Hry a UI historie. von Neumann, 1944 algoritmy perfektní hry Zuse, Wiener, Shannon, přibližné vyhodnocování
|
|
- Michal Mareš
- před 7 lety
- Počet zobrazení:
Transkript
1 Hry a UI historie Hry vs. Prohledávání stavového prostoru Hry a UI historie Babbage, 1846 počítač porovnává přínos různých herních tahů von Neumann, 1944 algoritmy perfektní hry Zuse, Wiener, Shannon, přibližné vyhodnocování Turing, 1951 první šachový program (jen na papíře) Samuel, strojové učení pro zpřesnění vyhodnocování McCarthy, 1956 prořezávání pro možnost hlubšího prohledávání Úvod do umělé inteligence 7/12 4 / 26
2 Hry a UI historie Hry vs. Prohledávání stavového prostoru Hry a UI historie Babbage, 1846 počítač porovnává přínos různých herních tahů von Neumann, 1944 algoritmy perfektní hry Zuse, Wiener, Shannon, přibližné vyhodnocování Turing, 1951 první šachový program (jen na papíře) Samuel, strojové učení pro zpřesnění vyhodnocování McCarthy, 1956 prořezávání pro možnost hlubšího prohledávání řešení her je zajímavým předmětem studia je obtížné: průměrný faktor větvení v šachách b = 35 pro 50 tahů 2 hráčů... prohledávací strom uzlů ( stavů) Úvod do umělé inteligence 7/12 4 / 26
3 Hry vs. Prohledávání stavového prostoru Hry a UI aktuální výsledky Hry a UI aktuální výsledky Othello od 1980 světoví šampioni odmítají hrát s počítači, protože stroje jsou příliš dobré. Othello (též Reversi) pro dva hráče na desce 8 8 snaží se mezi své dva kameny uzavřít soupeřovy, které se přebarví. Až se zaplní deska, spočítají se kameny. dáma 1994 program Chinook porazil světovou šampionku Marion Tinsley. Používá úplnou databázi tahů pro 8 figur ( pozic). šachy 1997 porazil stroj Deep Blue světového šampiona Gary Kasparova 3 1 /2:2 1 /2. Stroj počítá 200 mil. pozic/s, sofistikované vyhodnocování a nezveřejněné metody pro prozkoumávání některých tahů až do hloubky 40 tahů porazil program Deep Fritz na PC světového šampiona Vladimíra Kramnika 2:4. V současnosti vyhrávají turnaje i programy na slabším hardware mobilních telefonů s 20 tis. pozic/s. Go do roku 2008 světoví šampioni odmítali hrát s počítači, protože stroje jsou příliš slabé. V Go je b > 300, takže počítače mohou používat téměř pouze znalostní bázi vzorových her. od 2009 první programy dosahují pokročilejší amatérské úrovně (zejména na desce 9 9, nižší úroveň i na 19 19). Úvod do umělé inteligence 7/12 5 / 26
4 Typy her Hry vs. Prohledávání stavového prostoru Typy her perfektní znalosti nepřesné znalosti deterministické šachy, dáma, Go, Othello s náhodou backgammon, monopoly bridge, poker, scrabble Úvod do umělé inteligence 7/12 6 / 26
5 Hry vs. Prohledávání stavového prostoru Hledání optimálního tahu Hledání optimálního tahu 2 hráči ( ) a ( ) je první na tahu a pak se střídají až do konce hry hra = prohledávací problém: počáteční stav počáteční herní situace + kdo je na tahu přechodová funkce vrací dvojice (legální tah, výsledný stav) ukončovací podmínka určuje, kdy hra končí, označuje koncové stavy utilitární funkce numerické ohodnocení koncových stavů Úvod do umělé inteligence 7/12 7 / 26
6 Hry vs. Prohledávání stavového prostoru Hledání optimálního tahu Hledání optimálního tahu pokrač. počáteční stav a přechodová funkce definují herní strom: (X) (O) X X X X X X X X X (X) X O X O X O... (O) X O X X O X X O X koncové stavy utilitární funkce X O X X O X X O X O X O O X X O X X O X O O! Úvod do umělé inteligence 7/12 8 / 26
7 Algoritmus Minimax Algoritmus Minimax Hráč ( ) musí prohledat herní strom pro zjištění nejlepšího tahu proti hráči ( ) zjistit nejlepší hodnotu minimax zajišt uje nejlepší výsledek proti nejlepšímu protivníkovi Hodnota minimax(n) = utility(n), pro koncový stav n max s moves(n) Hodnota minimax(s), pro uzel n min s moves(n) Hodnota minimax(s), pro uzel n Úvod do umělé inteligence 7/12 9 / 26
8 Algoritmus Minimax Algoritmus Minimax pokrač. příklad hra jen na jedno kolo = 2 tahy (půlkola) Úvod do umělé inteligence 7/12 10 / 26
9 Algoritmus Minimax Algoritmus Minimax pokrač. příklad hra jen na jedno kolo = 2 tahy (půlkola) a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d 3 util.funkce Úvod do umělé inteligence 7/12 10 / 26
10 Algoritmus Minimax Algoritmus Minimax pokrač. příklad hra jen na jedno kolo = 2 tahy (půlkola) a 1 a 2 a b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d 3 util.funkce Úvod do umělé inteligence 7/12 10 / 26
11 Algoritmus Minimax Algoritmus Minimax pokrač. příklad hra jen na jedno kolo = 2 tahy (půlkola) 3 a 1 a 2 a b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d 3 util.funkce Úvod do umělé inteligence 7/12 10 / 26
12 Algoritmus Minimax Algoritmus Minimax pokrač. příklad hra jen na jedno kolo = 2 tahy (půlkola) 3 a 1 a 2 a b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d 3 util.funkce Úvod do umělé inteligence 7/12 10 / 26
13 Algoritmus Minimax Algoritmus Minimax vlastnosti úplnost optimálnost časová složitost prostorová složitost Úvod do umělé inteligence 7/12 12 / 26
14 Algoritmus Minimax Algoritmus Minimax vlastnosti úplnost optimálnost časová složitost prostorová složitost úplný pouze pro konečné stromy Úvod do umělé inteligence 7/12 12 / 26
15 Algoritmus Minimax Algoritmus Minimax vlastnosti úplnost optimálnost časová složitost prostorová složitost úplný pouze pro konečné stromy je optimální proti optimálnímu oponentovi Úvod do umělé inteligence 7/12 12 / 26
16 Algoritmus Minimax Algoritmus Minimax vlastnosti úplnost úplný pouze pro konečné stromy optimálnost je optimální proti optimálnímu oponentovi časová složitost O(b m ) prostorová složitost Úvod do umělé inteligence 7/12 12 / 26
17 Algoritmus Minimax Algoritmus Minimax vlastnosti úplnost úplný pouze pro konečné stromy optimálnost je optimální proti optimálnímu oponentovi časová složitost O(b m ) prostorová složitost O(bm), prohledávání do hloubky Úvod do umělé inteligence 7/12 12 / 26
18 Algoritmus Minimax Algoritmus Minimax vlastnosti úplnost úplný pouze pro konečné stromy optimálnost je optimální proti optimálnímu oponentovi časová složitost O(b m ) prostorová složitost O(bm), prohledávání do hloubky šachy... b 35,m 100 přesné řešení není možné např. b m = 10 6,b = 35 m 4 4-tahy člověk-nováček 8-tahů člověk-mistr, typické PC 12-tahů Deep Blue, Kasparov Úvod do umělé inteligence 7/12 12 / 26
19 Časové omezení Algoritmus Minimax Časové omezení předpokládejme, že máme 100 sekund + prozkoumáme 10 4 uzlů/s 10 6 uzlů na 1 tah řešení minimax cutoff: ohodnocovací funkce odhad přínosu pozice nahradí utilitární funkci ořezávací test (cutoff test) např. hloubka nebo hodnota ohodnocovací funkce nahradí koncový test Úvod do umělé inteligence 7/12 13 / 26
20 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání Příklad stromu, který zpracuje predikát minimax Alfa-Beta odřízne expanzi některý uzlů Alfa-Beta procedura je efektivnější variantou minimaxu Úvod do umělé inteligence 7/12 14 / 26
21 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání Příklad stromu, který zpracuje predikát minimax Alfa-Beta odřízne expanzi některý uzlů Alfa-Beta procedura je efektivnější variantou minimaxu Úvod do umělé inteligence 7/12 14 / 26
22 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání Příklad stromu, který zpracuje predikát minimax Alfa-Beta odřízne expanzi některý uzlů Alfa-Beta procedura je efektivnější variantou minimaxu Úvod do umělé inteligence 7/12 14 / 26
23 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání Příklad stromu, který zpracuje predikát minimax Alfa-Beta odřízne expanzi některý uzlů Alfa-Beta procedura je efektivnější variantou minimaxu Úvod do umělé inteligence 7/12 14 / 26
24 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání Příklad stromu, který zpracuje predikát minimax Alfa-Beta odřízne expanzi některý uzlů Alfa-Beta procedura je efektivnější variantou minimaxu Úvod do umělé inteligence 7/12 14 / 26
25 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání Příklad stromu, který zpracuje predikát minimax Alfa-Beta odřízne expanzi některý uzlů Alfa-Beta procedura je efektivnější variantou minimaxu Úvod do umělé inteligence 7/12 14 / 26
26 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání Příklad stromu, který zpracuje predikát minimax Alfa-Beta odřízne expanzi některý uzlů Alfa-Beta procedura je efektivnější variantou minimaxu Úvod do umělé inteligence 7/12 14 / 26
27 Algoritmus Alfa-Beta prořezávání Algoritmus Alfa-Beta prořezávání vlastnosti prořezávání neovlivní výsledek je stejný jako u minimaxu dobré uspořádání přechodů (možných tahů) ovlivní efektivitu prořezávání v případě nejlepšího uspořádání časová složitost= O(b m/2 ) zdvojí hloubku prohledávání může snadno dosáhnout hloubky 8 v šachu, což už je použitelná úroveň Úvod do umělé inteligence 7/12 15 / 26
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus Alfa-Beta prořezávání Nedeterministické
Obsah: Hry Prohledávání stavového prostoru. Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus Alfa-Beta prořezávání Nedeterministické
Hry a UI historie. agent musí brát v úvahu akce jiných agentů jak ovlivní jeho. vliv ostatních agentů prvek náhody. Hry: Obsah:
Obsah: Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Hry s nepřesnými znalostmi Hry a UI historie Úvod do umělé inteligence 7/1 1 / 5 Hry a UI historie Babbage,
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
HRY A UI HISTORIE. Hry vs. Prohledávání stavového prostoru. Obsah:
Úvod do umělé inteligence Připomínka průběžná písemka Hry a základní herní strategie PŘIPOMÍNKA PRŮBĚŽNÁ PÍSEMKA E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Připomínka průběžná písemka Algoritmus
Hry a UI historie. Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Statistické výsledky průběžné písemky Obsah: Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Statistické výsledky průběžné písemky Hry s nepřesnými znalostmi
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi. 72 studentů
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Hry a UI historie. Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Statistické výsledky průběžné písemky Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Algoritmus Minimax Hry s
Obsah: E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ 7 9 Algoritmus Minimax. 7 9 Nedeterministick і hry 7 9 Hry s nep 0 0esn 0 5mi znalostmi
1 3Hry a z kladn hern strategie Ale 0 8 Hor k E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: 7 9 Statistick і v 0 5sledky pr 0 1b ї 0 6n і p semky 7 9 Hry vs. Prohled v n stavov іho prostoru
! Kyberne(ka!a!umělá!inteligence! 8.!Hraní!dvouhráčových!her,!adversariální! prohledávání!stavového!prostoru!!!!
! Kyberne(ka!a!umělá!inteligence! 8.!Hraní!dvouhráčových!her,!adversariální! prohledávání!stavového!prostoru!!!! Ing.%Michal%Pěchouček,%Ph.D.% Katedra%kyberne;ky% ČVUT%v%Praze,%FEL% Evropský!sociální!fond!
Varianty Monte Carlo Tree Search
Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření
Algoritmy pro hraní tahových her
Algoritmy pro hraní tahových her Klasické deskové hry pro dva hráče: Šachy Dáma Go Piškvorky Reversi Oba hráči mají úplnou znalost pozice (na rozdíl např. od Pokeru). 1 Základní princip Hraní tahových
Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnes Dosud popisované algoritmy nepředpokládaly přítomnost dalších agentů v prostředí, zvlášť ne agentů,
Základy umělé inteligence
Základy umělé inteligence Hraní her (pro 2 hráče) Základy umělé inteligence - hraní her. Vlasta Radová, ZČU, katedra kybernetiky 1 Hraní her (pro dva hráče) Hraní her je přirozeně spjato s metodami prohledávání
Department of Cybernetics Czech Technical University in Prague. pechouc/kui/games.pdf
Hraní dvouhráčových her, adversariální prohledávání stavového prostoru Michal Pěchouček Department of Cybernetics Czech Technical University in Prague http://labe.felk.cvut.cz/ pechouc/kui/games.pdf ppoužitá
Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem
Hry dvou hráčů (např. šachy) Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho znamená ztrátu druhého hráče. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem soupeře, který se snaží náš zisk
Úvod do teorie her
Úvod do teorie her. Formy her a rovnovážné řešení Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 208 ÚTIA AV ČR Program. Definujeme 2 základní formy pro studium různých her: rozvinutou, strategickou. 2.
a4b33zui Základy umělé inteligence
LS 2011 Jméno: a4b33zui Základy umělé inteligence 10.6.2011 O1 O2 O3 O4 O5 Total (50) Instrukce: Na vypracování máte 90 min, můžete použít vlastní materiály nebo poznámky. Použití počítače nebo mobilního
Algoritmy pro práci s neúplnou informací
Michal Krkavec 23. listopadu 2011 Obsah Náhoda Expectimax Neúplné informace Monte Carlo Tree Search Perfect Information Monte Carlo Realtime plánování Plánování v RTS Monte Carlo Plánování Expectimax Expectimax
Dokumentace programu piskvorek
Dokumentace programu piskvorek Zápočtového programu z Programování II PRM045 Ondřej Vostal 20. září 2011, Letní semestr, 2010/2011 1 Stručné zadání Napsat textovou hru piškvorky se soupeřem s umělou inteligencí.
Algoritmus Minimax. Tomáš Kühr. Projektový seminář 1
Projektový seminář 1 Základní pojmy Tah = přemístění figury hráče na tahu odpovídající pravidlům dané hry. Při tahu může být manipulováno i s figurami soupeře, pokud to odpovídá pravidlům hry (např. odstranění
Anotace. Středník II!! 7. 5. 2010 programování her.
Anotace Středník II!! 7. 5. 2010 programování her. Teorie her Kombinatorická hra je hrou dvou hráčů. Stav hry je určen pozicí nějakých předmětů. Všechny zúčastněné předměty jsou viditelné. Jde o tzv. hru
Prohledávání do šířky a do hloubky. Jan Hnilica Počítačové modelování 15
Prohledávání do šířky a do hloubky Jan Hnilica Počítačové modelování 15 1 Prohledávací algoritmy Úkol postupně systematicky prohledat vymezený stavový prostor Stavový prostor (SP) možné stavy a varianty
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
2. Řešení úloh hraní her Hraní her (Teorie a algoritmy hraní her)
Hraní her (Teorie a algoritmy hraní her) 4. 3. 2015 2-1 Hraní her pro dva a více hráčů Počítač je při hraní jakékoli hry: silný v komplikovaných situacích s množstvím kombinací, má obrovskou znalost zahájení
Hraní her. (Teorie a algoritmy hraní her) Řešení úloh hraní her. Václav Matoušek /
Hraní her (Teorie a algoritmy hraní her) 8. 3. 2019 2-1 Hraní her pro dva a více hráčů Počítač je při hraní jakékoli hry: silný v komplikovaných situacích s množstvím kombinací, má obrovskou znalost zahájení
IUVENTAS Soukromé gymnázium a Střední odborná škola, s. r. o. Umělá inteligence. Jméno: Třída: Rok:
IUVENTAS Soukromé gymnázium a Střední odborná škola, s. r. o. Umělá inteligence Jméno: Třída: Rok: Prohlašuji, že mnou předložená práce je mým původním autorským dílem, které jsem vypracoval/a samostatně.
Obsah: Problém osmi dam
Prohledávání stavového prostoru leš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Problém osmi dam Prohledávání stavového prostoru Neinformované prohledávání Úvod do umělé inteligence
}w!"#$%&'()+,-./012345<ya
Masarykova Univerzita v Brně Fakulta Informatiky }w!"#$%&'()+,-./012345
Počítačové šachy. Otakar Trunda
Počítačové šachy Otakar Trunda Hraní her obecně Hra je definovaná pomocí: Počáteční situace Funkce vracející množinu přípustných tahů v každé situaci Ohodnocení koncových stavů Našim cílem je najít strategii
ŠACHOVÉ ENGINY. Semestrální práce pro předmět 4IZ430 Principy inteligentních systémů
ŠACHOVÉ ENGINY Semestrální práce pro předmět 4IZ430 Principy inteligentních systémů Contents 1. Úvod... 2 2. Evaluační funkce... 2 3. Procházení stromu variant... 6 4. Učení se... 8 5. Závěr... 8 6. Zdroje...
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Programová realizace jednoduché strategické hry Květoslav Čáp Bakalářská práce 2010 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval
A4B33ZUI Základy umělé inteligence
LS 2014 Jméno: A4B33ZUI Základy umělé inteligence 11. 6. 2014 O1 O2 O3 O4 O5 Total (50) Instrukce: Na vypracování máte 150 min, můžete použít vlastní poznámky v podobě ručně popsaného listu A4. Použití
Složitost her. Herní algoritmy. Otakar Trunda
Složitost her Herní algoritmy Otakar Trunda Úvod měření složitosti Formální výpočetní model Turingův stroj Složitost algoritmu = závislost spotřebovaných prostředků na velikosti vstupu Časová složitost
Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru
Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací
Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Pavel Kotrč Analýza hry Gobblet prostředky umělé inteligence Katedra teoretické informatiky a matematické logiky Vedoucí diplomové
Heuristiky, best-first search, A* search
Informované prohledávání stavového prostoru Heuristiky, best-first search, A* search Obsah: Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Informované prohledávání stavového prostoru Neinformované
Pokročilá implementace deskové hry Dáma
České vysoké učení technické v Praze Fakulta elektrotechnická Bakalářská práce Pokročilá implementace deskové hry Dáma Ladislav Vitásek Vedoucí práce: RNDr. Marko Genyk-Berezovskyj Studijní program: Elektrotechnika
"Agent Hledač" (3. přednáška)
"Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo Department of Cybernetics Czech Technical University in Prague http://cw.felk.cvut.cz/doku.php/courses/a3b33kui/start
PROBLÉM OSMI DAM II. Problém osmi dam. Obsah:
Úvod do umělé inteligence RÉ S úkol: Rozestavte po šachovnici 8 dam tak, aby se žádné dvě vzájemně neohrožovaly. -mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ bsah: rohledávání do hloubky rohledávání
Neinformované metody prohledávání stavového prostoru. Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague http://labe.felk.cvut.cz/~ tkrajnik/kui2/data/k333/1.pdf
Monte Carlo Tree Search. Marika Ivanová
Monte Carlo Tree Search Marika Ivanová 23. 10. 2012 Obsah Představení Základní vlastnosti Oblast použití Bandit Problem Popis metody Algoritmus UCT Charakteristika Terminologie Vylepšení a Heuristiky Aplikace
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
Úvod Game designer Struktura hry Formální a dramatické elementy Dynamika her Konec. Úvod do game designu 1 / 37
Počítačové hry Úvod do game designu 1 / 37 Obsah přednášky Role game designera Struktura hry Formální a dramatické elementy Dynamika herních systémů 2 / 37 Literatura a odkazy Chris Crawford. The Art of
Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem
Hry dvou hráčů (např. šachy) Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho znamená ztrátu druhého hráče. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem soupeře, který se snaží náš zisk
Seminář z umělé inteligence. Otakar Trunda
Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY REVERSI REVERSI FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS REVERSI REVERSI
Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Agent s reflexy pouze převádí současný vjem na jednu akci. Agent s cílem umí plánovat několik akcí
Alfa-beta algoritmus pro umělou inteligenci hry šachy
České vysoké učení technické v Praze Fakulta elektrotechnická Bakalářská práce Alfa-beta algoritmus pro umělou inteligenci hry šachy Josef Suchý Vedoucí práce: Ing. Adam Sporka Studijní program: Elektrotechnika
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Vhodné k testování AI technik protože a) není třeba množství znalostí b) snadno se měří úspěšnost (výhra/prohra)
Počítačové hry Vymezení oblasti zájmu akční (FPS: Doom, Quake, Unreal) simlulace (SimCity, The Sims, Creatures) RTS (Dune II, WarCraft, C&C) deskové logické hry klasické (šachy, piškvorky) hazardní karetní
u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming
Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály
Geneticky vyvíjené strategie Egyptská hra SENET
Geneticky vyvíjené strategie Egyptská hra SENET Lukáš Rypáček, lukor@atrey.karlin.mff.cuni.cz Abstrakt V tomto dokumentu popíši jeden příklad použití genetických algoritmů pro počítačové hraní her. V tomto
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
Teorie her a ekonomické rozhodování. 2. Maticové hry
Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru
Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)
Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS PIŠKVORKY BAKALÁŘSKÁ
Stručný úvod do teorie her. Michal Bulant
Stručný úvod do teorie her Michal Bulant Čím se budeme zabývat Alespoň 2 hráči (osoby, firmy, státy, biologické druhy apod.) Každý hráč má určitou množinu strategií, konkrétní situace (outcome) ve hře
Heuristiky, best-first search, A* search.
Úvod do umělé inteligence Heuristiky, best-first search, A* search E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Informované prohledávání stavového prostoru Heuristické hledání nejlepší cesty
NADANÝ ŽÁK A JEHO MOŽNOSTI ROZVOJE VE VOLNÉM ČASE
1 NADANÝ ŽÁK A JEHO MOŽNOSTI ROZVOJE VE VOLNÉM ČASE Příklady aktivit pro volný čas nadaných žáků Ing. Martin Pokorný Projekt OPVK reg.č. CZ.1.07/.1.2.00/08.0126 2 VERBÁLNÍ HRY - rozvíjejí především slovní
Pravidla vybraných deskových her pro potřeby předmětů Projektový seminář 1 a 2 v roce 2011/2012. Tomáš Kühr
Pravidla vybraných deskových her pro potřeby předmětů Projektový seminář 1 a 2 v roce 2011/2012 Tomáš Kühr Gotická dáma Jedná se o tradiční německou hru, která je známá také pod názvy Altdeutsche Dame
Heuristiky, best-first search, A* search.
Úvod do umělé inteligence Heuristiky, best-first search, A* search E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Informované prohledávání stavového prostoru Heuristické hledání nejlepší cesty
Pokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
Pavel Veselý Proof-number search, Lambda search a jejich vylepšení
Proof-number search, Lambda search a jejich vylepšení Osnova Proof-number search (PNS) Úprava na prohledávání do hloubky, PDS a PDS-PN Depth-first proof-number search a vylepšení Lambda search Dual lambda
UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA INFORMATIKY. ALGORITMY REALIZUJÍCÍ v jednoduchých deskových hrách
UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA INFORMATIKY Tomáš Kühr ALGORITMY REALIZUJÍCÍ POČÍTAČOVÉHO HRÁČE v jednoduchých deskových hrách Říjen 0 Abstrakt Následující text obsahuje detailní popis algoritmu
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Umělá&inteligence! Co#o#nás#říká,#i#když#to#(někdy)#nechceme#slyšet?#
Umělá&inteligence! Co#o#nás#říká,#i#když#to#(někdy)#nechceme#slyšet?# Roman Barták Matematicko-fyzikální fakulta, Univerzita Karlova v Praze Umělá& inteligence& je& věda& o& vytváření& strojů& nebo&systémů,&které&budou&při&řešení&určitého&
Šachové algoritmy využívající hluboké neuronové sítě
Bakalářská práce F3 České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky Šachové algoritmy využívající hluboké neuronové sítě Lukáš Hejl Otevřená informatika Informatika a
Heuristiky, best-first search, A* search.
Úvod do umělé inteligence Heuristiky, best-first search, A* search E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Informované prohledávání stavového prostoru Heuristické hledání nejlepší cesty
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
TGH13 - Teorie her I.
TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
2016, Brno Teorie Her
2016, Brno Teorie Her v kontextu umělé inteligence Motivace strana 2 / 20 V kolik hodin budu zítra ráno vstávat? jednoduché rozhodování, pokud mám představu co chci dělat Mám dnes nakoupit další akcie
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Univerzita Karlova v Praze. Matematicko-fyzikální fakulta. Jakub Tomek. Aplikace MCTS na hru Quoridor. Studijní program: informatika
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jakub Tomek Aplikace MCTS na hru Quoridor Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: RNDr. Jan
Automatizační a měřicí technika (B-AMT)
Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence
Laser game. Návod ke hře. Manual ver. 1.1
Laser game Návod ke hře Manual ver. 1.1 Praha 01/2010 Khet je zábavná a snadno pochopitelná hra, protože se všemi figurami se na rozdíl od šachů pohybuje stejným způsobem. Cílem hry je osvětlení, zasažení
Rozšířený obchod. Náhrada za slabý list (karty v ruce)
Tato alternativní pravidla jsou určena hráčům, kteří již mají s hrou World of Tanks: Rush určité zkušenosti a chtěli by svůj zážitek ze hry prohloubit, a také obecně zkušeným hráčům moderních společenských
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Úvod do teorie her
Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Ústav automatizace a měřicí techniky.
www.feec.vutbr.cz Specializace studijního oboru Automatizační a Měřicí Technika: Řídicí technika Moderní algoritmy řízení, teorie řízení Modelování a identifikace parametrů řízených systémů Pokročilé metody
CAS. Czech Association of Shogi
CAS Czech Association of Shogi www.cas.shogi.cz www.shogi.cz /Shogi.cz /Shogi.cz Príprava hry Při pohledu ze své vlastní strany staví hráč kameny v následujícím pořadí: První řada: ź kopiník jezdec stříbrný
Expe xp rtn t í n í sys s t ys é t my m PSY 481
Expertní systémy PSY 481 Stavové pole Expertní systémy (produkční systémy) mohou být přirovnány k nástrojům používaným při řešení problémů (problem solving). Konkrétněji na technikách založených na hledání
Obsah: CLP Constraint Logic Programming. u odpovědí typu A, B, C, D, E: jako 0)
Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Úvod do umělé inteligence 6/12 1 / 17 Průběžná písemná práce Průběžná písemná práce délka pro vypracování: 25
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS HRANÍ DETERMINISTICKÝCH
Martin Milata, <256615@mail.muni.cz> 27.11.2007. Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už je od
IB000 Lámání čokolády Martin Milata, 27.11.2007 1 Čokoláda s alespoň jedním sudým rozměrem Pokud je alespoň jeden rozměr čokolády sudý (s výjimkou tabulky velikosti 1x2, která už
PRAVIDLA HRY S VÝKLADEM...
1 Obsah OBSAH PRAVIDLA HRY S VÝKLADEM... 3 1. Obecné pokyny... 3 2. Zahájení partie... 4 3. Braní zajatců... 5 4. Zákaz sebevraždy... 7 5. Výjimka ze zákazu sebevraždy... 8 6. Pravidlo kó... 10 7. Pravidlo
Multirobotická kooperativní inspekce
Multirobotická kooperativní inspekce prostředí Diplomová práce Multirobotická kooperativní inspekce prostředí Diplomová práce Intelligent and Mobile Robotics Group Laboratory for Intelligent Decision Making
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function