Princip kompozicionality. Význam v jazyce
|
|
- Petra Švecová
- před 7 lety
- Počet zobrazení:
Transkript
1 Obsah: a intenzionální sémantika Aleš Horák hales@fi.muni.cz studium významu rozdílné, i když překrývající se přístupy různých vědeckých discipĺın: filosofie Jak je možné, že něco vůbec něco znamená? Jaký typ relace musí být mezi X a Y, aby X znamenalo Y? (filosofie jazyka) psychologie psycholingvistika experimentální studie, jak jsou významy reprezentovány v mysli a jaké mechanismy ovlivňují při kódování a dekódování zpráv (délka odezvy u konkrét a abstrakt se liší) neurologie jak jsou psychologické stavy a procesy implementovány na úrovni neuronů v mozku Úvod do počítačové lingvistiky 9/11 1 / 31 Princip kompozicionality Význam složeného tvrzení je funkcí významu jednotlivých komponent. (je určován, je odhadnutelný, každá složka hraje význam?) nekompozicionalita: idiomy, ustrnulé metafory, kolokace, klišé listém je jazykový výraz, jehož význam není určen významy jeho částí (pokud existují), a který si tedy uživatel jazyka musí zapamatovat jako kombinaci formy a významu. Úvod do počítačové lingvistiky 9/11 2 / 31 Rozdělení studia významu v jazyce: lexikální sémantika gramatická sémantika větné fráze, slovotvorba logická sémantika výroková, predikátová a vyšší logiky lingvistická pragmatika entail = znamenat, vyplývat; nutnost a očekávanost 1. X přestal zpívat?? X nepokračoval ve zpěvu 2. X je kočka?? je zvíře 3. X je v jiném stavu??x je žena 4. X je fyzikální objekt?? X má hmotnost 5. X je čtyřnožec?? X má čtyři nohy 6. X je žena Y?? X není dcera Y Úvod do počítačové lingvistiky 9/11 3 / 31 Úvod do počítačové lingvistiky 9/11 4 / 31
2 Textové vyplývání RTE výzvy výsledky Textové vyplývání = po přečtení t lidé usoudí, že nejspíš platí h soutěž Recognizing Textual Entailment, od roku 2004 úkol dostaneme dva úseky textu a musíme (strojově) rozhodnout, jestli význam jednoho (hypotéza) vyplývá (je odvoditelný) z druhého (text) <pair id="59" value="false" task="ir"> <t>two Turkish engineers and an Afghan translator kidnapped in December were freed Friday.</t> <h>translator kidnapped in Iraq</h> </pair> <pair id="64" value="true" task="ir"> <t>the wait time for a green card has risen from 21 months to 33 months in those same regions.</t> <h>it takes longer to get green card.</h> </pair> soutěže RTE Challenge: nejlepší úspěšnost 70 80%, lepší na krátkých textech techniky založené na sumarizaci a extrakci informací vstupy a (některé) výstupy jsou k dispozici na Textual Entailment Resource Pool (na aclweb.org): datové sady jazykové zdroje využité v nástrojích nástroje pro syntaktickou analýzu, rozpoznávání entit, určování podobnosti,... Úvod do počítačové lingvistiky 9/11 5 / 31 Výzva Winograd Schema Winograd Schema Challenge (WSC): vyhlásila firma Nuance, konala se 2016, má se konat každý druhý rok pojmenovaná po Terrym Winogradovi, autorovi dialogového systému SHRDLU v roce 1968 řeší problém rozpoznávání anafor úspěšnost (2016) 32 58% na 60 otázkách (náhodné odpovědi = 44%) příklady I. The trophy would not fit in the brown suitcase because it was too big (small). What was too big (small)? Answer 0: the trophy Answer 1: the suitcase II. The town councilors refused to give the demonstrators a permit because they feared (advocated) violence. Who feared (advocated) violence? Answer 0: the town councilors Answer 1: the angry demonstrators Úvod do počítačové lingvistiky 9/11 6 / 31 víceznačnost anaforické výrazy indexické výrazy nejasnost nekompozicionalita struktura promluvy metonymie metafory Úvod do počítačové lingvistiky 9/11 7 / 31 Úvod do počítačové lingvistiky 9/11 8 / 31
3 Víceznačnost Anaforické a indexické výrazy ambiguity víceznačnost může být lexikální, syntaktická, sémantická a referenční lexikální stát, žena, hnát syntaktická Jím špagety s masem. Jím špagety se salátem. Jím špagety s použitím vidličky. Jím špagety se sebezapřením. Jím špagety s přítelem. sémantická Jeřáb je vysoký. Viděli jsme veliké oko. referenční Oni přišli pozdě. Můžeš mi půjčit knihu? Ředitel vyhodil dělníka, protože (on) byl agresivní. Metafora a metonymie metafora: metaphor Úvod do počítačové lingvistiky 9/11 9 / 31 použití slov v přeneseném významu (na základě podobnosti), často systematicky Zkoušel jsem ten proces zabít, ale nešlo to. Bouře se vzteká. metonymie: metonymy používání jména jedné věci pro (často zkrácené) označení věci jiné Čtu Shakespeara. Chrysler oznámil rekordní zisk. Ten pstruh na másle u stolu 3 chce další pivo. Úvod do počítačové lingvistiky 9/11 11 / 31 anaforické výrazy: anaphora používají zájmena pro odkazování na objekty zmíněné dříve Poté co se Honza s Maríı rozhodli se vzít, (oni) vyhledali kněze, aby je oddal. Marie uviděla ve výloze prstýnek a požádala Honzu, aby jí ho koupil. indexické výrazy: indexicals odkazují se na údaje v jiných částech promluvy a mimo promluvu Já jsem tady. Proč jsi to udělal? Nekompozicionalita noncompositionality Úvod do počítačové lingvistiky 9/11 10 / 31 příklady porušení pravidla kompozicionality u ustálených termínů nebo přednost jiného možného významu při určitých spojeních aligátoří boty, basketbalové boty, dětské boty pata sloupu červená kniha, červené pero bílý trpasĺık dřevěný pes, umělá tráva velká molekula Úvod do počítačové lingvistiky 9/11 12 / 31
4 Logická analýza přirozeného jazyka Logická analýza přirozeného jazyka Logická analýza přirozeného jazyka logická analýza PJ analýza významu výrazů (vět) PJ přirozený jazyk = nástroj pojmového uchopení reality pojem kritéria/procedury umožňující identifikovat různé konkrétní a abstraktní objekty např. planeta třída nebeských těles s určitými charakteristikami obíhá po oběžné dráze kolem stálice, není zdrojem světla,... pojem výraz např. výrazy v různých jazycích často reprezentují stejný pojem (pojem( prvočíslo ) pojem( prime number )) pojem představa představa je subjektivní, pojem je objektivní pojmy mohou identifikovat různé objekty: jedno individuum individuální pojmy (např. Petr, Pegas, prezident ČR) třídu objektů vlastnost (např. červený, šelma, hora) n-člennou relaci vztah (např. otec (někoho), křivdit (někdo někomu)) pravdivostní hodnotu propozice (např. v Brně prší) funkcionální přiřazení empirické funkce (např. rychlost) číslo (fyzikální) veličiny (např. rychlost světla) Úvod do počítačové lingvistiky 9/11 13 / 31 Nedostatečná expresivita PL1 Omezenost predikátové logiky 1. řádu Vztah pojmu a výrazu ve zjednodušené podobě: pojem odpovídá logické konstrukci konstruuje/ identifikuje objekt konstrukce/pojem výraz konstruuje/ identifikuje AH funkce ukazující v našem světě na Williama Shakespeara Úvod do počítačové lingvistiky 9/11 14 / 31 složený z pojmů autor a Hamlet autor Hamleta Nedostatečná expresivita PL1 Nedostatečná expresivita PL1 pokrač. autor Hamleta dva omezující rysy: nedostatečná expresivita extenzionalismus Expresivita: vyjadřovací síla jazyka Je-li barva stropu pokoje č. 3 uklidňující, je pokoj č. 3 vhodný pro pacienta X a není vhodný pro pacienta Y. analýza ve výrokové logice: P (Q R) P Barva stropu pokoje č. 3 je uklidňující. Q Pokoj č. 3 je vhodný pro pacienta X. R Pokoj č. 3 je vhodný pro pacienta Y. analýza v PL1: U(B) (V(P,X) V(P,Y)) U třída uklidňujících objektů B individuum barva stropu pokoje č. 3 V relace mezi individuy být vhodný pro P individuum pokoj č. 3 X,Y individua pacient X a pacient Y Úvod do počítačové lingvistiky 9/11 15 / 31 Červená barva je krásnější než hnědá barva. Kostka je červená. analýza v PL1: Kr(Č 1,H) Č 2 (Ko) Č 1 Č 2 individuum červená barva vlastnost individuí být červený (třída červených objektů) nelze vyjádřit Č 1 Č 2 Úvod do počítačové lingvistiky 9/11 16 / 31
5 Extenzionalismus PL1 Extenzionalismus PL1 Extenzionalismus PL1 Extenzionalismus PL1 pokrač. Varšava hlavní město Polska Varšava jméno individua, jasně identifikovatelné a odlišitelné hlavní město Polska individuová role, momentálně identifikuje Varšavu, ale dříve to byl i Krakov hlavní město Polska : závisí na světě a čase pochopení významu, ale není vázané na znalost obsahu tj. význam na světě a čase nezávisí číslo X je větší než číslo Y budova X je větší než budova Y ano V Brně prší ano pravdivostní hodnota true V Brně prší propozice pravdivostní hodnotu, která se mění (alespoň) v čase i když hodnota někdy závisí na světě a čase, samotný význam na nich nezávisí matematické větší než relace dvojic čísel, pevně daná empirické větší než vztah dvou individuí, který se může měnit v čase (otec a syn) Extenze a intenze Úvod do počítačové lingvistiky 9/11 17 / 31 Extenze a intenze Úvod do počítačové lingvistiky 9/11 18 / 31 Extenze a intenze Rozšířený vztah výrazu a významu u intenzí Definujeme: intenze objekty typu funkcí, jejichž hodnoty závisí na světě a čase extenze ostatní objekty (na světě a čase nezávislé) časté extenze a intenze: extenze intenze individua individuové role třídy vlastnosti relace vztahy pravdivostní hodnoty propozice funkce empirické funkce čísla veličiny konstruuje/ identifikuje objekt konstrukce/pojem výraz určuje intenze extenze konstruuje ukazuje na konstrukce výraz Úvod do počítačové lingvistiky 9/11 19 / 31 Úvod do počítačové lingvistiky 9/11 20 / 31
6 Extenze a intenze Rozšířený vztah výrazu a významu u intenzí konstruuje intenze konstrukce určuje extenze Typy v TILu konstruuje výraz ukazuje na AH autor Hamleta určuje William Shakespear ukazuje na autor Hamleta Úvod do počítačové lingvistiky 9/11 21 / 31 typ objektu: základní typy typová báze = {o,ι,τ,ω} funcionální typy funkce nad typovou bází např. ι, ((ιτ)ω), (oι), (((oι)τ)ω), ((oτ)ω),... ((ατ)ω)... závislost na světě a čase, vyjadřuje intenze zápis α τω typy vyšších řádů obsahují i třídy konstrukcí řádu n n Transparent Intensional Logic, TIL logický systém speciálně navržený pro zachycení významu výrazů PJ autor Pavel Tichý: The Foundations of Frege s Logic, de Gruyter, Berlin, New York, obdobná teorie Montagueho intenzionální logika Tichý ukazuje její nedostatky Tichý vychází z myšlenek Gottlob Frege ( , logik) a Alonzo Church ( , teorie typů) vlastnosti: rozvětvená typová hierarchie (s typy vyšších řádů) temporální intenzionální (intenze extenze) transparentost: 1. nositel významu (konstrukce) není prvek formálního aparátu, tento aparát pouze studuje konstrukce 2. zachycení intenzionality je přesně popsáno z matematického hlediska Úvod do počítačové lingvistiky 9/11 22 / 31 Základní typy TILu umožňují přiřadit typ objektům z intenzionální báze jazyka třída základních vlastností (barvy, rozměry, postoje,...) popisujících stav světa o (omikron, o)... pravdivostní hodnoty Pravda (true, T) a Nepravda (false, F) přesně odpovídají běžným logikám, typy logických operátorů (oo),(ooo) ι (jota)... třída individuí individua ovšem ne jako kompletní objekty, ale jako numerická identifikace nestrukturované entity τ (tau)... třída časových okamžiků (jako časového kontinua) zachycení závislosti na čase; současně třída reálných čísel ω (omega)... třída možných světů zachycení empirické závislosti na stavu světa Úvod do počítačové lingvistiky 9/11 23 / 31 Úvod do počítačové lingvistiky 9/11 24 / 31
7 Možné světy Možné světy v TILu termín možný svět Gottfried Wilhelm von Leibniz ( , filozof a matematik) požadavky na definici možného světa: soubor myslitelných faktů je konzistentní a maximální ze všech takových souborů je objektivní (nezávislý na individuálním názoru) mezi možnými světy existuje právě jeden aktuální svět jeho znalost vševědoucnost možný svět v TILu = rozhodovací systém, pro prvek intenzionální báze obsahuje konzistentní přiřazení hodnot příklad realita s 2 objekty a 2 vlastnostmi (9 možných světů): být hubený {Laurel, Hardy} být tlustý {Laurel} {Hardy} {Laurel,Hardy} w 1 {Laurel} w 2 w 3 {Hardy} w 4 w 5 w 6 w 7 w 8 w 9 Princip intenzí v TILu Úvod do počítačové lingvistiky 9/11 25 / 31 být hubený... objekt typu (oι) τω, funkce z možných světů a času do tříd individuí w... proměnná typu ω, možný svět t... proměnná typu τ, časový okamžik [být hubený w t]... konstruuje (oι)-objekt, třídu individuí, kteří mají ve světě w a čase t vlastnost být hubený (značíme být hubený wt ) pokud aplikujeme jen w získáme chronologii intenzionální sestup identifikace extenze pomocí intenze, světa w 1 a času t 1 Americký prezident wact (zkr. P wact )... ι τ t 0...τ: nedef G.Washington J.Adams ω w 1 Úvod do počítačové lingvistiky 9/11 27 / 31 t 1 τ P wact t 0...ι: 1801 T.Jefferson Nejčastější typy Úvod do počítačové lingvistiky 9/11 26 / 31 extenze intenze individua... ι individuové role... ι τω třídy... (oι) vlastnosti... (oι) τω relace... (oαβ) vztahy... (oαβ) τω pravdivostní hodnoty... o propozice... o τω, π funkce... (αβ) empirické funkce... (αβ) τω čísla... τ veličiny... τ τω Úvod do počítačové lingvistiky 9/11 28 / 31
8 Ex...(o(oι) τω ) τω ( )... třída všech individuí s vlastností být jednorožcem je v daném světě a čase prázdná. intenzionalita, vlastnosti vlastností, analýza epizod, analýza gramatického času,... Úvod do počítačové lingvistiky 9/11 31 / 31 Konstrukce Příklady analýzy podstatných jmen konstrukce v TILu: proměnná typu α, v závislosti na valuaci konstruuje α-objekt x...ι trivializace objektu A typu α, konstruuje právě objekt A 0 A...α A...α aplikace konstrukce X...(αβ 1...β n ) na konstrukce Y 1,...,Y n typů β 1,...,β n, konstruuje objekt typu α [XY 1...Y n ]...α abstrakce konstrukce Y...α na proměnných x 1,...,x n typů β 1,...,β n, konstruuje objekt/funkci typu (αβ 1...β n ) λx 1...x n [Y]...(αβ 1...β n ) pes, člověk x...ι: pes wt x, pes/(oι) τω individuum z dané třídy individuí prezident prezident/ι τω individuová role volitelnost volitelnost/(oι τω ) τω vlastnost individuové role výška výška/(τι) τω empirická funkce výrok, tvrzení p... n : výrok wt p, výrok/(o n ) τω válka, zvonění smích, válka/(o(oπ)) ω konstrukce propozice z dané třídy konstrukcí propozic třída epizod aktivita, která koresponduje se slovesem leden, podzim leden/(o(oτ)) třída časových okamžiků časové intervaly Úvod do počítačové lingvistiky 9/11 29 / 31 Úvod do počítačové lingvistiky 9/11 30 / 31 Příklady přínosu TILu propoziční postoje Petr říká, že Tom věří, že Země je kulatá. λwλt [říká wt Petr [λwλt 0 [ věří wt Tom 0[ λwλt[kulatá wt Země] ]]]] existence neexistujícího Pes existuje. Jednorožec neexistuje. v PL1: x(x = pes) x(x = jednorožec) (jednorožec = jednorožec) ( x(x = jednorožec)) v TILu: ( ) λwλt [0 [Ex wt jednorožec] ], Ex df = λwλtλp [ 0 [ λx[pwt x] ]] ι
Obsah:
Sémantika a intenzionální sémantika Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/poc_lingv/ Obsah: Sémantika Intenzionální sémantika Úvod do počítačové lingvistiky 9/11 1 / 32 Sémantika Sémantika
(TIL) Obsah: Transparentní intenzionální logika. Úvod do umělé inteligence 9/12 1 / 34
Logika prvního řádu a transparentní intenzionální logika (TIL) Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Predikátová logika prvního řádu Logická analýza přirozeného jazyka Transparentní
Úvod do umělé inteligence Logika prvního řádu a transparentní intenzionální logika (TIL) E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Úvod do umělé inteligence 9/12 1/34 Úvod do umělé inteligence
SYNTAXE PREDIKÁTOVÉ LOGIKY
Úvod do umělé inteligence Úvod do umělé inteligence VÝHODY A NEVÝHODY VÝROKOVÉ LOGIKY Logika prvního řádu a transparentní intenzionální logika (TIL) E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/
Inteligentní systémy (TIL) Marie Duží
Inteligentní systémy (TIL) Marie Duží http://www.cs.vsb.cz/duzi/ /d Přednáška 3 Sémantické schéma Výraz vyjadřuje označuje Význam (konstrukce konstrukce) k ) konstruuje denotát Ontologie TIL: rozvětvená
Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)
Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr
Transparentní intenzionální logika (TIL)
Marek Rychlý Ústav informačních systémů, Fakulta informačních technologií, Vysoké učení technické v Brně, Božetěchova 2, Brno 612 66, Czech Republic rychly@fit.vutbr.cz Abstrakt Transparentní intenzionální
Inteligentní systémy (TIL)
Inteligentní systémy (TIL) Marie Duží http://www.cs.vsb.cz/duzi/ Přednáška 9 hyperintensionální kontext Celá konstrukce C je objektem predikace (argumentem), tedy její výstup funkce, kterou konstruuje,
Inteligentní systémy (TIL)
Inteligentní systémy (TIL) Marie Duží http://www.cs.vsb.cz/duzi/ Přednáška 8 Příklady ze cvičení 1. Analyzujte následující úsudek (a) intensionálně, (b) hyperintensionálně a zdůvodněte, při které analýze
Úvod do logiky (PL): sémantika predikátové logiky
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): sémantika predikátové logiky doc. PhDr. Jiří
Úvod do logiky (PL): analýza vět přirozeného jazyka
Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): analýza vět přirozeného jazyka doc. PhDr.
Výroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být
Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
Úvod do logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 23
Úvod do logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 23 Co je logika? Čeho se týkají logické zákony? Tři možnosti: (1) světa (2) myšlení (3) jazyka (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216
Logika a jazyk. filosofický slovník, Praha:Svoboda 1966)
Logika a jazyk V úvodu bylo řečeno, že logika je věda o správnosti (lidského) usuzování. A protože veškeré usuzování, odvozování a myšlení vůbec se odehrává v jazyce, je problematika jazyka a jeho analýza
Základní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Principy logické analýzy jazyka
Principy logické analýzy jazyka (Jazyk a pojmy, aneb O čem a jak mluvíme ) http://www.cs.vsb.cz/duzi (odkazy: TIL, De dicto / de re, Principles of Logical Analysis) http://www.phil.muni.cz/fil/logika/til/constructions_duzi_materna.pdf
Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5.
Primární a sekundární výskyt označující fráze Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. 2012 Russellovo rozlišení jména a popisu Označující fráze Primární a sekundární
Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1
Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:
Predikátová logika Individua a termy Predikáty
Predikátová logika Predikátová logika je rozšířením logiky výrokové o kvantifikační výrazy jako každý, všichni, někteří či žádný. Nejmenší jazykovou jednotkou, kterou byla výroková logika schopna identifikovat,
vztahy, konverzační implikatury, presupozice
: sémantika, formální sémantika, významové vztahy, konverzační implikatury, presupozice FF MU Mojmír Dočekal ÚJABL Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová
Ontologie. Otakar Trunda
Ontologie Otakar Trunda Definice Mnoho různých definic: Formální specifikace sdílené konceptualizace Hierarchicky strukturovaná množina termínů popisujících určitou věcnou oblast Strukturovaná slovní zásoba
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Výroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
LOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
ATOMISTICKÁ SÉMANTIKA:
Pozn.: výrazy jazyka jsou psány v uvozovkách ( pes ), význam výrazu je psán kurzívou (pes) a objekt-referent výrazu je psán velkými písmeny (PES) definované výrazy jsou podtrhávané mentální reprezentace
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz
Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL
Logická analýza přirozeného jazyka II.
Logická analýza přirozeného jazyka II. Doporučená (doplňková) literatura B. Bolzano: Vědosloví. (Výbor) Academia, Praha 1981, o představách o sobě E. Margolis and St. Laurence,eds.: Concepts. Core Readings.
ZREVIDOVÁNÍ POJMU JAZYKOVÉHO FAKTU (DEFINICE POJMOVÉHO FAKTU)
ZREVIDOVÁNÍ POJMU JAZYKOVÉHO FAKTU (DEFINICE POJMOVÉHO FAKTU) Jiří Raclavský Úvod V knize Pravda a fakt ([Kolář 2002]) publikoval Petr Kolář rozsáhlý přehled teorií pravd, (svoji) teorii nepřímé korespondence
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Sémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
Logika. 1. Úvod, Výroková logika
Logika 1. Úvod, Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Logika Libor Barto. Výroková logika
Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....
Logická analýza přirozeného jazyka II. Pavel Materna
Logická analýza přirozeného jazyka II. Pavel Materna 2006 1 OBSAH 1. POJEM V DĚJINÁCH LOGIKY 3 A) KLASICKÁ ŘECKÁ FILOZOFIE. 3 B) BOLZANO A TRADIČNÍ ARISTOTELSKÁ LOGIKA 4 C) FREGE, CHURCH 5 D) BEALER 5
Zobecněné kvantifikátory, empirické argumenty pro unifikovanou sémantiku NP, negativně 1 / 20 p
Zobecněné kvantifikátory, empirické argumenty pro unifikovanou sémantiku NP, negativně polaritní výrazy FF MU Mojmír Dočekal ÚJABL Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik
Logická analýza přirozeného jazyka I.
Logická analýza přirozeného jazyka I. Rozvrh témat Literatura: http://til.phil.muni.cz/text/constructions_duzi_materna.pdf http://til.phil.muni.cz/ http://www.cs.vsb.cz/duzi Pavel Tichý: The Foundations
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
Obsah: Motivace Syntaktický analyzátor synt Logická analýza v systému synt
Syntaktická a logická analýza češtiny v analyzátoru synt Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/projekty/wwwsynt/ Obsah: Motivace Syntaktický analyzátor synt Logická analýza v systému
Matematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Modifikace: atributivní použití adjektiv, druhy adjektiv,
: atributivní použití adjektiv, druhy adjektiv, adverbia jako modifikátory událostí/predikáty vyššího řádu FF MU Mojmír Dočekal ÚJABL Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik
Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
Nepřijde a nedám 100 Kč měl jsem pravdu, o této
1.4.4 Implikace Předpoklady: 010403 Implikace Implikace libovolných výroků a,b je výrok, který vznikne jejich spojením slovním obratem jestliže, pak, píšeme a b a čteme jestliže a, pak b. Výroku a se říká
Sémantický web a extrakce
Sémantický web a extrakce informací Martin Kavalec kavalec@vse.cz Katedra informačního a znalostního inženýrství FIS VŠE Seminář KEG, 11. 11. 2004 p.1 Přehled témat Vize sémantického webu Extrakce informací
Základy logiky I. Pochopit jazykový výraz Na co ukazuje jazykový výraz? láhev, dům, šest, bolest, prvočíslo Ukazuje jazykový výraz na věci? Ukazuje na
Filosofie Základy logiky Základy logiky I. Pochopit jazykový výraz Na co ukazuje jazykový výraz? láhev, dům, šest, bolest, prvočíslo Ukazuje jazykový výraz na věci? Ukazuje na množiny věcí? Ukazuje na
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Už umíme používat výrokovou logiku pro reprezentaci znalostí a odvozování důsledků. Dnes Dnes zopakujeme
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
1. Matematická logika
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 1. Matematická logika Základem každé vědy (tedy i matematiky i fyziky) je soubor jistých znalostí. To, co z těchto izolovaných poznatků
2.2 Sémantika predikátové logiky
14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
HLEDÁNÍ JAKO POJMOVÝ POSTOJ Jiří Raclavský
HLEDÁNÍ JAKO POJMOVÝ POSTOJ Jiří Raclavský Abstract (Seeking as Notional Attitude): As Quine already recognized, there are attitudes that cannot be read in relational sense (extensionally), but exclusively
přednáška 2 Marie Duží
Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.
Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová
1. Matematická logika
MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika
Implementace funkce If-then-else s lazy evaluací dle specifikace v TIL Implementation of the If-then-else Function with Lazy Evaluation Based on TIL
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Implementace funkce If-then-else s lazy evaluací dle specifikace v TIL Implementation of the If-then-else Function
Sylogistika. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 16
(FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 16 Výstavba logické teorie Sylogistika 1) Syntax základní symboly (logické, mimologické) gramatická pravidla (pojem formule) 2) Sémantika pojem interpretace
Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.
Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové
SLOŽENÍ PŘIROZENÉHO JAZYKA Z HLEDISKA TRANSPARENTNÍ INTENZIONÁLNÍ LOGIKY
SLOŽENÍ PŘIROZENÉHO JAZYKA Z HLEDISKA TRANSPARENTNÍ INTENZIONÁLNÍ LOGIKY Jiří Raclavský ÚVOD To, čím se chci v této stati kromě jiného zabývat, jsou věty vyjadřující postoje, které Pavel Tichý nazval lingvální
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Výbor textů k moderní logice
Mezi filosofií a matematikou 5 Logika 20. století: mezi filosofií a matematikou Výbor textů k moderní logice K vydání připravil a úvodními slovy opatřil Jaroslav Peregrin 2006 Mezi filosofií a matematikou
Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1
Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
Fuzzy množiny, Fuzzy inference system. Libor Žák
Fuzzy množiny, Fuzzy inference system Proč právě fuzzy množiny V řadě případů jsou parametry, které vstupují a ovlivňují vlastnosti procesu, popsané pomocí přibližných nebo zjednodušených pojmů. Tedy
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20
Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Výroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
SINGULÁRNÍ VÝROKY: Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je.
Studijní text Co je singulární výrok SINGULÁRNÍ VÝROKY: PETR Petr je veselý. Jednoduchý singulární výrok vznikne spojením singulárního termínu s termínem obecným pomocí spony=slova je. Příklad: Pavel je
Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13
Predikátová logika: Axiomatizace, sémantické stromy, identita (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 13 Axiomatizace predikátové logiky Axiomatizace predikátové logiky Definice Hilbertovský
PAVEL MATERNA A TŘÍSLOŽKOVÁ TEORIE JAZYKA
STUDIA PHILOSOPHICA 62, 2015, 2 ALEŠ HORÁK KAREL PALA PAVEL MATERNA A TŘÍSLOŽKOVÁ TEORIE JAZYKA V tomto textu předkládáme některé výsledky naší dlouholeté odborné spolupráce s Pavlem Maternou, které si
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
Nalézání po hledání coby vědění kdo. Jiří Raclavský
1 Nalézání po hledání coby vědění kdo Jiří Raclavský V tomto textu se vracím k problému nalézání po hledání a postulátového nalézání, ovšem nejde mi o (opakovanou) obhajobu mého někdejšího návrhu [Raclavský
KMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 3 Predikátový počet Uvažujme následující úsudek.
výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
Pavel Materna: Concepts and Objects. Acta Philosophica Fennica vol 63, Societas Philosophica Fennica, Helsinky 1998; 177 pp.
Pavel Materna: Concepts and Objects. Acta Philosophica Fennica vol 63, Societas Philosophica Fennica, Helsinky 1998; 177 pp. Pavel Materna je logikem a filosofem, na kterého se, domnívám se, mimořádně
Předmluva Jak známo, Gottlob Frege si zvláště v proslulé stati Über Sinn und Bedeutung (Frege 1892) povšiml, že věty tvaru a=b ( Jitřenka=Večernice, 2
Jak známo, Gottlob Frege si zvláště v proslulé stati Über Sinn und Bedeutung (Frege 1892) povšiml, že věty tvaru a=b ( Jitřenka=Večernice, 2+3=8-3, apod.) nejenže nejsou kontradiktorické (každý objekt
Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka
Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
Srovnávací a historická gramatika, historicko-srovnávací metoda Franz Bopp, Jacob Grimm, Karl Brugmann
Srovnávací a historická gramatika, historicko-srovnávací metoda Franz Bopp, Jacob Grimm, Karl Brugmann Historicko-srovnávací metoda zvláštní vědecký postup zkoumání příbuzenských vztahů mezi jazyky; seskupení
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
Pojem problému z hlediska teorie konstrukcí
Pojem problému z hlediska teorie konstrukcí Pavel Materna Akademie věd České republiky, Praha Abstract: Transparent Intensional Logic (TIL) explicates objective abstract procedures as so-called constructions.
Znovu o existenci 1. Pavel Materna. Discussions
Discussions Znovu o existenci 1 Pavel Materna Primární důvod, proč existenci nemůžeme předikovat o jednotlivinách, je dán tím, že by to vedlo k nesmyslné činnosti ověřování, zda daná jednotlivina existuje
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Sublexikální sémantika: události, sémantické role; formalizace: množiny a funkce, lambda 1 / 12 a
Sublexikální sémantika: události, sémantické role; formalizace: množiny a funkce, lambda abstrakce FF MU Mojmír Dočekal ÚJABL Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
Okruh č.3: Sémantický výklad predikátové logiky
Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat
Definice. Petr Kuchyňka
Definice Petr Kuchyňka (7765@mail.muni.cz) 1 Úvod Pravdivost vět či platnost argumentů lze kompetentně posoudit, jen když je jasné, co přesně znamenají výrazy v nich užité. Základním prostředkem specifikace
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky
Logika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o...
Logika 5 Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1 Logika je věda o.... slovech správném myšlení myšlení Otázka číslo: 2 Základy
Okruh č.9: sémantické metody dokazování v PL1 model formule Tradiční Aristotelova logika kategorický sylogismus subjekt predikátové výroky
Okruh č.9: sémantické metody dokazování v PL1 Pomocí metody Vennových diagramů a relačních struktur vytváříme grafický model situace, která je úsudkem vyjádřena. Ověřujeme, zda náš graficky znázorněný
Typy predikátů: slovesa, predikativní jména, adjektiva, tranzitivní slovesa, relativní 1 věty / 10
: slovesa, predikativní jména, adjektiva, tranzitivní slovesa, relativní věty FF MU Mojmír Dočekal ÚJABL Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia
Ludwig WITTGENSTEIN: Tractatus Logico-Philosophicus, 1922 Překlad: Jiří Fiala, Praha: Svoboda, 1993
Ludwig WITTGENSTEIN: Tractatus Logico-Philosophicus, 1922 Překlad: Jiří Fiala, Praha: Svoboda, 1993 l Svět je všechno, co fakticky je. 1.l Svět je celkem faktů a nikoli věcí. l.2 Svět se rozpadá na fakty.