Teorie her a ekonomické rozhodování. 2. Maticové hry
|
|
- Vladimír Jaroslav Bednář
- před 9 lety
- Počet zobrazení:
Transkript
1 Teorie her a ekonomické rozhodování 2. Maticové hry
2 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících tahů, přičemž hráči se v tazích střídají 2
3 2.1 Maticová hra Hra v normálním tvaru je dána: množinou hráčů {1, 2,, N} předpokládejme pro jednoduchost, že N = 2 množinou prostorů strategií {X1, X2,, XN}, kde Xi označuje prostor strategií i-tého hráče předpokládejme pro jednoduchost prostory X a Y, strategie x a y množinou výplatních funkcí {f1(x1, x2,, xn), f2(x1, x2,, xn),, fn(x1, x2,, xn)} předpokládejme pro jednoduchost f1(x,y) a f2(x,y) 3
4 2.1 Maticová hra Hráči jsou inteligentní: Maximalizují užitek (hodnotu své výplatní funkce) Mají dokonalé informace o hře, tzn. znají Množinu hráčů Svůj prostor strategií a svou výplatní funkci Prostory strategií a výplatní funkce ostatních hráčů Všichni provádí rozhodnutí najednou 4
5 2.1 Maticová hra Antagonistický konflikt = co jeden získá, to druhý ztratí (spolupráce nemá smysl) Hra s konstantním součtem: f 1 x, y + f 2 x, y = K Hra s nulovým součtem (ekvivalentní): f 1 x, y + f 2 x, y = 0, a tedy f 1 x, y = f 2 x, y f x, y 5
6 2.1 Maticová hra Konečný prostor strategií obou hráčů 1. hráč X = {x1, x2,, xm} 2. hráč Y = {y1, y2,, yn} Celkem tedy existuje m x n možných kombinací strategií a každé lze přiřadit výhru f(x,y) Všechny tyto výhry lze uspořádat do matice 6
7 2.1 Maticová hra A = a 11 a 1n a m1 a mn 1. hráč xi 2. hráč yj 1. hráč získá aij 2. hráč získá aij (ztratí aij) 7
8 2.2 Dominování Příklad A = hráč volí řádek: X = {x1, x2, x3} 2. hráč volí sloupec: Y = {y1, y2, y3} Kterou strategii 1. hráč určitě nezvolí? Kterou strategii 2. hráč určitě nezvolí? Optimální strategie (x3, y3) 8
9 2.2 Dominování 1. hráč nebude volit řádek se všemi prvky menšími, než jsou odpovídající prvky v jiném řádku (měl by s jistotou nižší zisk) 2. hráč nebude volit sloupec se všemi prvky většími, než jsou odpovídající prvky v jiném sloupci (měl by s jistotou vyšší ztrátu) Hráč nikdy nezvolí silně dominovanou strategii silná dominovanost 9
10 2.2 Dominování Slabá dominovanost: Prvky v odpovídajícím řádku jsou menší nebo rovny prvkům v jiném řádku (1. hráč) či Prvky v odpovídajícím sloupci jsou větší nebo rovny prvkům v jiném sloupci (2. hráč) Využívat budeme pouze silnou dominovanost 10
11 2.2 Dominování Pomocí silné dominovanosti lze redukovat rozměr matice hry najít ve speciálních případech optimální strategii (jen zřídka viz předchozí případ) 11
12 2.3 Nashova rovnováha Nashova rovnováha = návod, jak najít optimální strategie hráčů ve hře (maticové) John F. Nash, Jr Nobelova cena za ekonomii 12
13 2.3 Nashova rovnováha Pokud se některý z hráčů odchýlí od své optimální strategie (zatímco soupeř se své optimální strategie držet bude), nepolepší si Tzn. pokud se hráč nedrží optimální strategie, pohorší si (a v nejlepším případě na tom bude stejně) 13
14 2.3 Nashova rovnováha Nashova rovnováha: x o X, y o Y f 1 (x, y o ) f 1 (x o, y o ) a f 2 (x o, y) f 2 (x o, y o ) Pro hru s nulovým součtem: f 1 (x, y) f(x, y) a f 2 x, y f(x, y o ) f(x o, y o ) a f x o, y f x o, y o f(x, y), a tedy f x o, y f x o, y o 14
15 2.3 Nashova rovnováha Pro hru s nulovým součtem: f(x, y o ) f(x o, y o ) a f x o, y f x o, y o Neboli: f x, y o f x o, y o f x o, y Nashova rovnováha (Nashovo rovnovážné řešení, rovnovážné strategie) 15
16 2.3 Nashova rovnováha Nashovu rovnováhu získáme nalezením Sedlového prvku (sedlového bodu) Sedlový prvek = číslo největší ve svém sloupci a nejmenší ve svém řádku Vysvětlení: ve hře s nulovým součtem chce 2. hráč minimalizovat výhru prvého hráče a 1. hráč chce maximalizovat ztrátu druhého 16
17 2.3 Nashova rovnováha Pokud aij je sedlový prvek xi je optimální strategie prvého hráče yj je optimální strategie druhého hráče aij je cena hry Toto řešení nazýváme Nashova rovnováha (Nashovo rovnovážné řešení) v ryzích strategiích optimální strategii hrajeme ve 100 % případů 17
18 2.3 Nashova rovnováha Příklad sedlový bod (x o, y o ) = (x 3, y 1 ) 18
19 2.3 Nashova rovnováha Příklad sedlové body (x o, y o ) = (x 2, y 1 ) (x o, y o ) = (x 3, y 1 ) 19
20 2.3 Nashova rovnováha Příklad žádný sedlový bod 20
21 2.3 Nashova rovnováha Maticová hra může mít: 1 sedlový prvek rovnovážné strategie přímo více sedlových prvků všechny mají stejnou cenu hry a jako optimální strategii mohu volit kteroukoliv navrženou žádný sedlový prvek neexistuje Nashova rovnováha v ryzích strategiích Pro hráče neexistují žádné rovnovážné strategie? 21
22 Příklad 5 Kámen nůžky papír K N P K N P
23 Hra Kámen nůžky papír nemá sedlový prvek Tzn. nemá Nashovu rovnováhu v ryzích strategiích Přesto známe optimální strategii hráčů Jak vyhrát? hrát každou z možností s pravděpodobností 1/3 23
24 Pro každého hráče je tedy rovnovážnou strategií vektor (1/3, 1/3, 1/3) Čísla představují pravděpodobnosti, se kterými hráč hraje jednotlivé strategie Takto formulované strategie se nazývají smíšené (pravděpodobnostní) strategie 24
25 Základní věta maticových her: Každá maticová hra má Nashovo rovnovážné řešení (ve smíšených strategiích) 25
26 Postup hledání Nashova rovnovážného řešení ve smíšených strategiích se nazývá smíšené rozšíření maticové hry Smíšené rozšíření použijeme, neexistuje-li řešení v ryzích strategiích (tj. neexistuje-li sedlový prvek) 26
27 X = {x; x T = (x 1 ; x 2 ; ; x m ); m i=1 x i = 1; x 0} Y = {y; y T = (y 1 ; y 2 ; ; y n ); n j=1 y j = 1; y 0} 27
28 Hodnota výplatní funkce 1. hráče: f x, y = m i=1 n j=1 x i a ij y j = x T Ay Hodnota výplatní funkce 2. hráče má pouze opačné znaménko (hra s nulovým součtem) Ryzí strategie = speciální případ smíšených strategií (jednotkové vektory) 28
29 Podle ZVMH existují optimální strategie (x o, y o ) ve smíšeném rozšíření, neboli existuje Nashova rovnováha Musí tedy platit: x T Ay o x ot Ay o x ot Ay Hledáme tedy (x o, y o ) splňující uvedené nerovnosti 29
30 Označme cenu hry v = x ot Ay o Přičtení konstanty c ke všem prvkům v matici nezmění optimální strategie strategicky ekvivalentní hry Změní však cenu hry na v + c Tento trik umožňuje např. převést hru s konstantním součtem na hru s nulovým součtem 30
31 Pokud jsou všechny prvky matice A kladné, můžeme pokračovat v řešení Jsou-li některé prvky nekladné, je třeba přičíst vhodnou konstantu tak, aby se všechny prvky staly kladnými 31
32 Příklad = A co dál? Jak najít optimální strategie? 32
33 Hledáme Nashovu rovnováhu ve smíšených strategiích: x T Ay o x ot Ay o x ot Ay Uvedené vztahy ale musí platit i pro ryzí strategie x T = 1,0,, 0, x T = 0,1,, 0,, x T = 0,0,, 1 x T Ay o v + c: a 11 y o 1 + a 12y o a 1ny o n v + c a m1 y o 1 + a m2y o a mny o v + c n 33
34 a 11 y o 1 + a 12y o a 1ny o v + c n a m1 y o 1 + a m2y o a mny o v + c n Zajistili jsme, že v + c > 0, můžeme tedy všechny nerovnice vydělit výrazem v + c Substituce q j = yo j v+c q j 0 34
35 a 11 q 1 + a 12 q a 1n q n 1 a m1 q 1 + a m2 q a mn q n 1 q j 0 Omezující podmínky úloha lineárního programování Obdobný postup pro druhou nerovnost 35
36 Hledáme Nashovu rovnováhu ve smíšených strategiích: x T Ay o x ot Ay o x ot Ay Uvedené vztahy ale musí platit i pro ryzí strategie y T = 1,0,, 0, y T = 0,1,, 0,, y T = 0,0,, 1 v + c x ot Ay: x o 1a 11 + x o 2a x o ma m1 v + c x o 1a 1n + x o 2a 2n + + x o ma mn v + c 36
37 x o 1a 11 + x o 2a x o ma m1 v + c x o 1a 1n + x o 2a 2n + + x o ma mn v + c Zajistili jsme, že v + c > 0, můžeme tedy všechny nerovnice vydělit výrazem v + c Substituce p i = xo i v+c p i 0 37
38 a 11 p 1 + a 21 p a m1 p m 1 a 1n p 1 + a 2n p a mn p n 1 p i 0 Omezující podmínky úloha lineárního programování Uvedené úlohy = duálně sdružené (vhodná formulace účelových funkcí) 38
39 Primární problém Duální problém n j=1 q j 0, j a ij q j 1, i i=1 m p i 0, i a ij p i 1, j n max j=1 q j min i=1 m p i 39
40 Řešíme tedy klasickou úlohu LP (např. simplexovou metodou) Oba sdružené problémy mají stejnou hodnotu účelové funkce 1 v+c = z Primární úloha: optimum pro 2. hráče Duální úloha: optimum pro 1. hráče (stínové ceny) 40
41 Zpětná substituce q j = yo j v+c p i = xo i v+c y o j = v + c q j = q j z x o i = v + c p i = p i z Podobně hodnota účelové funkce 1 v+c = z v = 1 z c cena hry 41
42 Příklad q 1 + 2q 2 + 5q 3 1 3q 1 + 5q 2 + 4q 3 1 2q 1 + 1q 2 + 4q 3 1 q 1, q 2, q 3 0 max z = q 1 + q 2 + q 3 42
43 Řešení: q T = 0.21, 0.07, 0 p T = 0.14, 0.14, 0 z = 0.28 Po substituci: y T = 3, 1, xt = 1, , 0 v =
44 Poznámky: prvky upravené matice A jsou kladné obě úlohy mají přípustné řešení obě úlohy mají optimální řešení řešení duální úlohy v simplexové tabulce primární úlohy pod přídatnými proměnnými (stínové ceny) 44
45 KONEC 45
Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)
Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada
Více3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
VíceANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VíceÚvod do teorie her
Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu
VíceOperační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky
VíceTeorie her a ekonomické rozhodování. 7. Hry s neúplnou informací
Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak
VíceTGH13 - Teorie her I.
TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,
VíceOperační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty
VíceOperační výzkum. Teorie her. Řešení maticových her převodem na úlohu LP.
Operační výzkum Řešení maticových her převodem na úlohu LP. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu
Více4EK213 Lineární modely. 5. Dualita v úlohách LP
4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického
VíceTEORIE HER - ÚVOD PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 2. Zuzana Bělinová
PŘEDNÁŠKA 2 TEORIE HER - ÚVOD Teorie her matematická teorie rozhodování dvou racionálních hráčů, kteří jsou na sobě závislí Naznačuje, jak by se v takové situaci chovali racionální a informovaní hráči.
VíceMikroekonomie magisterský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 1 Teorie her pro manažery Obsah 5.1 Teorie her jako součást mikroekonomie 5.2 Základní pojmy teorie
Více12 HRY S NEÚPLNOU INFORMACÍ
12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla
VíceÚvod do teorie her. druhé upravené vydání. Martin Dlouhý Petr Fiala
Úvod do teorie her druhé upravené vydání Martin Dlouhý Petr Fiala 2009 2 Teorie her: analýza konfliktů a spolupráce Teorie her: analýza konfliktů a spolupráce 3 Obsah Předmluva... 5 1. Úvod do teorie her
VíceStručný úvod do teorie her. Michal Bulant
Stručný úvod do teorie her Michal Bulant Čím se budeme zabývat Alespoň 2 hráči (osoby, firmy, státy, biologické druhy apod.) Každý hráč má určitou množinu strategií, konkrétní situace (outcome) ve hře
VíceTeorie her a ekonomické rozhodování 5. Opakované hry
Teorie her a ekonomické rozhodování 5. Opakované hry (chybějící či chybná indexace ve skriptech) 5.1 Opakovaná hra Hra až dosud hráči hráli hru jen jednou v reálu se konflikty neustále opakují (firmy nabízí
VíceDvou-maticové hry a jejich aplikace
Dvou-maticové hry a jejich aplikace Obsah kapitoly. Hry s konstantním součtem Hra v normálním tvaru (ryzí strategie) Smíšené strategie. Hry s nekonstantním součtem Nekooperativní hra Dvou-maticová hra
Více4EK201 Matematické modelování. 10. Teorie rozhodování
4EK201 Matematické modelování 10. Teorie rozhodování 10. Rozhodování Rozhodování = proces výběru nějaké možnosti (varianty) podle stanoveného kritéria za účelem dosažení stanovených cílů Rozhodovatel =
VíceEkonomická formulace. Matematický model
Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceDokažte Větu 2(Minimax) ze třetího dílu seriálu pro libovolnou hru s nulovým součtem, ve kterémákaždýhráčnavýběrprávězedvoustrategií.
Teorie her º Ö ÐÓÚ Ö Ì ÖÑ Ò Ó Ð Ò º Ù Ò ¾¼½ ÐÓ ½º HráčIsitajněnapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho ivestejnou chvílisirovněžhráčiinapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho
VíceMetody lineární optimalizace Simplexová metoda. Distribuční úlohy
Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Více12. Lineární programování
. Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)
VíceStátnicová otázka 6, okruh 1
Státnicová otázka 6, okruh 1 Vojtěch Franc, xfrancv@electra.felk.cvut.cz 7. února 2000 1 Zadání Statické optimalizace. Lineární a nelineární programování. Optimální řízení a rozhodování v dynamických systémech,
VíceKOOPERATIVNI HRY DVOU HRA CˇU
8 KOOPERATIVNÍ HRY DVOU HRÁČŮ 291 V této kapitole se budeme zabývat situacemi, kdy hráči mohou před začátkem hry uzavřít závaznou dohodu o tom, jaké použijí strategie, vygenerovaný zisk si však nemohou
VíceTEORIE HER. Základní pojmy teorie her. buď racionální (usiluje o optimální výsledek hry) nebo indiferentní (výsledek hry je mu lhostejný)
TEORIE HER V dosavadních přednáškách jsme probírali jedno či vícekriteriální optimalizaci, ale v těchto úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí Také
VíceTeorie her a ekonomické rozhodování. 8. Vyjednávací hry
Teorie her a ekonomické rozhodování 8. Vyjednávací hry 8. Vyjednávání Teorie her Věda o řešení konfliktů Ale také věda o hledání vzájemně výhodné spolupráce Teorie vyjednávání Odvětví teorie her dohoda
Více4EK213 Lineární modely. 4. Simplexová metoda - závěr
4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu
VíceMezi firmami v oligopolu dochází ke strategickým interakcím. Při zkoumání strategických interakcí používáme teorii her.
Teorie her a oligopol Varian: Mikroekonomie: moderní přístup, oddíly 26.1-9, 27.1-3 a 27.7-8 Varian: Intermediate Microeconomics, Sections 27.1-9, 28.1-3, 28.7-8 () 1 / 36 Obsah přednášky V této přednášce
VíceParametrické programování
Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou
VíceSimplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r
Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním
VíceLineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
Vícee-mail: RadkaZahradnikova@seznam.cz 1. července 2010
Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení
VíceTeorie her a ekonomické rozhodování. 11. Aukce
Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,
VíceTeorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru
Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících
Více4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
VíceFIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
VíceLineární algebra. Soustavy lineárních rovnic
Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326
Více{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit:
3 ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
VíceIB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
VíceSimplexové tabulky z minule. (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25
Simplexové tabulky z minule (KMI ZF JU) Lineární programování EMM a OA O6 1 / 25 Simplexová metoda symbolicky Výchozí tabulka prom. v bázi zákl. proměné přídatné prom. omez. A E b c T 0 0 Tabulka po přepočtu
VíceTeorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů
Teorie her a ekonomické rozhodování 6. Kooperativní hry více hráčů (chyby ve skriptech) 6.1 Koaliční hra Kooperativní hra hráči mají možnost před samotnou hrou uzavírat závazné dohody dva hráči (hra má
VíceKapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
VíceTeorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy
Kapitola 1 Teorie her Dosud jsme se věnovali jednokriteriální či vícekriteriální optimalizaci, kde ve všech úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí.
VíceStrategické hry v bezpečnostním inženýrství
Strategické hry v bezpečnostním inženýrství Strategic games in security engineering Bc. Jan Cibulka Diplomová práce 2010 ABSTRAKT Diplomová práce je zaměřena na vyuţití teorie her a optimálního rozhodování
VíceAplikace teorie her. V ekonomice a politice Ing. Václav Janoušek
Aplikace teorie her V ekonomice a politice Ing. Václav Janoušek Co je teorie her a její využití Teorie her obor aplikované matematiky a operační analýzy, sloužící k analýze konfliktních a strategických
VíceObecná úloha lineárního programování
Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné
VíceUčební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
Více4EK213 Lineární modely. 12. Dopravní problém výchozí řešení
4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování
VíceSoustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
Více4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
VíceTeorie her. Theory of games. Vlastimil Čabla
Teorie her Theory of games Vlastimil Čabla Bakalářská práce 2009 *** nascannované zadání str. *** *** nascannované zadání str. 2 *** UTB ve Zlíně, Fakulta aplikované informatiky, 2009 4 ABTRAKT Práce se
VíceÚlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
VíceÚvod do teorie her
Úvod do teorie her. Formy her a rovnovážné řešení Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 208 ÚTIA AV ČR Program. Definujeme 2 základní formy pro studium různých her: rozvinutou, strategickou. 2.
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceZáklady maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
VíceÚvod do teorie her. David Bartl, Lenka Ploháková
Úvod do teorie her David Bartl, Lenka Ploháková Abstrakt Předložený text Úvod do teorie her pokrývá čtyři nejdůležitější, vybrané kapitoly z této oblasti. Nejprve je čtenář seznámen s předmětem studia
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
VíceSoustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
VíceÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová
PŘEDNÁŠKA 1 ÚVOD DO ROZHODOVÁNÍ Organizační Vyučující Ing., Ph.D. email: belinova@k620.fd.cvut.cz Doporučená literatura Dudorkin J. Operační výzkum. Požadavky zápočtu docházka zápočtový test (21.5.2015)
Více4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení
Více4EK213 Lineární modely. 10. Celočíselné programování
4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a
VíceDefinice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Více4EK212 Kvantitativní management. 2. Lineární programování
4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení
VíceZápadočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat
Západočeská univerzita v Plzni Fakulta aplikovaných věd SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MATEMATICKÉ MODELOVÁNÍ Ivana Kozlová Modely analýzy obalu dat Plzeň 2010 Obsah 1 Efektivnost a její hodnocení 2 2 Základní
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Více6 Simplexová metoda: Principy
6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení
Vícef ( x) = 5x 1 + 8x 2 MAX, 3x x ,
4. okruh z bloku KM1 - řídicí technika Zpracoval: Ondřej Nývlt (o.nyvlt@post.cz) Zadání: Lineární programování (LP), simplexová metoda, dualita v LP. Nelineární programování. Vázaný extrém. Karush-Kuhn-Tuckerova
Více7 Kardinální informace o kritériích (část 1)
7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru
Více4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP
4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka
VíceOperační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.
Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
VíceObsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,
Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Více13. Lineární programování
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
VíceKOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ?
KOOPERATIVNÍ HRY FORMULACE, KONCEPCE ŘEŠENÍ, JÁDRO HRY, HRA VE TVARU CHARAKTERISTICKÉ FUNKCE, SHAPLEYOVA HODNOTA CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekonomická vědní disciplína, která se
VíceUniverzita Karlova v Praze Matematicko-fyzikální fakulta. Teorie her v praxi. Katedra pravděpodobnosti a matematické statistiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Šárka Hezoučká Teorie her v praxi Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Doc. RNDr. Petr Lachout,
VíceMatematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
VíceProblém lineární komplementarity a kvadratické programování
Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou
VíceSoustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
VíceVYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Model tahové hry s finančními odměnami
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Obor: Statistika a ekonometrie Název bakalářské práce Model tahové hry s finančními odměnami Autor: Vedoucí bakalářské práce: Rok: 009 Markéta
Více7. přednáška Systémová analýza a modelování. Přiřazovací problém
Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Více1 Duální simplexová metoda
1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní
Více[1] LU rozklad A = L U
[1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,
VíceÚvod do teorie her. podzim 2010 v.1.0
Úvod do teorie her podzim 2010 v.1.0 1 Obsah 1 Matematická teorie her 3 1.1 Matematický model.................................. 3 1.2 Maticové hry...................................... 6 1.3 Bi maticové
VíceÚvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ
ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Úvod do teorie her David Bartl, Lenka Ploháková OSNOVA Úvod (hra n hráčů ve strategickém
VíceKapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
VíceOSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU
OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA [ MOPV ] METODY OPERAČNÍHO VÝZKUMU Distanční opora RNDr. Miroslav Liška, CSc. OSTRAVA 2002 1 Simplexová metoda je iterační výpočetní postup pro nalezení optimálního
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Více5.7 Kooperativní hry 5.7.1 Kooperativní hra 2 hráčů 5.7.2 Kooperativní hra N hráčů 5.8 Modely oligopolu 5.9 Teorie redistribučních systémů 5.
Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 6 Teorie her, volby teorie redistribučních systémů a teorie veřejné Obsah 5.7 Kooperativní hry 5.7.1
Více2. KONEČNÉ HRY 2 HRÁČŮ
Markl: Konečné hry 2 hráčů /TEH_2_2006.doc/ Strana 1 2. KONEČNÉ HRY 2 HRÁČŮ Definice 2.1: Konečná hra dvou (racionálních) hráčů je speciální případ hry v normálním tvaru (viz definice 1.1.2)
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 1 Řešení úloh 1. dílčí téma: Řešení úloh ve stavovém prostoru Počáteční období výzkumu v oblasti umělé inteligence (50. a 60. léta) bylo charakterizováno
VícePojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
VíceOtázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
VícePrůvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat
VíceSystémové modelování. Ekonomicko matematické metody I. Lineární programování
Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a
Více