skladů Složky datových skladů Charakterizace datového skladování Vizualizace dat a multidimenzionalita OLAP: Přístup k datům, dolování, dotazování a analýza Data mining - dolování v datech Inteligentní databáze a dolování v datech Nástroje pro inteligentní dolování v datech 3
4 5. Modelování a analýza 5.1 Motivační příklad 5.2 Modelování v MSS 5.3 Statické a dynamické modely 5.4 Zpracování nejistoty a rizika 5.5 Influenční diagramy 5.6 Použití tabulkových procesorů 5.7 Rozhodovací tabulky a stromy 5.8 Finanční a plánovací modelování 5.9 Vizuální modelování a simulace 5.10 Programy pro kvantitativní výpočty 5.11 Řízení báze modelů 5.12 Shrnutí problematiky 4
5 5.1 Motivační příklad Siemens Solar Industries (SSI) uspořil miliony pomocí simulace: Problémy s kvalitou a plynulostí výroby Rozhodnutí zavést technologii zvlášť čistých prostor poprvé v solárním průmyslu, ale žádné předběžné zkušenosti Použití simulace - nástroj ProModel (virtuální laboratoř, testování různých konfigurací) Hlavní přínosy: získání znalostí a pochopení souvislostí, možnost komplexního návrhu Zdokonalení výrobního procesu SSI ušetřila více než 75 milionů dolarů ročně 5
6 5.2 Modelování v MSS Modelování šetří peníze, čas a další zdroje Na modelu lze snadno provádět změny Modelování je klíčovým prvkem ve většině DSS a je nutností v modelově orientovaných DSS Simulace je oblíbený způsob modelování, ale existují i jiné přístupy: 6
7 Typy modelů Statistické modely (např. regresní analýza - relace mezi proměnnými) Finanční modely (např. systémy pro finanční plánování) Optimalizační modely (např. lineární programování) DSS může být vystavěn na použití kombinace více modelů, standardních i vytvořených na zakázku Vhodný poměr mezi jednoduchostí a reprezentativností modelu 7
8 Modely podle stupně abstrakce Ikonické (měřítkové) modely nejméně abstraktní, fyzikální kopie systému, obvykle v jiném měřítku (modely letadel, automobilů, fotografie, GUI) Analogické modely nevypadají jako modelovaný systém, ale chovají se stejně; jsou více abstraktní (organizační tabulky a grafy, mapy, schémata) Matematické (kvantitativní) modely nejvíce abstraktní, nejčastější typ u DSS 8
9 Hlavní východiska a pojmy modelování Identifikace problému Analýza prostředí Identifikace proměnných Prognostika (předpovídání) Vícenásobné modely Kategorie modelů a jejich výběr Řízení báze modelů Znalostní modelování 9
10 Identifikace problému a analýza prostředí Identifikace cílů a požadavků a zjištění, jak jsou naplňovány Problém = rozdíl mezi požadovaným a skutečným stavem Stanovení, jaký problém existuje, jaké má symptomy a jak jsou tyto symptomy výrazné Symptomy mohou být považovány za problém Zjišťování existence problému u organizace se provádí monitorováním činnosti a analýzou dat 10
11 Identifikace proměnných Identifikace proměnných v modelu a vzájemných vazeb mezi nimi je velmi důležitou fází procesu modelování Užitečné mohou být např. influenční diagramy (viz dále) 11
12 Prognostika (předpovídání) Pro konstrukci a manipulaci s modelem nezbytná - výsledky rozhodování založené na modelování se zpravidla týkají budoucnosti 12
13 Vícenásobné modely DSS mohou obsahovat řadu modelů (pro různé subproblémy rozhodovacího problému) Některé jsou standardní, vestavěné ve vývojových nástrojích Některé jsou standardní, samostatný sw Nestandardní je třeba vytvořit 13
14 Kategorie modelů Optimalizace problému s několika alternativami: Cíl: najít nejlepší řešení z malého počtu alternativ Příklad metody: rozhodovací tabulky, rozhodovací stromy Optimalizace pomocí algoritmu: Cíl: najít nejlepší řešení z velkého až nekonečného počtu alternativ použitím procesu postupného zlepšování Příklad metody: modely matematického programování (lineární, apod.), síťové modely 14
15 Kategorie modelů Optimalizace pomocí analytické formule: Cíl: najít nejlepší řešení v jediném kroku, použitím formule Příklad metody: některé modely zásob Simulace: Cíl: najít dostatečně dobré řešení, nebo nejlepší řešení mezi testovanými alternativami použitím experimentů Příklad metody: různé typy simulace Heuristiky: Cíl: najít dostatečně dobré řešení použitím pravidel Příklad metody: heuristické programování, expertní systémy 15
16 Kategorie modelů Prediktivní modely: Cíl: předpověď budoucího vývoje daného scénáře Příklad metody: Markovova analýza Jiné modely: Cíl: analýza what-if použitím formule Příklad metody: finanční modelování 16
17 Řízení báze modelů Pro udržení integrity a využitelnosti Sw pro řízení báze modelů (viz dále) 17
18 Znalostní modelování DSS zpravidla používají kvantitativní modely Expertní systémy používají kvalitativní, znalostní modely Pro konstrukci použitelných modelů jsou zapotřebí určité znalosti 18
19 5.3 Statické a dynamické modely Statická analýza Na základě statického průřezu analyzovanou situací Např. rozhodnutí zda vyrobit či koupit nějaký produkt Dynamická analýza Dynamické modely Vyhodnocení scénářů závislých na čase Ukazují trendy a časové průběhy událostí Statické modely lze mnohdy rozšířit na dynamické 19
20 5.4 Zpracování nejistoty a rizika Modelování za jistoty Nejistota (neurčitost) Riziko 20
21 Modelování za jistoty Máme ho rádi Lehce se s ním pracuje a dává optimální výsledky Mnoho finančních modelů je konstruováno za předpokladů jistoty Speciální zájem si zasluhují problémy, které mají nekonečný (nebo mimořádně vysoký) počet možných řešení 21
22 Modelování za nejistoty Manažeři se snaží maximálně eliminovat nejistotu Snaží se získat co nejvíce dodatečných informací, aby bylo možné problém řešit buďto za jistoty, nebo s kalkulovaným rizikem Nelze-li získat více informací, s problémem je nutno zacházet jako s neurčitým 22
23 Modelování za rizika Většina manažerských rozhodnutí je za předpokladu jistého rizika Pro analýzu rizika je k dispozici několik technik, např.: rozhodovací tabulky rozhodovací stromy simulace faktory neurčitosti fuzzy logika 23
24 5.5 Influenční diagramy Grafická reprezentace modelu, která pomáhá při návrhu modelu, při jeho dalším zpracování a jeho pochopení Poskytuje prostředek vizuální komunikace pro řešitelský tým Slouží také jako rámec pro vyjádření vztahů v modelu INFLUENCE = vyjádření závislosti mezi proměnnými v modelu 24
25 Konvence Grafické znázornění Bloky (rozhodovací, neřízené a výsledné proměnné) Spojky (směr a typ působení) Tvary bloků a spojek Libovolná úroveň podrobností 25
26 Příklad - model Zisk (Smith, 1995) Profit = Income Expenses Income = Units sold x Unit price Units sold = 0,5 x Amount used in advertisement Expenses = Unit cost x Unit sold + Fixed costs 26
27 Influenční diagram modelu Zisk Fixed cost Expenses Unit cost Profit ~ Amount used in advertisement Units sold Income Unit price
28 Softwarové řešení Analytica DPL DS Lab INDIA NETICA Precision Tree... Standardní grafické a CASE (Computer-aided software engineering) programové balíky 28
29 5.6 Použití tabulkových procesorů Tabulkové procesory: nejpopulárnější nástroj modelování určený pro koncové uživatele Obsahuje mocné funkce finanční, statistické, matematické, logické, pro práci s časem, pro zpracování řetězců, apod. Možnost použití externích přídavných (add-in) funkcí a tzv. řešitelů pro optimalizaci Důležité pro analýzu, plánování, modelování Jsou programovatelné (využití maker) Jednoduché prvky pro řízení databází 29
30 5.7 Rozhodovací tabulky a stromy Analýza problému pro rozhodování při malém počtu alternativ Očekávané příspěvky alternativ a jejich pravděpodobnost vzhledem k cíli Řešení situací s jediným cílem Rozhodovací tabulky Rozhodovací stromy 30
31 Rozhodovací tabulky Příklad investic Jediný cíl: Maximalizovat výnos po jednom roce = vybrat nejlepší investiční alternativu Výnos závisí na stavu ekonomiky: Růst Stagnace Inflace 31
32 Rozhodovací tabulky 1. Je-li ekonomický růst, obligace se zhodnotí o 12%; akcie o 15% a termínované vklady o 6,5% 2. Převládá-li ekonomická stagnace, obligace se zhodnocují o 6%, akcie o 3% a termínované vklady opět o 6,5% 3. Převládá-li inflace, obligace vzrostou o 3%, akcie přinesou ztrátu 2% a termínované vklady dají znovu 6,5% výnos 32
33 Rozhodovací tabulky ~ hra dvou hráčů: investor příroda Rozhodovací tabulka - tabulka výplat (viz snímek 34) Rozhodovací proměnné (alternativy) Neřízené proměnné (stav ekonomiky) Výslední proměnná (předpokládaný výnos) 33
34 Rozhodovací tabulka pro problém investic Stav ekonomiky Alternativy Růst Stagnace Inflace Obligace Akcie 12,0% 6,0% 3,0% 15,0% 3,0% -2,0% Termínovaný vklad 6,5% 6,5% 6,5%
35 Práce s neurčitostí Optimistický přístup Uvažujeme nejlepší možný výsledek nejlepší alternativy (= akcie) Pesimistický přístup Uvažujeme nejlepší z nejhorších výsledků jednotlivých alternativ (= termínované vklady) 35
36 Zvládnutí rizika Použití známých (odhadovaných) pravděpodobností (Snímek 37) Analýza rizika: Výpočet očekávaných hodnot a výběr alternativy s nejlepším výsledkem Může být nebezpečné - i mizivá pravděpodobnost katastrofické ztráty může mít podstatný vliv na očekávanou hodnotu 36
37 Řešení rozhodování za rizika Růst Stagnace Inflace Alternativy 0,5 0,3 0,2 Očekávaná hodnota Obligace 12,% 6,0% 3,0% 8,4% Akcie 15,0% 3,0% -2,0% 8,0% Termínovaný vklad 6,5% 6,5% 6,5% 6,5%
38 Rozhodovací stromy Jiné metody analýzy rizika Simulace Faktory jistoty Fuzzy logika Vícenásobné cíle Snímek 39: Výnos, jistota, likvidita Uvažování nejistoty a rizika AHP (Analytic Hierarchy Process) 38
39 Výnos vs. jistota vs. likvidita Alternativy Výnos Jistota Likvidita Obligace 8,4% Vysoká Vysoká Akcie 8,0% Nízká Vysoká (?) Termínovaný vklad 6,5% Velmi vysoká Vysoká
40 5.8 Finanční a plánovací modelování Specielní nástroje pro rychlé, účinné a výkonné budování dobře využitelných DSS Modely jsou algebraicky orientované 40
41 Definice a pozadí plánovacího modelování Programovací jazyky 4. generace Modely jsou vytvořeny použitím syntaxe blízké přirozenému jazyku (angličtině) Dokumentace je součástí modelů Kroky modelů jsou neprocedurální Příklady Visual IFPS / Plus ENCORE Plus! SORITEC Některé jsou vnořené do nástrojů EIS a OLAP 41
42 Typické aplikace plánovacích modelů Finanční prognózy Plánování lidských zdrojů Kapitálové rozpočty Daňové plánování Rozvrhování výroby Rozhodování mezi leasingem a koupí Plánování zisku Investiční analýza atd. 42
43 5.9 Vizuální modelování a simulace Vizuální interaktivní modelování (VIM) Jiné názvy: Vizuální interaktivní řešení problémů Vizuální interaktivní modelování Vizuální interaktivní simulace Použití počítačové grafiky ke zviditelnění vlivu různých manažerských rozhodnutí Uživatelé provádějí analýzu citlivosti Statické nebo dynamické (animační) systémy 43
44 Vizuální interaktivní simulace (VIS) Tvůrce rozhodnutí je v interakci se simulačním modelem a sleduje změnu výsledků v čase Uživatel se může dozvědět mnohé o svých prioritách Vizuální interaktivní modely a DSS VIM (Vizuální interaktivní modelování) Aplikace teorie front Extrémní simulátory Virtuální realita 44
45 5.10 Programy pro kvantitativní výpočty Předem naprogramované modely mohou ušetřit čas konstruktérům DSS Některé modely lze použít jako stavební kameny pro jiné kvantitativní modely Balíky statistických programů Balíky optimalizačních programů Finanční modelování Jiné předem připravené aplikace Také přídavné moduly k tabulkovým procesorům (add-ins) 45
46 Representative Ready-made Specific DSS Name of Package AutoMod, AutoSched Budgeting & Reporting FACTOR/AIM PACKAGING MedModel, ServiceModel OIS OptiPlan Professional, OptiCaps, OptiCalc Vendor AutoSimulations Bountiful, UT Helmsman Group, Inc. Plainsboro, NJ Pritsker Corp. Indianapolis, IN ProModel Corp. Orem, UT Olsen & Associates Ltd. Zürich, Switzerland Advanced Planning Systems, Inc. Alpharetta, GA Description 3 D walk-through animations for manufacturing and material handling; Manufacturing scheduling Financial data warehousing Manufacturing simulator with costing capabilities, High speed/high volume food and beverage industry simulator Healthcare simulation, Service industry simulation Directional forecasts, trading models, risk management Supply chain planning
47 PLANNING WORKBENCH StatPac Gold TRAPEZE TruckStops, OptiSite, BUSTOPS Proasis Ltd. Chislehurst, Kent, England Stat Pac Inc. Edina, MN Trapeze Software Group Mississauga, ON MicroAnalytics, Inc. Arlington, VA Graphically-based planning system for the process industry Survey analysis package Planning, scheduling and operations Distribution management and transportation
48 5.11 Řízení báze modelů SŘBM: vlastnosti podobné vlastnostem SŘBD (?) Bohužel však neexistují všeobecně použitelné systémy pro řízení báze modelů (na rozdíl od SŘBD) Každá organizace má svůj způsob používání modelů Existuje mnoho tříd modelů na rozdíl od databázových struktur Některé vlastnosti SŘBM vyžadují expertízu a odvozování - lákavý problém pro umělou inteligenci... 48
49 Požadované vlastnosti SŘBM Řízení (plně automatické i ruční) Flexibilita (změna přístupu k problému v průběhu modelování) Odezva (zpětná vazba systém - uživatel) Rozhraní (uživatelsky příjemné) Redukce redundance Vysoká konzistence (sjednocení používaných verzí modelů) 49
50 Systém řízení báze modelů musí uživateli poskytovat Přístup k existujícím modelům a možnost jejich výběru Zkoumání a manipulaci s existujícími modely Uchovávání modelů Údržbu modelů Konstrukci nových modelů s vynaložením rozumného úsilí 50
51 5.12 Shrnutí problematiky Modely mají podstatnou roli v DSS Modely mohou být statické nebo dynamické Analýza se děje za předpokládané jistoty, rizika nebo nejistoty Influenční diagramy Tabulkové procesory Rozhodovací tabulky a rozhodovací stromy Optimalizační nástroj: matematické programování 51
52 Shrnutí (pokračování ) Lineární programování Heuristické programování Simulace může pracovat se složitějšími situacemi Expert Choice Metody předpovídání Multidimenzionální modelování 52
53 Shrnutí (dokončení) Vestavěné kvantitativní modely (finanční, statistické) Speciální jazyky finančního modelování Visuální interaktivní modelování Visuální interaktivní simulace (VIS) Modelování v tabulkových procesorech SŘBM jsou podobné SŘDB Použití metod UI v SŘBM 53
Systémy pro podporu rozhodování. Modelování a analýza
Systémy pro podporu rozhodování Modelování a analýza 1 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí,
Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování
1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová
Systémy pro podporu rozhodování. Hlubší pohled 2
Systémy pro podporu rozhodování Hlubší pohled 2 1 Připomenutí obsahu minulé přednášky Motivační příklad Konfigurace DSS Co to je DSS? definice Charakterizace a možnosti DSS Komponenty DSS Subsystém datového
Infor APS (Scheduling) Tomáš Hanáček
Infor APS (Scheduling) Tomáš Hanáček Klasické plánovací metody a jejich omezení MRP, MRPII, CRP Rychlost Delší plánovací cyklus Omezená reakce na změny Omezené možnosti simulace Funkčnost Nedokonalé zohlednění
Obsah. iii 1. ÚVOD 1 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY RIZIKA 5
Obsah 1. ÚVOD 1 1.1 ÚVOD 1 1.2 PROČ JE ŘÍZENÍ RIZIK DŮLEŽITÉ 1 1.3 OBECNÁ DEFINICE ŘÍZENÍ RIZIK 2 1.4 PŮVOD VZNIKU A STRUKTURA 3 1.5 ZÁMĚR 3 1.6 ROZSAH KNIHY 4 2. POJETÍ RIZIKA A NEJISTOTY A ZDROJE A TYPY
POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD.
POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. SIMULACE nástroj pro studium chování objektů reálného světa SYSTÉM určitým způsobem uspořádána množina komponent a relací mezi nimi. zjednodušený,
Systémy pro podporu rozhodování. Datové sklady, OLAP
Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické
DATABÁZOVÉ SYSTÉMY. Metodický list č. 1
Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové
Otázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
PowerOPTI Řízení účinnosti tepelného cyklu
PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika
Ing. Petr Kalčev, Ph.D.
Ing. Petr Kalčev, Ph.D. 17.10.2017 24.10.2017 31.10.2017 7.11.2017 14.11.2017 21.11.2017 28.11.2017 5.12.2017 12.12.2017 19.12.2017 Úvod do manažerský informačních systémů Typy informačních systémů Příklady
Infor Performance management. Jakub Urbášek
Infor Performance management Jakub Urbášek Agenda prezentace Stručně o produktu Infor PM 10 Komponenty Infor PM - PM OLAP a PM Office Plus Reporting Analýza Plánování / operativní plánování Infor Performance
1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017
Znalostní systémy úvodní úvahy a předpoklady 26. září 2017 1-1 Znalostní systém Definice ZS (Feigenbaum): Znalostní (původně expertní) systémy jsou počítačové programy simulující rozhodovací činnost experta
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ
ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu
Inovační vouchery s Univerzitou Hradec Králové. doc. Ing. Mgr. Petra Marešová, Ph.D. Ing. Richard Cimler
Inovační vouchery s Univerzitou Hradec Králové doc. Ing. Mgr. Petra Marešová, Ph.D. Ing. Richard Cimler Úvod Hlavní směry výzkumu: = Informační technologie = Bioinformatika = Ekonomika a management = Vzdělávání
Business Intelligence nástroje a plánování
Business Intelligence nástroje a plánování pro snadné reportování a vizualizaci Petr Mlejnský Business Intelligence pro reporting, analýzy a vizualizaci Business Intelligence eporting Dashboardy a vizualizace
MANAŽERSKÉ ROZHODOVÁNÍ. Zpracoval Ing. Jan Weiser
MANAŽERSKÉ ROZHODOVÁNÍ Zpracoval Ing. Jan Weiser Obsah výkladu Rozhodovací procesy a problémy Dvě stránky rozhodování Klasifikace rozhodovacích procesů Modely rozhodování Nástroje pro podporu rozhodování
OVLÁDÁNÍ RIZIKA ANALÝZA A MANAGEMENT
TICHÝ Milík OVLÁDÁNÍ RIZIKA ANALÝZA A MANAGEMENT Obsah Předmluva... V Značky a symboly... VII Přehled nejpoužívanějších zkratek... IX Názvosloví... XI Rizikologie... XV Základní pojmy... 1 1. Rizikologické
1 Úvod 1.1 Vlastnosti programového vybavení (SW)
1 Úvod 1.1 Vlastnosti programového vybavení (SW) - dávkové zpracování - omezená distribuce - zakázkový SW - distribuované systémy - vestavěná inteligence - laciný HW - vliv zákazníka 1950 1960 1970 1980
Informační systémy 2006/2007
13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Základy business intelligence. Jaroslav Šmarda
Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování
Ing. Alena Šafrová Drášilová, Ph.D.
Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách
Rozhodovací procesy 3
Rozhodovací procesy 3 Informace a riziko Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 III rozhodování 1 Rozhodovací procesy Cíl přednášky 1-3: Význam rozhodování Rozhodování
Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/
Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Úvodní přednáška. Význam a historie PIS
Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích
ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová
PŘEDNÁŠKA 1 ÚVOD DO ROZHODOVÁNÍ Organizační Vyučující Ing., Ph.D. email: belinova@k620.fd.cvut.cz Doporučená literatura Dudorkin J. Operační výzkum. Požadavky zápočtu docházka zápočtový test (21.5.2015)
Vývoj informačních systémů. Obecně o IS
Vývoj informačních systémů Obecně o IS Informační systém Informační systém je propojení informačních technologií a lidských aktivit směřující k zajištění podpory procesů v organizaci. V širším slova smyslu
Manažerská ekonomika KM IT
KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout
Procesní řízení operačních sálů Mgr. Martin Gažar
Procesní řízení operačních sálů Mgr. Martin Gažar Procesy Procesy Procesní analýza Procesní mapa Modely procesů Optimalizace procesů Přínosy procesní analýzy Procesy a modely Procesy Abychom mohli úspěšně
Úvod... 1 Otázky k zamyšlení... 4
Obsah Předmluva.................................................... XIII Seznam obrázků.............................................. XXIII Seznam tabulek................................................
Datová věda (Data Science) akademický navazující magisterský program
Datová věda () akademický navazující magisterský program Reaguje na potřebu, kterou vyvolala rychle rostoucí produkce komplexních, obvykle rozsáhlých dat ve vědě, v průmyslu a obecně v hospodářských činnostech.
Management kontrola, operativní management, management hodnotového řetězce, kontrola výkonnosti organizace. Ing. Jan Pivoňka
Management kontrola, operativní management, management hodnotového řetězce, kontrola výkonnosti organizace Ing. Jan Pivoňka Kontrola Monitorování činností za účelem zajištění plánu a opravení odchylek
SENZORY PRO ROBOTIKU
1/13 SENZORY PRO ROBOTIKU Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac ROBOTICKÉ SENZORY - PŘEHLED
Rozhodování. Ing. Alena Šafrová Drášilová, Ph.D.
Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách
Okruhy ke státním závěrečným zkouškám Platnost: od leden 2017
Okruh I: Řízení podniku a projektů: strategický management, inovační management a manažerské rozhodování 1. Základní struktura strategického managementu a popis jednotlivých fází, zhodnocení výstupů a
28.z-8.pc ZS 2015/2016
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace počítačové řízení 5 28.z-8.pc ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další hlavní téma předmětu se dotýká obsáhlé oblasti logického
Expertní systémy. 1. Úvod k expertním systémům. Cíl kapitoly:
Expertní systémy Cíl kapitoly: Úkolem této kapitoly je pochopení významu expertních systémů, umět rozpoznat expertní systémy od klasicky naprogramovaných systémů a naučit se jejich tvorbu a základní vlastnosti.
5.15 INFORMATIKA A VÝPOČETNÍ TECHNIKA
5.15 INFORMATIKA A VÝPOČETNÍ TECHNIKA 5. 15. 1 Charakteristika předmětu A. Obsahové vymezení: IVT se na naší škole vyučuje od tercie, kdy je cílem zvládnutí základů hardwaru, softwaru a operačního systému,
CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný
CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování
MANŽERSKÁ EKONOMIKA. O autorech Úvod... 13
SYNEK Miloslav a kolektiv MANŽERSKÁ EKONOMIKA Obsah O autorech... 11 Úvod... 13 1. Založení podniku... 19 1.1 Úvod... 20 1.2 Činnosti související se založením podniku... 22 1.3 Volba právní formy podniku...
Geografické informační systémy p. 1
Geografické informační systémy Slajdy pro předmět GIS Martin Hrubý hrubym @ fit.vutbr.cz Vysoké učení technické v Brně Fakulta informačních technologií, Božetěchova 2, 61266 Brno akademický rok 2004/05
01 Teoretické disciplíny systémové vědy
01 Teoretické disciplíny systémové vědy (systémový přístup, obecná teorie systému, systémová statika a dynamika, úlohy na statických a dynamických systémech, kybernetika) Systémová věda je vědní disciplínou
Management. Ing. Jan Pivoňka
Management Ing. Jan Pivoňka Stanovení osobní vize V souladu s kotvou Konkrétní představa Citový náboj Stimul pro aktivní jednání Krátkodobější cíle motivace Výjimky Jasná vize Pohodoví lidé Úspěch bez
OBLASTI VEDENÍ ZÁVĚREČNÝCH PRACÍ PEDAGOGŮ INSTITUTU 545
OBLASTI VEDENÍ ZÁVĚREČNÝCH PRACÍ PEDAGOGŮ INSTITUTU 545 Oddělení ekonomiky Ing. Igor Černý, Ph.D. 1. Strukturální pomoc EU ve vybraných oblastech a společnostech 2. Modelování vlivu vybraných faktorů na
O autorech Úvodní slovo recenzenta Předmluva Redakční poznámka... 18
SMEJKAL Vladimír RAIS Karel ŘÍZENÍ RIZIK Obsah O autorech... 9 Úvodní slovo recenzenta... 13 Předmluva... 15 Redakční poznámka... 18 1. Zobrazení života podniku... 19 1.1 Jaké jsou příčiny neúspěchu v
Informace pro výběr bakalářského oboru
Informace pro výběr bakalářského oboru 2017.03.15 J. Matas Bakalářské obory informatika a počítačové vědy software internet věcí počítačové hry a grafika kapacita všech oborů je dostatečná pro volný výběr
Teorie systémů TES 5. Znalostní systémy KMS
Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 5. Znalostní systémy KMS ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní
Architektury Informačních systémů. Jaroslav Žáček
Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?
Management. Rozhodování. Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky
Management Rozhodování Ing. Vlastimil Vala, CSc. Ústav lesnické a dřevařské ekonomiky a politiky Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Metody a nástroje modelování Generation Adequacy. David Hrycej, CIIRC ČVUT
Metody a nástroje modelování Generation Adequacy David Hrycej, CIIRC ČVUT david.hrycej@cvut.cz Modelování panevropské sítě? Změny energetiky s vlivem na řízení soustavy: nárůst OZE, decentralizace, Demand
Obsah. Zpracoval:
Zpracoval: houzvjir@fel.cvut.cz 03. Modelem řízený vývoj. Doménový (business), konceptuální (analytický) a logický (návrhový) model. Vize projektu. (A7B36SIN) Obsah Modelem řízený vývoj... 2 Cíl MDD, proč
Business Intelligence
Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma
Využití IT nástrojů pro měření a řízení výkonnosti. Michal Kroutil 22.11.2005
Využití IT nástrojů pro měření a řízení výkonnosti Michal Kroutil 22.11.2005 1 Obsah 1 2 3 4 5 Představení Ciber Novasoft Klíčové ukazatele výkonnosti Zdroje dat SAP SEM Implementační projekt 2 Představení
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
Řízení projektů. Centrální podpora projektového řízení projektů realizovaných MVČR (CEPR) Praha,
Řízení projektů Centrální podpora projektového řízení projektů realizovaných MVČR (CEPR) Praha, 6. 12. 2012 Představení Zpracovatel: SOFO Group a.s. Ovocný trh 572/11 Praha 1 Projektový tým zpracovatele:
Programování LEGO MINDSTORMS s použitím nástroje MATLAB a Simulink
26.1.2018 Praha Programování LEGO MINDSTORMS s použitím nástroje MATLAB a Simulink Jaroslav Jirkovský jirkovsky@humusoft.cz www.humusoft.cz info@humusoft.cz www.mathworks.com Co je MATLAB a Simulink 2
Řešení průmyslové automatizace Industry 4.0
Řešení průmyslové automatizace Industry 4.0 EPLAN je součástí mezinárodní skupiny Friedhelm Loh Group Rittal the system. Faster better everywhere. Celosvětový lídr rozváděčových skříní, klimatizační systémy,
SOFTWAROVÉ INŽENÝRSTVÍ
SOFTWAROVÉ INŽENÝRSTVÍ Plán a odhady projeku Ing. Ondřej Macek 2013/14 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Příprava plánu projektu 3 Motivace k plánování Průběh projektu Bolest Dobré plánování Špatné
kapitola 2 předprojektová fáze 31
OBSAH 6 projektové řízení Předmluva 3 Kapitola 1 Základní pojmy a východiska 13 1.1 Úvod do řízení projektů 14 1.1.1 Co je to projektové řízení 14 1.2 Základní pojmy projektového řízení 17 1.2.1 Projekt
Lineární programování
24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.
14 Úvod do plánování projektu Řízení projektu
14 Úvod do plánování projektu Řízení projektu Plánování projektu Vývoj - rozbor zadání odhad pracnosti, doby řešení, nákladů,... analýza rizik strategie řešení organizace týmu PLÁN PROJEKTU 14.1 Softwarové
Informační a znalostní systémy jako podpora rozhodování
Informační systémy a technologie Informační a znalostní systémy jako podpora rozhodování Petr Moos - ČVUT VŠL Přerov listopad 2015 Analýza a syntéza systému Definici systému můžeme zapsat ve tvaru: S =
Ing. Alena Šafrová Drášilová
Rozhodování II Ing. Alena Šafrová Drášilová Obsah vztah jedince k riziku rozhodování v podmínkách rizika rozhodování v podmínkách nejistoty pravidlo maximin pravidlo maximax Hurwitzovo pravidlo Laplaceovo
Simulační modely. Kdy použít simulaci?
Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za
Virtuální ověřování výroby Robotika Process Simulate Virtual Commissioning Virtuelle Inbetriebnahme
Virtuální ověřování výroby Robotika Process Simulate Virtual Commissioning Virtuelle Inbetriebnahme Martin Baumruk Jiří Kopenec Siemens PLM Connection 2012 Česká republika 3. 5. června, Seč Dněšní workflow
č. Název Cíl Osnova Vedoucí práce Student 1. Aplikace metod síťové analýzy na proces pravidelné prohlídky typu C Check velkého dopravního letadla
Seznam vypsaných témat Technologie údržby letecké techniky č. Název Cíl Osnova Vedoucí práce Student 1. Aplikace metod síťové analýzy na proces pravidelné prohlídky typu C Check velkého dopravního letadla
Úvod do expertních systémů
Úvod do expertních systémů Expertní systém Definice ES (Feigenbaum): expertní systémy jsou počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně zakódovaných,
Profilová část maturitní zkoušky 2013/2014
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9
Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................
CASE. Jaroslav Žáček
CASE Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Co znamená CASE? Definice dle SEI A CASE tool is a computer-based product aimed at supporting one or more software engineering activities
5.3. Investiční činnost, druhy investic
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 5.3. Investiční činnost, druhy investic Podnik je uspořádaným útvarem lidí a hospodářských prostředků spojených
Proces vývoje HRIS Vema (Human Resources Information System) Jaroslav Šmarda
Proces vývoje HRIS Vema (Human Resources Information System) Jaroslav Šmarda Proces vývoje HRIS Vema Vlastnosti HRIS (Human Resources Information System) HRIS Vema Proces vývoje HRIS Vema Vema, a. s. Přední
Zkušenosti s Business Intelligence ve veřejném sektoru České republiky
Zkušenosti s Business Intelligence ve veřejném sektoru České republiky Slovak Business Intelligence Day 2006 Jan Pour Katedra IT, VŠE Praha pour@vse.cz, http://nb.vse.cz/~pour Snímek 1 Zkušenosti s BI
TÉMATICKÝ OKRUH Softwarové inženýrství
TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 24. Otázka : Implementační fáze. Postupy při specifikaci organizace softwarových komponent pomocí UML. Mapování modelů na struktury programovacího
Středoškolská technika SCI-Lab
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT SCI-Lab Kamil Mudruňka Gymnázium Dašická 1083 Dašická 1083, Pardubice O projektu SCI-Lab je program napsaný v jazyce
1.1. Původ pojmů manažer a management Úloha manažera a managementu Funkce manažerů Význam plánování a pojem plánu 13
Obsah ÚVOD 1 1. ZÁKLADNÍ POJMY 5 1.1. Původ pojmů manažer a management 7 1.2. Úloha manažera a managementu 8 1.3. Funkce manažerů 9 2. PLÁNOVÁNÍ 11 2.1. Význam plánování a pojem plánu 13 2.1.1. Definice
Metody analýzy modelů. Radek Pelánek
Metody analýzy modelů Radek Pelánek Fáze modelování 1 Formulace problému 2 Základní návrh modelu 3 Budování modelu 4 Verifikace a validace 5 Simulace a analýza 6 Sumarizace výsledků Simulace a analýza
Role logistiky v ekonomice státu a podniku 1
Obsah KAPITOLA 1 Role logistiky v ekonomice státu a podniku 1 Úvod 2 Definice logistického řízení 2 Vývoj logistiky 5 Systémový přístup/integrace 8 Role logistiky v ekonomice 10 Role logistiky v podniku
Ústav automatizace a měřicí techniky.
www.feec.vutbr.cz Specializace studijního oboru Automatizační a Měřicí Technika: Řídicí technika Moderní algoritmy řízení, teorie řízení Modelování a identifikace parametrů řízených systémů Pokročilé metody
CASE nástroje. Jaroslav Žáček
CASE nástroje Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Co znamená CASE? A CASE tool is a computer-based product aimed at supporting one or more software engineering activities within
14 Úvod do plánování projektu Řízení projektu
14 Úvod do plánování projektu Řízení projektu Plánování projektu Vývoj - rozbor zadání odhad pracnosti, doby řešení, nákladů,... analýza rizik strategie řešení organizace týmu PLÁN PROJEKTU 14.1 Softwarové
Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/
Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na
MATURITNÍ ZKOUŠKA ve školním roce 2014/2015
MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 Maturitní zkouška se skládá ze společné části a profilové části. 1. Společná část maturitní zkoušky Dvě povinné zkoušky a) český jazyk a literatura b) cizí jazyk
Automatizační a měřicí technika (B-AMT)
Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence
předměty: ukončení: Zápočet + Zkouška / 5kb např. jméno, název, destinace, město např. student Jan Novák, narozen 18.5.1974
základní informace Databázové systémy Úvodní přednáška předměty: KI/DSY (B1801 Informatika - dvouoborová) KI/P502 (B1802 Aplikovaná informatika) ukončení: Zápočet + Zkouška / 5kb ki.ujep.cz termínovník,
IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně
IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně Simulátor označujeme jako kredibilní v případě, že: byla úspěšně završena fáze verifikace simulátoru se podařilo přesvědčit zadavatele simulačního
Projektové řízení a rizika v projektech
Projektové řízení a rizika v projektech Zainteresované strany Zainteresované strany (tzv. stakeholders) jsou subjekty (organizace, lidé, prostory, jiné projekty), které realizace projektu ovlivňuje. Tyto
xrays optimalizační nástroj
xrays optimalizační nástroj Optimalizační nástroj xoptimizer je součástí webového spedičního systému a využívá mnoho z jeho stavebních bloků. xoptimizer lze nicméně provozovat i samostatně. Cílem tohoto
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
Informační systémy a plánování výroby 1.čast
Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy a plánování výroby 1.čast Technická univerzita v Liberci INVESTICE
Okruhy z odborných předmětů
VYŠŠÍ ODBORNÁ ŠKOLA INFORMAČNÍCH STUDIÍ A STŘEDNÍ ŠKOLA ELEKTROTECHNIKY, MULTIMÉDIÍ A INFORMATIKY Novovysočanská 280/48, 190 00 Praha 9 Pracoviště VOŠ: Pacovská 350/4, 140 00 Praha 4 Okruhy z odborných
Manažerská ekonomika
PODNIKOVÝ MANAGEMENT (zkouška č. 12) Cíl předmětu Získat znalosti zákonitostí úspěšného řízení organizace a přehled o současné teorii a praxi managementu. Seznámit se s moderními manažerskými metodami
Metodika analýzy. Příloha č. 1
Metodika analýzy Příloha č. 1 Příloha č. 1 1 Účel dokumentu Dokument popisuje závaznou metodiku systémové analýzy, je upraven na míru pro prostředí Podniku. Dokument je provázán s Podnikovou analýzou,
Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.
Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických
Obecné schéma řízení rizik, stanovení rozsahu a cíle analýzy rizik, metody sběru a interpretace vstupních dat
Obecné schéma řízení rizik, stanovení rozsahu a cíle analýzy rizik, metody sběru a interpretace vstupních dat doc. Ing. Alena Oulehlová, Ph.D. Univerzita obrany Fakulta vojenského leadershipu Katedra krizového
DATOVÝ SKLAD TECHNOLOGICKÝCH DAT
R. T. S. cs, spol. s r. o. Novinářská 1113/3 709 00 Ostrava IČO: 18051367 DIČ: CZ18051367 Tel.: +420 59 7450 219 Fax: +420 59 7450 247 E-mail: info@rtscs.cz URL: www.rtscs.cz Společnost je zapsána v OR
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika: