Department of Cybernetics Czech Technical University in Prague. pechouc/kui/games.pdf
|
|
- Dagmar Dvořáková
- před 7 lety
- Počet zobrazení:
Transkript
1 Hraní dvouhráčových her, adversariální prohledávání stavového prostoru Michal Pěchouček Department of Cybernetics Czech Technical University in Prague pechouc/kui/games.pdf
2 ppoužitá literatura pro umělou inteligenci :: Artificial Intelligence: A Modern Approach (Second Edition) by Stuart Russell and Peter Norvig, 2002 Prentice Hall.
3 pprohledávání při hraní dvouhráčových her adversariální prohledávání (adversarial search) stavového prostoru (hraní her), implementuje inteligencí rozhodování v komutativním prostředí, kde dva nebo více agentů mají konfliktní cíle. teorie her komplikovaná vědní discipĺına, součást ekonomiky která analyzuje chování jednotlivých hráčů a výhodnost jejich strategíı (především s ohledem na stabilitu, maximalizaci společného zisku, atp.) ve vícehráčovém prostředí. /Úvod
4 pprohledávání při hraní dvouhráčových her adversariální prohledávání (adversarial search) stavového prostoru (hraní her), implementuje inteligencí rozhodování v komutativním prostředí, kde dva nebo více agentů mají konfliktní cíle. teorie her komplikovaná vědní discipĺına, součást ekonomiky která analyzuje chování jednotlivých hráčů a výhodnost jejich strategíı (především s ohledem na stabilitu, maximalizaci společného zisku, atp.) ve vícehráčovém prostředí. V umělé inteligence budeme především pracovat s následujícím typem her: deterministické s prvkem náhody s úplnou informací šachy, go, reversi backgamon s neúplnou informací stratego, wargaming bridge, poker, scrabble /Úvod
5 pprohledávání při hraní dvouhráčových her adversariální prohledávání (adversarial search) stavového prostoru (hraní her), implementuje inteligencí rozhodování v komutativním prostředí, kde dva nebo více agentů mají konfliktní cíle. teorie her komplikovaná vědní discipĺına, součást ekonomiky která analyzuje chování jednotlivých hráčů a výhodnost jejich strategíı (především s ohledem na stabilitu, maximalizaci společného zisku, atp.) ve vícehráčovém prostředí. V umělé inteligence budeme především pracovat s následujícím typem her: deterministické s prvkem náhody s úplnou informací šachy, go, reversi backgamon s neúplnou informací stratego, wargaming bridge, poker, scrabble Stavový prostor hry (herní strom) je dán opět počátečním stavem, stavovým operátorem, testem na ukončení hry a užitkovou funkcí. Cílem adversariálního prohledávání je nalézt nikoliv stav prostoru, nýbrž herní strategii. Strategie vybere nejvhodnější tah s ohledem na racionalitu protihráče. Optimální herní strategie je taková strategie (nepřesně), pro kterou neexistuje žádná lepší strategie, která by vedla k lepšímu výsledku při hře s bezchybným oponentem. /Úvod
6 MAX (X) MIN (O) X X X X X X X X X MAX (X) X O X O X O... MIN (O) X O X X O X X O X TERMINAL Utility X O X X O X X O X O X O O X X O X X O X O O
7 pminimax Algoritmus MINIMAX algoritmus děĺı stavový prostor do MAX a MIN úrovní. Na každé MAX úrovni hráč A vybere tah s maximálním užitkem a na každé MIN úrovni vybere protihráč tah naopak minimalizující užitek hráče A. /Úvod
8 pminimax Algoritmus MINIMAX algoritmus děĺı stavový prostor do MAX a MIN úrovní. Na každé MAX úrovni hráč A vybere tah s maximálním užitkem a na každé MIN úrovni vybere protihráč tah naopak minimalizující užitek hráče A. /Úvod
9 MAX (X) MIN (O) X X X X X X X X X MAX (X) X O X O X O... MIN (O) X O X X O X X O X TERMINAL Utility X O X X O X X O X O X O O X X O X X O X O O /Úvod
10 pminimax Algoritmus MINIMAX algoritmus děĺı stavový prostor do MAX a MIN úrovní. Na každé MAX úrovni hráč A vybere tah s maximálním užitkem a na každé MIN úrovni vybere protihráč tah naopak minimalizující užitek hráče A. Každý uzel ohodnotíme tzv. MINIMAX hodnotou: utility(n) minimax(n) = max s successors(n) minimax(n) min s successors(n) minimax(n) pro n terminalni uzel pro n je MAX uzel pro n je MIN uzel /Úvod
11 pminimax Algoritmus MAX 3 A a 1 a 2 a 3 MIN B C D b1 b2 b3 c1 c2 c3 d 1 d 2 d /Úvod
12 pminimax Algoritmus to move A ( 1, 2, 6) B ( 1, 2, 6) ( 1, 5, 2) C ( 1, 2, 6) ( 6, 1, 2) ( 1, 5, 2) ( 5, 4, 5) A ( 1, 2, 6) ( 4, 2, 3) ( 6, 1, 2) ( 7, 4, 1) ( 5, 1, 1) ( 1, 5, 2) (7, 7, 1) ( 5, 4, 5) /Úvod
13 pminimax algoritmus Minimax algorithm function Minimax-Decision(state) returns an action inputs: state, current state in game return the a in Actions(state) maximizing Min-Value(Result(a, state)) function Max-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v for a, s in Successors(state) do v Max(v, Min-Value(s)) return v function Min-Value(state) returns a utility value if Terminal-Test(state) then return Utility(state) v for a, s in Successors(state) do v Min(v, Max-Value(s)) return v Chapter 6 7 /Úvod
14 pvlastnosti Algoritmu MinMax úplné:
15 pvlastnosti Algoritmu MinMax úplné: ANO (je-li prostor konečné) čas:
16 pvlastnosti Algoritmu MinMax úplné: ANO (je-li prostor konečné) čas: O(b d ) paměť:
17 pvlastnosti Algoritmu MinMax úplné: ANO (je-li prostor konečné) čas: O(b d ) paměť: O(bd) optimální:
18 pvlastnosti Algoritmu MinMax úplné: ANO (je-li prostor konečné) čas: O(b d ) paměť: O(bd) optimální: ano
19 pcut-off search Problém minimaxu je, že počet stavů hry roste exponenciálně s počtem tahů. V reálných hrách je prostor hry ohromný a nelze ho celý prohledat v rozumném čase. Tento problém lze řešit pomocí: omezením hloubky d terminal test nahradíme cut off test odhadu místo přesné hodnoty užitku v případě, že d < b utility nahradíme eval. příklad funkce eval může být: počet vyřazených figurek vážený součet počtu vyřazených figurek vážený součet vhodnosti strategickém umístěni každé figurky /Úvod
20 pcut-off search Problém minimaxu je, že počet stavů hry roste exponenciálně s počtem tahů. V reálných hrách je prostor hry ohromný a nelze ho celý prohledat v rozumném čase. Tento problém lze řešit pomocí: omezením hloubky d terminal test nahradíme cut off test odhadu místo přesné hodnoty užitku v případě, že d < b utility nahradíme eval. příklad funkce eval může být: počet vyřazených figurek vážený součet počtu vyřazených figurek vážený součet vhodnosti strategickém umístěni každé figurky eval(s) = w 1 f 1 (s) + w 2 f 2 (s) w n f n (s) = i=1 n w i f i (s) např., pro w 1 = 9, f 1 (s) = (number of white queens) - (number of black queens) /Úvod
21 pcut-off search Problém minimaxu je, že počet stavů hry roste exponenciálně s počtem tahů. V reálných hrách je prostor hry ohromný a nelze ho celý prohledat v rozumném čase. Tento problém lze řešit pomocí: omezením hloubky d terminal test nahradíme cut off test odhadu místo přesné hodnoty užitku v případě, že d < b utility nahradíme eval. příklad funkce eval může být: počet vyřazených figurek vážený součet počtu vyřazených figurek vážený součet vhodnosti strategickém umístěni každé figurky /Úvod
22 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci /Úvod
23 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci Digression: Exact values don t matter MAX MIN Behaviour is preserved under any monotonic transformation of Eval Only the order matters: payoff in deterministic games acts as an ordinal utility function Chapter 6 23 /Úvod
24 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci problémy, zlepšení: /Úvod
25 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci problémy, zlepšení: je třeba ohodnocovat pomocí eval jen klidné (quiescent) stavy stavy, které nezpůsobí následnou výraznou změnu v hodnotě /Úvod
26 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci problémy, zlepšení: je třeba ohodnocovat pomocí eval jen klidné (quiescent) stavy stavy, které nezpůsobí následnou výraznou změnu v hodnotě je třeba zabránit horizontálnímu efektu situaci, kdy program musí udělat tah, který způsobí velkou ztrátu /Úvod
27 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci problémy, zlepšení: je třeba ohodnocovat pomocí eval jen klidné (quiescent) stavy stavy, které nezpůsobí následnou výraznou změnu v hodnotě je třeba zabránit horizontálnímu efektu situaci, kdy program musí udělat tah, který způsobí velkou ztrátu /Úvod
28 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci problémy, zlepšení: je třeba ohodnocovat pomocí eval jen klidné (quiescent) stavy stavy, které nezpůsobí následnou výraznou změnu v hodnotě je třeba zabránit horizontálnímu efektu situaci, kdy program musí udělat tah, který způsobí velkou ztrátu lze použít singulární extenzi tah, který jde za cut-off, ale jasně zlepšuje eval hodnotu (podobné jako quiescent prohledávání ale s b = 1) /Úvod
29 pcut-off search degrese: přesné hodnoty eval nejsou důležité - korektní chování algoritmu je zachováno při libovolné monotónní transformaci problémy, zlepšení: je třeba ohodnocovat pomocí eval jen klidné (quiescent) stavy stavy, které nezpůsobí následnou výraznou změnu v hodnotě je třeba zabránit horizontálnímu efektu situaci, kdy program musí udělat tah, který způsobí velkou ztrátu lze použít singulární extenzi tah, který jde za cut-off, ale jasně zlepšuje eval hodnotu (podobné jako quiescent prohledávání ale s b = 1) Mějme k dispozici 3 minuty s a uvažujme 10 6 operací za sekundu. Můžeme tedy prohledat uzlů na tah což je V šachách můžeme tedy pracovat s hloubkou 5. /Úvod
30 palfa-beta Prořezávání Velikost stavového prostoru hry lze rovněž efektivně zmenšit pomocí metody alfa-beta prořezávání. Tato metoda umožní identifikovat části stavového prostoru, které jsou nalezení optimálního řešení neelegantně. Při aplikaci na standardní stavový prostor vrátí stejnou strategii jako Minimax a prořeže nerelevantní části prostoru. /Úvod
31 palfa-beta Prořezávání Velikost stavového prostoru hry lze rovněž efektivně zmenšit pomocí metody alfa-beta prořezávání. Tato metoda umožní identifikovat části stavového prostoru, které jsou nalezení optimálního řešení neelegantně. Při aplikaci na standardní stavový prostor vrátí stejnou strategii jako Minimax a prořeže nerelevantní části prostoru. MAX 3 A a 1 a 2 a 3 MIN B C D b1 b2 b3 c1 c2 c3 d 1 d 2 d min-max(a) = max(min(3, 12, 8), min(2, 4, 6), min(14, 5, 2)) = max(3, min(2, x, y), 2) = max(3, z, 2), z 2 /Úvod
32 palfa-beta Prořezávání Velikost stavového prostoru hry lze rovněž efektivně zmenšit pomocí metody alfa-beta prořezávání. Tato metoda umožní identifikovat části stavového prostoru, které jsou nalezení optimálního řešení neelegantně. Při aplikaci na standardní stavový prostor vrátí stejnou strategii jako Minimax a prořeže nerelevantní části prostoru. Klasický Minimax algoritmus rozšíříme následujícím způsobem: zavedeme hodnotu: α nejlepší známá hodnota pro uzel MAX β nejlepší známá hodnota pro uzel MIN na každé MAX úrovni před tím než ohodnotíme následníky, rovnáme minmax hodnotu s hodnotou β. je-li minmax > β pak se tato část stromu se neprohledává na každé MIN úrovni před tím než ohodnotíme následníky, rovnáme minmax hodnotu s hodnotou α. je-li minmax < α pak se tato část stromu se neprohledává /Úvod
33 palfa-beta Prořezávání The α β algorithm function Alpha-Beta-Decision(state) returns an action return the a in Actions(state) maximizing Min-Value(Result(a, state)) function Max-Value(state, α, β) returns a utility value inputs: state, current state in game α, the value of the best alternative for max along the path to state β, the value of the best alternative for min along the path to state if Terminal-Test(state) then return Utility(state) v for a, s in Successors(state) do v Max(v, Min-Value(s, α, β)) if v β then return v α Max(α, v) return v function Min-Value(state, α, β) returns a utility value same as Max-Value but with roles of α, β reversed Chapter 6 19 /Úvod
34 (a) [, + ] A (b) [, + ] A [, 3 ] B [, 3 ] B (c) [ 3, + ] A (d) [ 3, + ] A [ 3, 3 ] B [ 3, 3 ] B [, 2 ] C (e) [ 3, 14 ] A (f) [ 3, 3 ] A [ 3, 3 ] [, 2 ] [, 14 ] B C D [ 3, 3 ] [, 2 ] [ 2, 2 ] B C D
35 palfa-beta Prořezávání Player Opponent m Player Opponent n /Úvod
36 pvlastnosti Alpha-Beta Prořezávání /Úvod
37 pvlastnosti Alpha-Beta Prořezávání prořezávání nemá vliv na výsledek /Úvod
38 pvlastnosti Alpha-Beta Prořezávání prořezávání nemá vliv na výsledek lze dokázat, že časová náročnost klesne na O(b d/2 ) v případě, že vždy vybere nejlepší expandand (to implikuje možnost zdvojnásobit hloubku prohledávání) /Úvod
39 pvlastnosti Alpha-Beta Prořezávání prořezávání nemá vliv na výsledek lze dokázat, že časová náročnost klesne na O(b d/2 ) v případě, že vždy vybere nejlepší expandand (to implikuje možnost zdvojnásobit hloubku prohledávání) při náhodném výběru časová náročnost klesne na O(b 3d/4 ) /Úvod
40 pvlastnosti Alpha-Beta Prořezávání prořezávání nemá vliv na výsledek lze dokázat, že časová náročnost klesne na O(b d/2 ) v případě, že vždy vybere nejlepší expandand (to implikuje možnost zdvojnásobit hloubku prohledávání) při náhodném výběru časová náročnost klesne na O(b 3d/4 ) dopředné prořezávání (forward punning): tvrdé prořezávání jasně nevýhodných tahů. nebezpečný přístup především v okoĺı kořene herního stromu /Úvod
41 pvlastnosti Alpha-Beta Prořezávání prořezávání nemá vliv na výsledek lze dokázat, že časová náročnost klesne na O(b d/2 ) v případě, že vždy vybere nejlepší expandand (to implikuje možnost zdvojnásobit hloubku prohledávání) při náhodném výběru časová náročnost klesne na O(b 3d/4 ) dopředné prořezávání (forward punning): tvrdé prořezávání jasně nevýhodných tahů. nebezpečný přístup především v okoĺı kořene herního stromu Při použití uzlů na tah (cca 3 minuty) hloubkou 10, což není vůbec špatné metoda α/β bude pracovat s /Úvod
42 pnegamax Zjednodušená varianta Minimaxu, kterou je možno použít pro hry s nulovým (konstantním) součtem (zero-sum games). Zisk jednoho hráče se přesně rovná ztrátě druhého hráče. function negamax(node, depth, alpha, beta) if node is a terminal node or depth = 0 return the heuristic value of node else foreach child of node alpha := max(alpha, -negamax(child, depth-1, -beta, -alpha)) if alpha >= beta return beta return alpha
43 pnegascout (Principle Variation Search) - doplňková znalost Vylepšená varianta minimaxu s α/β prořezáváním. NegaScout dominuje (je lepší než) α/β prořezávání. Nikdy neprohledá uzel, který by byl prořezán α/β prořezáváním. NegaScout vychází ze správného uspořádání uzlů. V praktických aplikacích je správného uspořádání uzlů dosaženo předchozími mělkými prohledáváními. Prořezává prostor výrazně efektivněji. Předpokládá, že první uzel je ten nejlepší k prořezání. To kontroluje pomocí velmi rychlého prohledání s nulovým okénkem (null=window search, kde α = β). Považován za jeden z nejlepších algoritmů používaný v nových šachových programech.
44 pnegascout (Principle Variation Search) - doplňková znalost function negascout(node, depth, alpha, beta) if node is a terminal node or depth = 0 return the heuristic value of node b := beta foreach child of node v := -negascout (child, depth-1, -b, -alpha) if alpha < v < beta and not the first child v := -negascout(child, depth-1, -beta, -v) alpha := max(alpha, v) if alpha>=beta return alpha b := alpha+1 return alpha
45 pmtd-f (Memory-enhanced Test Driver Search) - doplňková znalost Velmi efektivní prohledávací algoritmus, používaný v nových šachových programech. Pracuje tak, že opakovaně spouští alfa-beta algoritmus, který pracuje s nulovým oknem pamatuje si všechny prošlé uzly
46 pmtd-f (Memory-enhanced Test Driver Search) - doplňková znalost function MTDF(root, f, d)p g := f upperbound := +inf lowerbound := -inf while lowerbound < upperbound if g = lowerbound then beta := g+1 else beta := g g := AlphaBetaWithMemory(root, beta-1, beta, d) if g < beta then upperbound := g else lowerbound := g return g
47 ṕuspěšné herní algoritmy Dáma: v roce 1994 porazil poprvé po 40 letech algoritmus chinook mistryni světa v dámě Marion Tinsley. Bylo použito databáze koncových tahů pro všechny pozice, které zahrnovali 8 a méně kamenů na šachovnici. Koncových tahů bylo celkem 443,748,401,247 Šachy: v roce 1997 porazil Deep Blue Garyho Kasparova v šestikolovém zápasu. Deep Blue prohledal 200 million pozic za vteřinu a použil velmi sofistikované (a tajné) metody evaluace, které místy umožnily prohledávání do hloubky 40 tahů Othello: lidé odmítají hrát s počítačem... Go: lidé odmítají hrát s počítačem... (je přespříliš dobrý). V Go je b > 300. Většina algoritmu používá databáze tahů. /Úvod
48 phry s prvkem náhody Aplikace klasické metody MINIMAXU, kdy MINIMAX hodnoty jsou nahrazeny očekávanými hodnotami EMINMAX: /Úvod
49 phry s prvkem náhody Nondeterministic games: backgammon Chapter 6 25
50 phry s prvkem náhody Aplikace klasické metody MINIMAXU, kdy MINIMAX hodnoty jsou nahrazeny očekávanými hodnotami EMINMAX: /Úvod
51 phry s prvkem náhody Aplikace klasické metody MINIMAXU, kdy MINIMAX hodnoty jsou nahrazeny očekávanými hodnotami EMINMAX: eminimax(n) = utility(n) max s successors(n) eminimax min s successors(n) eminimax s successors(n) P (s).eminimax pro n terminalni uzel pro n je MAX uzel pro n je MIN uzel pro n je uzel nahody /Úvod
52 phry s prvkem náhody Aplikace klasické metody MINIMAXU, kdy MINIMAX hodnoty jsou nahrazeny očekávanými hodnotami EMINMAX: MAX CHANCE MIN B /36 1,1 1/18 1, /18 1/36 6,5 6, CHANCE C MAX 1/36 1,1... 1/18 1,2... 1/18 1/36 6,5 6, TERMINAL /Úvod
53 phry s prvkem náhody hod kostkou zvyšuje b 21 možných hodů se 2 kostkami. Backgammon má cca 20 legálních tahů. depth 4 = 20 (21 20) se vzrůstající hloubkou klesá pravěpodobnost dosažení daného uzlu význam predikce klesá α/β prořezávání je velmi efektivní TDGammon prohledává do hloubky 2 a používá velmi dobrou funkci eval mistrovská úroveň /Úvod
54 phry s prvkem náhody degrese: přesné hodnoty eval jsou důležité - korektní chování algoritmu je zachováno při libovolné positivní lineární transformaci Digression: Exact values DO matter MAX DICE MIN Behaviour is preserved only by positive linear transformation of Eval Hence Eval should be proportional to the expected payoff Chapter 6 29 /Úvod
55 phry v reálném čase /Úvod
56 phry v reálném čase asynchronní šachy /Úvod
57 phry v reálném čase asynchronní šachy /Úvod
58 phry v reálném čase asynchronní šachy robotický fotbal /Úvod
59 phry v reálném čase asynchronní šachy robotický fotbal /Úvod
60 ṕuvod do teorie her Hraní dvou-a více-hráčových her je příkladem distribuovaného (kolektivního) rozhodování (DR). Dalším příkladem DR je například: hlasování aukční řízení formování koalic řízení týmové práce dělení zisku Teorie her zkoumá vlastnosti distribuované rozhodování při použití různých strategíı a stejně tak se zabývá nalézáním rozhodovacích strategíı, které budou mít za následek specifické vlastnosti DR (například stabilitu). Distribuované rozhodování lze měřit s ohledem na: individuální užitek kolektivní užitek (social welfare) pareto-optimalitu individuální racionalitu hráče stabilitu dominanci Problém: jak zajistit stabilitu individuálně racionální akce v kompetitivním prostředí? /Úvod
61 ṕuvod do teorie her pareto-optimální kolektivní rozhodnutí: neexistuje žádné jiné kolektivní rozhodnutí, kde by některý z hráčů dostal větší výplatu a žádný z hráčů by nedostal horší pareto-optimalita neoptimalizuje kolektivní užitek, zajišťuje racionalitu chování hráčů při znalosti o akcích protihráčů Nashovo equilibrium: každý z hráčů hraje individuálně optimální strategie hráče za předpokladu, že všichni hráči použijí tutéž strategii není racionální se vychylovat od Nashova equilibria ne každá hra má Nashovo equilibrium v některých hrách, které vyžadují sekvenci akcí je těžké Nashovo equilibrium udržet perfektní Nashovo equilibrium: equilibrium i ve všech následných akcích /Úvod
62 ṕuvod do teorie her outcomes τ payoffs u(τ, (A, B)) { (Ac, B c ) (A c, B d ) (A d, B c ) (A d, B d ) } { (1, 1) (5, 0) (0, 5) (3, 3) } /Úvod
63 ṕuvod do teorie her outcomes τ payoffs u(τ, (A, B)) { (Ac, B c ) (A c, B d ) (A d, B c ) (A d, B d ) } { (1, 1) (5, 0) (0, 5) (3, 3) } strategie hráčů: ξ A = (A d, B c ) 0 (A c, B c ) 1 (A d, B d ) 3 (A c, B d ) 5 ξ B = (A c, B d ) 0 (A c, B c ) 1 (A d, B d ) 3 (A d, B c ) 5 /Úvod
! Kyberne(ka!a!umělá!inteligence! 8.!Hraní!dvouhráčových!her,!adversariální! prohledávání!stavového!prostoru!!!!
! Kyberne(ka!a!umělá!inteligence! 8.!Hraní!dvouhráčových!her,!adversariální! prohledávání!stavového!prostoru!!!! Ing.%Michal%Pěchouček,%Ph.D.% Katedra%kyberne;ky% ČVUT%v%Praze,%FEL% Evropský!sociální!fond!
Obsah: Hry Prohledávání stavového prostoru. Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus Alfa-Beta prořezávání Nedeterministické
Hry a UI historie. agent musí brát v úvahu akce jiných agentů jak ovlivní jeho. vliv ostatních agentů prvek náhody. Hry: Obsah:
Obsah: Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Hry s nepřesnými znalostmi Hry a UI historie Úvod do umělé inteligence 7/1 1 / 5 Hry a UI historie Babbage,
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus Alfa-Beta prořezávání Nedeterministické
Hry a UI historie. von Neumann, 1944 algoritmy perfektní hry Zuse, Wiener, Shannon, přibližné vyhodnocování
Hry a UI historie Hry vs. Prohledávání stavového prostoru Hry a UI historie Babbage, 1846 počítač porovnává přínos různých herních tahů von Neumann, 1944 algoritmy perfektní hry Zuse, Wiener, Shannon,
HRY A UI HISTORIE. Hry vs. Prohledávání stavového prostoru. Obsah:
Úvod do umělé inteligence Připomínka průběžná písemka Hry a základní herní strategie PŘIPOMÍNKA PRŮBĚŽNÁ PÍSEMKA E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Připomínka průběžná písemka Algoritmus
Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem
Hry dvou hráčů (např. šachy) Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho znamená ztrátu druhého hráče. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem soupeře, který se snaží náš zisk
Hry a UI historie. Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Statistické výsledky průběžné písemky Obsah: Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Statistické výsledky průběžné písemky Hry s nepřesnými znalostmi
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi. 72 studentů
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Hry a UI historie. Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Statistické výsledky průběžné písemky Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Algoritmus Minimax Hry s
Obsah: Hry vs. Prohledávání stavového prostoru Algoritmus Minimax. Nedeterministické hry Hry s nepřesnými znalostmi
Hry a základní herní strategie Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Hry vs. Prohledávání stavového prostoru Algoritmus Minimax Algoritmus
Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem
Hry dvou hráčů (např. šachy) Uvažujeme jen hry s nulovým součtem, tj. zisk jednoho znamená ztrátu druhého hráče. Střídá se náš tah, kde maximalizujeme svůj zisk, s tahem soupeře, který se snaží náš zisk
Algoritmy pro hraní tahových her
Algoritmy pro hraní tahových her Klasické deskové hry pro dva hráče: Šachy Dáma Go Piškvorky Reversi Oba hráči mají úplnou znalost pozice (na rozdíl např. od Pokeru). 1 Základní princip Hraní tahových
Počítačové šachy. Otakar Trunda
Počítačové šachy Otakar Trunda Hraní her obecně Hra je definovaná pomocí: Počáteční situace Funkce vracející množinu přípustných tahů v každé situaci Ohodnocení koncových stavů Našim cílem je najít strategii
Neinformované metody prohledávání stavového prostoru. Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague http://labe.felk.cvut.cz/~ tkrajnik/kui2/data/k333/1.pdf
Varianty Monte Carlo Tree Search
Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo Department of Cybernetics Czech Technical University in Prague http://cw.felk.cvut.cz/doku.php/courses/a3b33kui/start
Hraní her. (Teorie a algoritmy hraní her) Řešení úloh hraní her. Václav Matoušek /
Hraní her (Teorie a algoritmy hraní her) 8. 3. 2019 2-1 Hraní her pro dva a více hráčů Počítač je při hraní jakékoli hry: silný v komplikovaných situacích s množstvím kombinací, má obrovskou znalost zahájení
2. Řešení úloh hraní her Hraní her (Teorie a algoritmy hraní her)
Hraní her (Teorie a algoritmy hraní her) 4. 3. 2015 2-1 Hraní her pro dva a více hráčů Počítač je při hraní jakékoli hry: silný v komplikovaných situacích s množstvím kombinací, má obrovskou znalost zahájení
Základy umělé inteligence
Základy umělé inteligence Hraní her (pro 2 hráče) Základy umělé inteligence - hraní her. Vlasta Radová, ZČU, katedra kybernetiky 1 Hraní her (pro dva hráče) Hraní her je přirozeně spjato s metodami prohledávání
Obsah: E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ 7 9 Algoritmus Minimax. 7 9 Nedeterministick і hry 7 9 Hry s nep 0 0esn 0 5mi znalostmi
1 3Hry a z kladn hern strategie Ale 0 8 Hor k E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: 7 9 Statistick і v 0 5sledky pr 0 1b ї 0 6n і p semky 7 9 Hry vs. Prohled v n stavov іho prostoru
Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnes Dosud popisované algoritmy nepředpokládaly přítomnost dalších agentů v prostředí, zvlášť ne agentů,
Úvod do teorie her
Úvod do teorie her. Formy her a rovnovážné řešení Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 208 ÚTIA AV ČR Program. Definujeme 2 základní formy pro studium různých her: rozvinutou, strategickou. 2.
a4b33zui Základy umělé inteligence
LS 2011 Jméno: a4b33zui Základy umělé inteligence 10.6.2011 O1 O2 O3 O4 O5 Total (50) Instrukce: Na vypracování máte 90 min, můžete použít vlastní materiály nebo poznámky. Použití počítače nebo mobilního
Stručný úvod do teorie her. Michal Bulant
Stručný úvod do teorie her Michal Bulant Čím se budeme zabývat Alespoň 2 hráči (osoby, firmy, státy, biologické druhy apod.) Každý hráč má určitou množinu strategií, konkrétní situace (outcome) ve hře
Algoritmy pro práci s neúplnou informací
Michal Krkavec 23. listopadu 2011 Obsah Náhoda Expectimax Neúplné informace Monte Carlo Tree Search Perfect Information Monte Carlo Realtime plánování Plánování v RTS Monte Carlo Plánování Expectimax Expectimax
Prohledávání do šířky a do hloubky. Jan Hnilica Počítačové modelování 15
Prohledávání do šířky a do hloubky Jan Hnilica Počítačové modelování 15 1 Prohledávací algoritmy Úkol postupně systematicky prohledat vymezený stavový prostor Stavový prostor (SP) možné stavy a varianty
Algoritmus Minimax. Tomáš Kühr. Projektový seminář 1
Projektový seminář 1 Základní pojmy Tah = přemístění figury hráče na tahu odpovídající pravidlům dané hry. Při tahu může být manipulováno i s figurami soupeře, pokud to odpovídá pravidlům hry (např. odstranění
TGH13 - Teorie her I.
TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,
Anotace. Středník II!! 7. 5. 2010 programování her.
Anotace Středník II!! 7. 5. 2010 programování her. Teorie her Kombinatorická hra je hrou dvou hráčů. Stav hry je určen pozicí nějakých předmětů. Všechny zúčastněné předměty jsou viditelné. Jde o tzv. hru
Optimalizace & soft omezení: algoritmy
Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných
Monte Carlo Tree Search. Marika Ivanová
Monte Carlo Tree Search Marika Ivanová 23. 10. 2012 Obsah Představení Základní vlastnosti Oblast použití Bandit Problem Popis metody Algoritmus UCT Charakteristika Terminologie Vylepšení a Heuristiky Aplikace
A4B33ZUI Základy umělé inteligence
LS 2014 Jméno: A4B33ZUI Základy umělé inteligence 11. 6. 2014 O1 O2 O3 O4 O5 Total (50) Instrukce: Na vypracování máte 150 min, můžete použít vlastní poznámky v podobě ručně popsaného listu A4. Použití
Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru
Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících
(Ne)kooperativní hry
(Ne)kooperativní hry Tomáš Svoboda, svobodat@fel.cvut.cz katedra kybernetiky, centrum strojového vnímání 5. října 2015 Tomáš Svoboda, svobodat@fel.cvut.cz / katedra kybernetiky, CMP / (Ne)kooperativní
Osadníci z Katanu. a Monte Carlo Tree Search. David Pěgřímek. http://davpe.net MFF UK (2013) 1 / 24
.. Osadníci z Katanu a Monte Carlo Tree Search David Pěgřímek http://davpe.net MFF UK (2013) 1 / 24 Osadníci z Katanu autor hry Klaus Teuber (1995 Německo) strategická desková hra pro 3 až 4 hráče hra
Obsah: Problém osmi dam
Prohledávání stavového prostoru leš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Problém osmi dam Prohledávání stavového prostoru Neinformované prohledávání Úvod do umělé inteligence
Složitost her. Herní algoritmy. Otakar Trunda
Složitost her Herní algoritmy Otakar Trunda Úvod měření složitosti Formální výpočetní model Turingův stroj Složitost algoritmu = závislost spotřebovaných prostředků na velikosti vstupu Časová složitost
Šachové algoritmy využívající hluboké neuronové sítě
Bakalářská práce F3 České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky Šachové algoritmy využívající hluboké neuronové sítě Lukáš Hejl Otevřená informatika Informatika a
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Heuristické řešení problémů. Seminář APS Tomáš Müller 6. 7. 2002
Heuristické řešení problémů Seminář APS Tomáš Müller 6. 7. 00 Heuristické řešení problémů Popis několika základních metod lokální prohledávání branch and bound simulated annealing, TABU evoluční algoritmy
"Agent Hledač" (3. přednáška)
"Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"
Úvod do teorie her
Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 1 Řešení úloh 1. dílčí téma: Řešení úloh ve stavovém prostoru Počáteční období výzkumu v oblasti umělé inteligence (50. a 60. léta) bylo charakterizováno
TEORIE HER - ÚVOD PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 2. Zuzana Bělinová
PŘEDNÁŠKA 2 TEORIE HER - ÚVOD Teorie her matematická teorie rozhodování dvou racionálních hráčů, kteří jsou na sobě závislí Naznačuje, jak by se v takové situaci chovali racionální a informovaní hráči.
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Neinformované (slepé) prohledávání umí najít (optimální) řešení problému, ale ve většině případů
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací
Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
Dokumentace programu piskvorek
Dokumentace programu piskvorek Zápočtového programu z Programování II PRM045 Ondřej Vostal 20. září 2011, Letní semestr, 2010/2011 1 Stručné zadání Napsat textovou hru piškvorky se soupeřem s umělou inteligencí.
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Pavel Kotrč Analýza hry Gobblet prostředky umělé inteligence Katedra teoretické informatiky a matematické logiky Vedoucí diplomové
Koaliční hry. Kooperativní hra dvou hráčů
Koaliční hry Obsah kapitoly. Koalice dvou hráčů 2. Koalice N hráčů Studijní cíle Cílem tohoto tematického bloku je získání základního přehledu o kooperativních hrách a jejich aplikovatelnosti. Student
Umělá inteligence. UI (AI) - součást informatiky s průniky mimo obor Stručná historie UI. Letošní cena nadace Vize 2000 - Joseph Weizenbaum
Umělá inteligence UI (AI) - součást informatiky s průniky mimo obor Stručná historie UI 1943-56 začátky (modelování neuronů a sítí na počítači) 1952-69 velká očekávání (GPS, Lisp, microworlds) 1966-74
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Programová realizace jednoduché strategické hry Květoslav Čáp Bakalářská práce 2010 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Gymnázium, Praha 6, Arabská 14. předmět Programování, vyučující Tomáš Obdržálek. Počítačová hra Fotbalový Manažer. ročníkový projekt.
Gymnázium, Praha 6, Arabská 14 předmět Programování, vyučující Tomáš Obdržálek Počítačová hra Fotbalový Manažer ročníkový projekt Jan, 1E květen 2014 Anotace: Fotbalový Manažer je strategická hra pouze
Pavel Veselý Proof-number search, Lambda search a jejich vylepšení
Proof-number search, Lambda search a jejich vylepšení Osnova Proof-number search (PNS) Úprava na prohledávání do hloubky, PDS a PDS-PN Depth-first proof-number search a vylepšení Lambda search Dual lambda
Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace
Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní
Seminář z umělé inteligence. Otakar Trunda
Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:
u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming
Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
Genetické programování
Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace
Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start
Předmět: Algoritmizace praktické aplikace
Předmět: Algoritmizace praktické aplikace Vytvořil: Roman Vostrý Zadání: Vytvoření funkcí na stromech (reprezentace stromu haldou). Zadané funkce: 1. Počet vrcholů 2. Počet listů 3. Součet 4. Hloubka 5.
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Umělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
Aplikace teorie her. V ekonomice a politice Ing. Václav Janoušek
Aplikace teorie her V ekonomice a politice Ing. Václav Janoušek Co je teorie her a její využití Teorie her obor aplikované matematiky a operační analýzy, sloužící k analýze konfliktních a strategických
Teorie her a ekonomické rozhodování. 2. Maticové hry
Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru
Úvod do teorie her. 6. Koaliční hry
Úvod do teorie her 6. Koaliční hry Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2018 ÚTIA AV ČR Různé formy her Známé formy her jsou: rozvinutá, strategická, koaliční. Pro danou množinu hráčů N = {1,...,
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Anotace. zpět k rekurzi: teorie her. Martin Pergel,
Anotace Hashování, zpět k rekurzi: Vyhodnocení výrazu, teorie her. Hashování Máme-li data, kterými lze indexovat, ale hodnoty by byly příliš velké (například řetězce), má smysl zkusit spočítat nějakou
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
HRA GOMOKU FAKULTA INFORMAČNÍCH TECHNOLOGIÍ BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS HRA GOMOKU
TEORIE HER Meta hry PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 4. Zuzana Bělinová
PŘEDNÁŠKA 4a TEORIE HER Meta hry OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 4 Strategické hry se nenulovým součtem počet hráčů není dán, ale dále uvažujeme 2 hráče hrající racionálně Meta
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty
IV113 Validace a verifikace. Detekce akceptujícího cyklu. Jiří Barnat
IV113 Validace a verifikace Detekce akceptujícího cyklu Jiří Barnat Připomenutí V113 Úvod do validace a verifikace: Detekce akceptujícího cyklu str. 2/37 Problém Kripkeho struktura M LTL formule ϕ M =
Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky
Zpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný
Geneticky vyvíjené strategie Egyptská hra SENET
Geneticky vyvíjené strategie Egyptská hra SENET Lukáš Rypáček, lukor@atrey.karlin.mff.cuni.cz Abstrakt V tomto dokumentu popíši jeden příklad použití genetických algoritmů pro počítačové hraní her. V tomto
SYSTÉMOVÁ METODOLOGIE III Obecná teorie systémů. Ak. rok 2011/2012 vbp 1
SYSTÉMOVÁ METODOLOGIE III Obecná teorie systémů Ak. rok 2011/2012 vbp 1 Systémová metodologie OBECNÁ TEORIE SYSTÉMŮ (OTS) Ak. rok 2011/2012 vbp 2 její snahou je nalezení metodologické kostry věd, tj. snaží
GENERAL GAME PLAYING Marika Ivanová Seminář Herní Algoritmy, 12. 12. 2012
GENERAL GAME PLAYING Marika Ivanová Seminář Herní Algoritmy, 12. 12. 2012 Obsah Koncept GGP Herní model Reprezentace znalostí Hráči (General Game Players) Řídící systém Závěr Koncept GGP Snaha o vytvoření
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
2016, Brno Teorie Her
2016, Brno Teorie Her v kontextu umělé inteligence Motivace strana 2 / 20 V kolik hodin budu zítra ráno vstávat? jednoduché rozhodování, pokud mám představu co chci dělat Mám dnes nakoupit další akcie
Řízení rychlosti vozu Formule 1 pomocí rozhodovacího diagramu
Řízení rychlosti vozu Formule 1 pomocí rozhodovacího diagramu Jiří Vomlel Ústav teorie informace a automatizace (ÚTIA) Akademie věd České republiky http://www.utia.cz/vomlel Praha, 29. února 2016 Fyzikální
Lineární diskriminační funkce. Perceptronový algoritmus.
Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být