Usuzování za neurčitosti
|
|
- Rudolf Pospíšil
- před 6 lety
- Počet zobrazení:
Transkript
1 Usuzování za neurčitosti
2 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích 8-2
3 a) Česká Literatura Jiroušek R.: Metody reprezentace a zpracování znalostí v umělé inteligenci. VŠE, Praha, Jiroušek R.: Úvod do teorie bayesovských sítí. VŠE, Praha, Müller L.: Znalostní systémy. Skriptum, ZČU, b) Anglická Geisler E.: Knowledge and Knowledge Systems. IGI Global Publ., Harmon P., Sawyer B.: Creating Expert Systems for Business and Industry. John Wiley&sons, New York,
4 Neurčitost Charakteristický rys složitých systémů. Poznatky z reality jsou neurčité. Příčiny neurčitosti: Problémy s daty Chybějící nebo nedostupná data. Nespolehlivá data (chyba měření). Nepřesná nebo nekonzistentní reprezentace dat. Nejisté znalosti Znalost nemusí být platná ve všech případech. Znalost může obsahovat vágní pojmy. 8-4
5 Vyjádření neurčitosti Obvykle vyjadřována numerickými parametry. Označení váhy, míry, stupně důvěry, faktory jistoty. Hodnoty přiřazeny tvrzením či pravidlům. Nejčastěji v rozsahu 0,1 nebo -1,1. Většinou označena jedním číslem, v novějších systémech dvojicí (interval). Některé systémy pracují s kvalitativně vyjádřenými neurčitostmi. 8-5
6 Zpracování neurčitosti Bayesův přístup a jeho modifikace (PROSPECTOR). Teorie určitosti (Certainty Theory). Fuzzy logika. Dempster-Shaferova teorie. 8-6
7 Bayesovský přístup 1/2 Nejstarší a nejlépe definovaná technika. Znalost ve tvaru pravidla Předpoklad (evidence) podporuje závěr (hypothesis). ( ) apriorní pravděpodobnost jevu. ( ) apriorní pravděpodobnost jevu. aposteriorní pravděpodobnost závěru (hypotézy). ( ) podmíněna pravděpodobnost jevu za podmínky, že nastal jev. 8-7
8 Bayesovský přístup 2/2 Bayesovy vzorce: = = + ( ) = + 8-8
9 Pacient s bolestmi na hrudi má: 1. (nemocné srdce): +/ (má/nemá) 2. : +/ (pozitivní/negativní) Za předpokladu, že je pozitivní + se ptáme, zda pacient má skutečně, tzn. jaká je pravděpodobnost + + =? + apriorní pravděpodobnost jevu, že pacient má nemocné srdce = 0, podmíněná pravděpodobnost jevu, že je pozitivní u pacienta s = 0,9. = 0,95. Příklad 1/2 8-9
10 Řešení: + + = Příklad 2/2 + + (+ ) (+ ) = = = = + + (+ ) ( ) = + + (+ ) [1 + ] = 0,9 0,1 0,9 0, ,95 [1 0,1] 0, /3 lidí s bolestmi na hrudi a s pozitivním EKG mají nemocné srdce. 8-10
11 Apriorní pravděpodobnostní šance: = = 1 Aposteriorní pravděpodobnostní šance: = Pravděpodobnostní šance = 1 Pravděpodobnost lze ze šance vypočítat dle vztahu: ( ) = ( ) 1 + ( ) 8-11
12 Důkaz Věta: ( ) = ( ) 1 + ( ) Důkaz: = = 1 = = / =
13 Míra postačitelnosti Z Bayesových vzorců pro a vyplývá: =, kde: = ( ) ( ) = (někdy též ) se nazývá mírou postačitelnosti. Když s velkou pravděpodobností, pak se blíží nekonečnu, tzn. velká hodnota 1 říká, že předpoklad je postačitelný k dokázání hypotézy. 8-13
14 Důkaz míry postačitelnosti Věta: = Důkaz: L = O(H E) O(H) = ( ) ( ) ( ) ( ) = ( ) ( ) = = = = 8-14
15 Míra nezbytnosti Obdobně platí: = ^, kde: ^ = ( ) ( ) = ^ (někdy též ) se nazývá mírou nezbytnosti. Když s malou pravděpodobností, pak ^ se blíží 0, tzn. malá hodnota 0 < ^ 1 znamená, že je nezbytné pro dokázání. 8-15
16 Důkaz míry nezbytnosti Věta: ^ = Důkaz: ^ = O(H E) O(H) = ( ) ( ) ( ) ( ) = ( ) ( ) = = = = 8-16
17 Tabulka ^ 0 je nezbytné pro je postačitelné pro 1 ani nemá žádný vliv na 1 ani nemá žádný vliv na je postačitelné pro 0 je nezbytné pro 8-17
18 Platí: > 1 ^ < 1 = 1 ^ = 1 < 1 ^ > 1 Neboť platí: ^ = ( ) ( ) Vztah a ^!Toto platí pouze teoreticky! Prakticky expert zadává i ^, které vztah splňovat nemusí. 8-18
19 Zadávání míry postačitelnosti a nezbytnosti Míry postačitelnosti a nezbytnosti zadávány pro každé pravidlo expertem subjektivně. Pravidlo lze chápat jako: if then with váha else with váha ^ tzn. a ^ 8-19
20 Kombinace více pravidel Mějme pravidla:,,, Pak se aposteriorní šance za předpokladu nezávislosti vypočte jako:... =... Pokud není k dispozici přesná evidence dispozici pouze pozorování, pak platí:... =... kde = a je k 8-20
21 Přebráno z fuzzy logiky. Kombinace předpokladů 1. Disjunkce předpokladů: =, 2. Konjunkce předpokladů: =, 3. Negace předpokladů: =
22 Výhody a nevýhody Bayesova přístupu Výhody Dobré teoretické základy Dobře definovaná sémantika rozhodování Nevýhody Potřeba velkého množství pravděpodobnostních dat Nebezpečí neúplnosti a nekonzistence dat Předpoklad nezávislosti evidencí E nebývá splněn Možnost ztráty informace při popisu neurčitosti jedním číslem Obtížnost vysvětlování 8-22
23 Bayesův teorém v PROSPECTORu 1/3 V inferenční síti jsou ke každému přechodu z uzlu do uzlu (tj. každému pravidlu) přiřazeny vztahy pro výpočet pravděpodobnosti faktu odpovídajícího uzlu, do kterého se přejde. Použije se pravděpodobnost faktu odpovídajícího výchozího uzlu.?,,, 8-23
24 Bayesův teorém v PROSPECTORu 2/3,, V inferenční síti dochází k postupné propagaci. 8-24
25 Bayesův teorém v PROSPECTORu 3/3 Pro experta obtížné určit hodnoty ( ) a ( ). Expert tedy zadává, ^, ( ). Věta: = ( ) 1 + ( ) 8-25
26 Bayesian Network Bayesovská síť Orientovaný acyklický graf Uzel náhodná veličina Hrana (vztah) kauzální závislost mezi proměnnými Hrana znamená, že kauzálně ovlivňuje Pozorování poskytuje kauzální podporu Pozorování poskytuje diagnostickou podporu Umožňuje provádět prediktivní i diagnostické inference 8-26
27 Příklad Bayesovské sítě Každému uzlu přiřazena pravděpodobnostní tabulka Pokud uzel nemá předchůdce nepodmíněná pravděpodobnost 8-27
28 Pojmy pro definici Bayesovské sítě Nechť =, je orientovaný acyklický graf a nechť. Definujme množiny: = { (, ) } = { } = { } Množina je množinou bezprostředních předchůdců uzlu, je množinou všech následníků uzlu. Prvky nazývány příčinami. 8-28
29 Definice Bayesovské sítě 1/2 Nechť (Ω, ) je pravděpodobnostní prostor, kde Ω = Ω... Ω. Nechť ( = 1,..., ) je projekce Ω na Ω (tj. : Ω Ω je náhodná proměnná). Nechť (, ) je orientovaný acyklický graf, kde = {,, }. Řekneme, že (,, ) je Bayesovská síť, jestliže pro všechna a všechna ( ) a podmíněně nezávislé při daném ( ). 8-29
30 Definice Bayesovské sítě 2/2 Když =,,, =,,, ( ) 0, pak: = (... Pokud známe příčiny, pak pouze nebo jeho následníci nám mohou dát další informace o. Namísto pojmu Bayesovská síť se používají i pojmy kauzální síť nebo influenční diagram. 8-30
31 Vlastnosti Bayesovské sítě Nechť (,, ) je Bayesovská síť, pak platí: = ( ) ( ) Nechť (, ) je orientovaný acyklický graf, kde = {,..., }, přičemž jsou proměnné s obory hodnot ( ). Nechť ( ) je nezáporná reálná funkce taková, že ( ) = 1 pro všechny kombinace hodnot proměnných z ( ). Pak: Ω = ( )... ( ) a = ( ) definují pravděpodobnostní prostor, pro nějž,, je Bayesovská síť. Přitom je buď 0 nebo ( ( ). 8-31
32 Konstrukce Bayesovské sítě 1. Specifikace veličin,..., a jejich obory hodnot ( ). 2. Konstrukce orientovaného acyklického grafu (, ), kde = {,, }, vyjadřujícího kauzální závislosti mezi veličinami. 3. Odhad pravděpodobnosti P tak, že odhadneme ( ) pro všechna X, všechny hodnoty X a všechny kombinace hodnot proměnných z ( ). Nezbytné je splnění pouze těchto podmínek: 0 ( ) 1 = 1 ( ) 8-32
33 Problém pro Bayesovskou síť Problém řešený Bayesovskou sítí lze formulovat takto: Nechť je dána Bayesovská síť (,, ) a množiny,, =. Jsou-li zadány hodnoty proměnných z množiny U, je třeba zjistit ( ). Po zadání hodnot některých proměnných se zavádí inference, což znamená přepočet podmíněných pravděpodobností pro ostatní proměnné. Inference je založena na Bayesovských vzorcích. Tento problém je NP-složitý Neexistuje algoritmus s polynomiální časovou složitostí. Použití aproximačních technik transformace na jednodušší tvar. 8-33
34 Jednoduše souvislá Bayesovská síť Bayesovská síť je jednoduše souvislá, jestliže mezi každými dvěma uzly existuje právě jedna neorientovaná cesta. Další názvy polystrom, les Zvláštním případem polystromu je strom. Strom každý uzel má nejvýše jednoho rodiče Pro tuto síť existují algoritmy s polynomiální časovou složitostí. 8-34
Zpracování neurčitosti
Zpracování neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 7-1 Usuzování za neurčitosti Neurčitost: Při vytváření ZS obvykle nejsou všechny informace naprosto korektní mohou být víceznačné, vágní,
Vícepseudopravděpodobnostní Prospector, Fel-Expert
Práce s neurčitostí trojhodnotová logika Nexpert Object, KappaPC pseudopravděpodobnostní Prospector, Fel-Expert (pravděpodobnostní) bayesovské sítě míry důvěry Mycin algebraická teorie Equant fuzzy logika
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
VíceVybrané přístupy řešení neurčitosti
Vybrané přístupy řešení neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 8-1 Faktory jistoty Jedná se o přístup založený na ad hoc modelech Hlavním důvodem vzniku tohoto přístupu je omezení slabin
Více1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017
Znalostní systémy úvodní úvahy a předpoklady 26. září 2017 1-1 Znalostní systém Definice ZS (Feigenbaum): Znalostní (původně expertní) systémy jsou počítačové programy simulující rozhodovací činnost experta
VícePOČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ
POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ ON MENTAL MODELS FORMALIZATION THROUGH THE METHODS OF PROBABILISTIC LINGUISTIC MODELLING Zdeňka Krišová, Miroslav
VíceMYCIN, Prospector. Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] oblasti kvality rozhodování na úrovni experta.
Expertní systémy MYCIN, Prospector Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] Expertní systémy jsou počítačové programy, simulující rozhodovací činnosti experta při řešení složitých úloh
VíceBayesovská klasifikace
Bayesovská klasifikace založeno na Bayesově větě P(H E) = P(E H) P(H) P(E) použití pro klasifikaci: hypotéza s maximální aposteriorní pravděpodobností H MAP = H J právě když P(H J E) = max i P(E H i) P(H
VíceÚvod do expertních systémů
Úvod do expertních systémů Expertní systém Definice ES (Feigenbaum): expertní systémy jsou počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně zakódovaných,
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceÚstav teorie informace a automatizace. J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/ / 28
Úvod do bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky http://www.utia.cz/vomlel 30. října 2008 J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/2008
VíceVýroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
VíceExpertní systémy. Typy úloh: Klasifikační Diagnostické Plánovací Hybridní Prázdné. Feingenbaum a kol., 1988
Expertní systémy Počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně kvality rozhodování na úrovni experta. Typy úloh: Klasifikační Diagnostické Plánovací
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Vícea způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným
VíceZápadočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky. programu pro výuku
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Bakalářská práce Vytvoření výukového programu pro výuku předmětu UZI Plzeň, 2015 Josef Strolený Prohlášení
VíceOperační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
VíceZáklady teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
VíceBayesovské sítě. Kamil Matoušek, Ph.D. Informační a znalostní systémy
Bayesovské sítě Kamil Matoušek, Ph.D. Informační a znalostní systémy Co jsou Bayesian Networks (BN) Pravděpodobnostní modely využívající grafovou reprezentaci Znalosti zatížené nejistotou (nepřesné, nejisté,
VícePravidlové znalostní systémy
Pravidlové znalostní systémy 31. října 2017 2-1 Tvary pravidel Pravidla (rules) mohou mít například takovéto tvary: IF předpoklad THEN závěr IF situace THEN akce IF podmínka THEN závěr AND akce IF podmínka
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
Více7. Inferenční metody. Inferenční metody Václav Matoušek, Josef Strolený Úvod do znalostního inženýrství, ZS 2014/
Inferenční metody 18.11.2014 7-1 Inferenční metody Rezoluční systémy Dopředné a zpětné řetězení Výběr dotazu Nemonotónní usuzování 7-2 a) Česká Literatura Dvořák J.: Expertní systémy. Skriptum VUT Brno,
VíceTEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
VíceExpertní systémy. 1. Úvod k expertním systémům. Cíl kapitoly:
Expertní systémy Cíl kapitoly: Úkolem této kapitoly je pochopení významu expertních systémů, umět rozpoznat expertní systémy od klasicky naprogramovaných systémů a naučit se jejich tvorbu a základní vlastnosti.
VíceMatematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
VíceZáklady umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
VíceALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
VíceStromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
VíceAgent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu
Více= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
VíceGrafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
VíceZáklady teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
VíceInženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Více6 Reprezentace a zpracování neurčitosti
6 Reprezentace a zpracování neurčitosti Většina našich znalostí o reálném světě je zatížena ve větší či menší míře neurčitostí. Na druhou stranu, schopnost rozhodovat se i v situacích, kdy nejsou všechny
VíceDijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
VíceFuzzy logika. Informační a znalostní systémy
Fuzzy logika Informační a znalostní systémy Fuzzy logika a odvozování Lotfi A. Zadeh (*1921) Lidé nepotřebují přesnou číslem vyjádřenou informaci a přesto jsou schopni rozhodovat na vysoké úrovni, odpovídající
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VícePravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
VíceNeurčitost: Bayesovské sítě
Neurčitost: Bayesovské sítě 12. dubna 2018 1 Opakování: pravděpodobnost 2 Bayesovská síť 3 Sémantika sítě Zdroj: Roman Barták, přednáška přednáška Umělá inteligence II, Matematicko-fyzikální fakulta, Karlova
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Více1 Expertní systémy. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Expertní systém (ES) 1.4 Komponenty expertních systémů
Obsah 1 Expertní systémy... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Expertní systém (ES)... 2 1.4 Části ES... 2 1.5 Pravidlové ES... 3 1.5.1 Reprezentace znalostí... 3 1.5.2... 3 1.5.3
VícePřijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
VíceModely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
VíceModely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Více3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
VíceTeorie rozhodování (decision theory)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie
VíceNMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
VíceVysoká škola ekonomická Praha. Tato prezentace je k dispozici na:
Úvod do bayesovských sítí Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obor hodnot Necht X je kartézský součin
VíceAlgoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
VíceTeorie pravěpodobnosti 1
Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VícePRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
VíceKapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
VíceDnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf
VíceZákladní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
VíceTGH09 - Barvení grafů
TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít
VíceDefinice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.
9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující
VíceVýroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
VíceObr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.
Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.
VíceMotivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec
Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
VíceKonstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
VíceInferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
VíceVzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
VíceIntuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
VíceZískávání a reprezentace znalostí
Získávání a reprezentace znalostí 11.11.2014 6-1 Reprezentace znalostí Produkční pravidla Sémantické sítě Získávání znalostí 6-2 a) Česká 6. Reprezentace znalostí v ZS Literatura Berka P.: Tvorba znalostních
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceVytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
VíceUmělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Pro zopakování Pravděpodobnost je formální mechanismus pro zachycení neurčitosti. Pravděpodobnost každé
VícePočet pravděpodobnosti
PSY117/454 Statistická analýza dat v psychologii Přednáška 4 Počet pravděpodobnosti Je známo, že když muž použije jeden z okrajových pisoárů, sníží se pravděpodobnost, že bude pomočen o 50%. anonym Pravděpodobnost
Vícepostaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
VíceI. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VíceIV113 Validace a verifikace. Převod LTL formule na Büchi automat. Jiří Barnat
IV113 Validace a verifikace Převod LTL formule na Büchi automat Jiří Barnat Připomenutí IV113 úvod do validace a verifikace: LTL BA str. 2/26 Problém Kripkeho struktura M LTL formule ϕ M = ϕ? Řešení pomocí
VíceBinární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
VíceReprezentace znalostí - úvod
Reprezentace znalostí - úvod Úvod do znalostního inženýrství, ZS 2015/16 6-1 Co je to znalost? Pojem znalost zahrnuje nejen teoretické vědomosti člověka z dané domény, ale také jeho dlouhodobé zkušenosti
VícePřednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky
řednáška II. Vztah pravděpodobnosti, statistiky a biostatistiky Statistika vychází z pravděpodobnosti odmíněná pravděpodobnost, Bayesův vzorec Senzitivita, specificita, prediktivní hodnoty Frekventistická
Vícep(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Více2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
VíceLogika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Více10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
VíceRekurentní rovnice, strukturální indukce
Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n
VíceCíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí
Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý
VíceStatistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
VíceMatematická analýza pro informatiky I. Limita posloupnosti (I)
Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceIII. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina
III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu
Více1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
Více9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
VíceVýroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
VíceKomplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme
Víceautorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy
9 Krátké povídání o průnikových grafech Od této lekce teorie grafů se zaměříme lehce na několik vybraných partíı teorie grafů bĺızkých autorovu srdci... Naším prvním výběrem jsou průnikové grafy, což jsou
VíceTematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Více24.11.2009 Václav Jirchář, ZTGB
24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci
Více