Příprava nanočástic, nanovláken, nanovrstev a funkčních nanostruktur: kombinací fyzikálních a chemických metod.

Rozměr: px
Začít zobrazení ze stránky:

Download "Příprava nanočástic, nanovláken, nanovrstev a funkčních nanostruktur: kombinací fyzikálních a chemických metod."

Transkript

1 Nanotechnologie: Využití mikroorganismů k syntéze nanočástic - nanobiotechnologie Zdrobňování: Desintegrace Příprava nanočástic zdrobňováním struktur: Mechanické postupy: různé mlecí techniky tryskové mletí Chemické postupy (delaminace vrstevnatých struktur...) Příprava nanočástic, nanovláken, nanovrstev a funkčních nanostruktur: kombinací fyzikálních a chemických metod. Příprava funkčních nanostruktur metodami supramolekulární chemie Cílená manipulace přírodních a syntetických krystalových struktur na nano-úrovni, vedoucí k novým syntetickým nanostrukturám, s novými vlastnostmi

2 Příprava funkčních nanostruktur metodami supramolekulární chemie Supramolekulární chemie Nobelova cena Jean Marie Lehn Definice: J.L. Lehn - Chemie molekulárních uspořádání a intermolekulárních nevazebních interakcí. Jiná definice: Chemie nekovalentních vazeb Chemie slabých intermolekulárních interakcí Molekulární chemie se zabývá syntézou molekul a silnými kovalentními vazbami a dosáhla svého vrcholu v 70 letech, kdy se podařilo syntetizovat řadu přírodních látek reaktivní interakce molekul kovalentní vazby - překryvy X Supramolekulární chemie je založena na slabých nekovalentních intermolekulárních vazbách molekuly tvvoří komplexy vázané vzájemně slabou nevazební interkací Nevazební interakce elektrostatické, Van der Waalsovy síly, H-můstky, - interakce.

3 Supramolekulární chemie vytváří umělé supramolekulární struktury s využitím intermolekulárních interakcí V nejjednodušším smyslu je SCH chemií host-guest host hostitel hostitelská molekula váže molekulu hosta za tvorby host-guest komplexu (supramolekuly) Hostitelská molekula - obvykle velká molekula nebo agregát (enzym, syntetická cyklická molekula atd. obsahující dutinu molekula hosta - kation, anion, ale i větší molekuly (hormon, neurotransmiter atd.) Kriteria pro vznik supramolekulárního komplexu: Komplementarita chemická molekula hostitele i hosta musí obsahovat vazební místa správného elektronického charakteru Komplementarita geometrická tvarová komplementarita obou molekul

4 Významný faktor komplementarity: rozdělení náboje v molekulách Molekula: 2,4,6-trinitro-1,3,5-triazine (TNTA). Nábojová hustota molekuly TNTA: Equipotenciální plochy: Modrá: kladný náboj +0.5 e/å 3, červená: záporný náboj -0.3 e/å 3 Podle: P. SRINIVASAN, K. MAHESHWARI, M. JOTHI and P. KUMARADHAS* Central European Journal of Energetic Materials, 2012, 9(1), 59-76,ISSN

5 Molekulární rozpoznávání - Podmínkou asociace molekul do nadmolekuly je jejich vzájemná komplementarita (rozložení náboje, vazební geometrie sterické faktory) Princip: receptor-substrát (analyt) zámek a klíč Molekulární rozpoznávání proces selekce substrátu (analytu) daným receptorem senzorové vlastnosti Supramolekulární struktury hostitel host Inkluzní komplex Klatrát

6 Příklady molekul hostitele: pro inkluzní komplexy Cyklodextriny cyklické oligomery, 6,7,8 glukopyranosových jednotek-,, cyklodextrin Crownethery - Makrocyklické polyethery kalixareny 12-crown-4 15-crown-5 18-crown-6 Cyklofany 21-crown-7

7 Empirický popis intermolekulárních interakcí Intermolekulární interakční energie je konstruována jako součet 4 příspěvků: E INT = E C + E I + E D + E REP Elektrostatické: E C je energie Coulombovská - určí se jako interakce monopólů - atraktívní E I je energie interakce mezi původními a indukovanými dipóly (závisí na polarizovatelnosti) Disperzní a repulzivní - Van der Waals: E D je Londonova disperzní energie (London 1930) v důsledku oscilací atomových jader a el. obalů vznikají časově proměnné elektrické multipóly a vzájemně interaguji atraktívní E REP je energie repulzívní interakce, která působí při přiblížení atomů na vzdálenosti kdy je překryv el. sfér nenulový překryv obsazených orbitalů vede k pouze k odpuzování.

8 H-VAZBA Významná v molekulárních krystalech a biologických systémech; Vzniká když je H vázán ke dvěma i více atomům, které mají větší elektronegativitu než H (N,O,F,S,Cl,C) donor D H A akceptor H-atom kovalentně vázaný k jednomu elektronegativnímu atomu DONOR, Druhý elektronegatívní atom AKCEPTOR Oba elektronegatívní atomy si vezmou část el. hustoty H-atomu každý z elektronegatívních atomů nese parciální záporný náboj H F

9 Příklady donorů a kaceptorů donory akceptory C-H [C=C] N-H [N] P-H [P] O-H [O] S-H [S] X-H [X] (Cl, F) voda Atypické H-vazby: 1. C-H X (X=O,N,Cl.) teoretické výpočty - P. Hobza, krystalografická evidence Taylor R., Kennard O 2. X-H.. (fenyl) fenyl ring může být akceptorem 3. C C-H.. (C C) Krystalografická, spektroskopická data a teoretické výpočty.

10 Povaha H-vazby: H vazba má 4 složky : elektrostatická (Coulombovská), polarizační (indukční), VDW - disperzní interakce - atraktívní a repulzívní (překryvová). E H = E C + E I + E D + E REP Empirický popis: E HB (r) = ar -12 br -10 nebo E HB (r, ) = (r -12 r -10 ) cos 4 (r- vzdál. H acceptor) R H-vazba voa+alkohol voda keton R R C O H-VAZBA V MOLEKULÁRNÍCH KRYSTALECH H

11 H-vazba v v biomakromolekulách H-vazba je zopovědná z velké části zodpovědná za sekundární, terciární a kvaternární struktury proteinů H-vazba mezi polymerními řetezci

12 Poloha akceptoru Poloha akceptoru Geometrie vodíkové vazby: [ 1 Å = m, 1nm = 10-9 m ] Délka vodíkové vazby: Ve vodě : O-H je 0.96 Å a O H je Å NH---O Å, OH---O Å Variabilita geometrie vodíkové vazby Vzdálenost H A ~ Å Úhel D - H...A ~ Nejsilnější lineární vazby!!!! Energie H-vazby 2-40 kcal/mol Vícenásobné akceptory a donory!!!!! O H

13 Využití supramolekulárních struktur: - katalýza, design nových lékových forem ukotvení molekuly léčiva na vhodném nosiči, senzory, biosenzory, design funkčních nanostruktur pro optoelektronické aplikace Konstrukce optických sensorů (UV, fluorescenčních ) je typickým úkolem, který řeší moderní chemie. Sensor reaguje s analytem, vzniká agregát, který má naprogramované fyzikálně chemické vlastnosti.

14 Rozpoznávání iontů chemické senzory: Crown ethery mají jedinečné vlastnosti při tvorbě komplexů s kationy (zvláště Na+, K+, atd). Velikost kavity a poloměr kationtu: Na Å ; K Å ; Cs Å [15]-crown-5 nejlépe komplexuje s Na +, [18]-crown- 6 má optimální kavitu pro K + a [21]-crown-7 tvoří komplex s Cs crown-6 koordinující draslíkový kationt Na + K + Cs + Centrální atom se chová formálně jako Lewisova kyselina tzn. Je schopen přijímat jeden nebo více elektronových párů od ligandů dochází tak k vzájemnému spojení pomocí donor-akceptorových vazeb. Ke vzniku této vazby je nutné, aby centrální atom obsahoval vakantní orbitaly, které přijmou elektrony od ligandů - jeden z vazebných atomů (donor) poskytuje volný elektronový pár, druhý vazebný partner (akceptor) poskytnutými elektrony zaplní své volné orbitaly. - Koordinačně kovalentní vazba

15 VYUŽITÍ MAKROMOLEKUL PRO SYNTÉZU FUNKČNÍCH NANOSTRUKTUR POLYMER Monomer ethen (ethylen) Polymer polyethylen OLIGOMER 2-10 monomerů, s počtem merů se mění vlastnosti na rozdíl od polymerů H (CH 2 ) n H Kopolymer řetězení dvou i více různých monomerů DENDRIMERY Rozvětvené makromolekuly

16 Molekuly hosta v dutinách Příklady dendrimerních struktur podle (2).

17 Funkční nanostruktury založené na slabých mezimolekulárních interakcích Funkce: molekulární rozpoznávání pro chemické separace a pro chemické senzory, nosiče molekul léčiv pro selektivní transport léčiva, snadnější vstřebání katalyzátory selektívní sorbenty, filtry, membrány Design nových lékových forem cílený transport molekul léčiva lepší biodostupnost, snadné vstřebávání postupné uvolňování molekul léčiva v organismu potlačení hořké chuti Ukotvení molekuly léčiva na vhodný nosič Nosiče molekul léčiv : polymerní, cyklodextriny, dendrimery Požadavky na nosič: netoxický, biodegradovatelný, selektivně působící

18 Cyklodextriny jako nosiče molekul léčiv -CD = 6 glucopyranose units -CD = 7 glucopyranose units -CD = 8 glucopyranose units Hydrofobní kavita OH Velikost kavity: -CD 0.45nm -CD 0.70nm -CD 0.85nm OH Uspořádání b-cd komplexů s molekulou léčiva, /podle 5./ Výhody komplexu CD/léčivo oproti čistým krystalkům léčiva v tabletě: lepší vstřebání, postupné uvolňování, potlačení odporné chuti

19 Dendrimery jako nosiče molekul léčiv Ukotvení molekuly léčiva vazební interakcí Problém: enzymatické rozštěpení vazby Ukotvení molekuly léčiva nevazební interakcí Navázaná molekula léčiva musí být v pravý okamžik na pravém místě v organismu uvolněna!!!!!!!

20 Schema polymerního řetězce s bočními řetězci, na kterých jsou navázané molekuly léčiva Polymerní nosiče léčiv cytostatika: Molekuly cytostatik navázané na polymerní řetězec, působením enzymů se molekula cytostatika odštěpí od polymerního nosiče. Výhody: Selektívní působení pouze v nádorové tkáni, která je řídší Možné vyšší dávky cytostatik, bez vedlejších účinků Polymerní řetězec Molekula cytostatika Enzymaticky štěpitelná spojka

21 Biodegradovatelné polymery jako nosiče léčiv nevazební interakce polyceluloza polyetylenglycol polycaprolactam polychitosan Cyklosporin A lék na potlačení imunity /podle 6./

22 Příklady komplexů polymer- Cyclosporin A (CsA) /podle 6./ polylactide, polychitosan, polyglycolic acid, polyethylene glycol and cellulose.

23 Nanotechnologie: Využití mikroorganismů k syntéze nanočástic - nanobiotechnologie Zdrobňování: Desintegrace Příprava nanočástic zdrobňováním struktur: Mechanické postupy: různé mlecí techniky tryskové mletí Chemické postupy (delaminace vrstevnatých struktur...) Příprava nanočástic, nanovláken, nanovrstev a funkčních nanostruktur: kombinací fyzikálních a chemických metod. Příprava funkčních nanostruktur metodami supramolekulární chemie Cílená manipulace přírodních a syntetických krystalových struktur na nano-úrovni, vedoucí k novým syntetickým nanostrukturám, s novými vlastnostmi

24 Interkalace - zabudování atomů, molekul iontů do krystalové struktury minerálů, organických krystalů. Jaké hostitelské struktury jsou vhodné pro interkalaci??????? Hostitelské struktury anorganické: Zeolity: Vrstevnaté krystalové struktury: Chemická vazba uvnitř vrstev silná, kovalentní, mezivrstevní vazby slabé Van der Waalsovy Organické matrice Grafit Vrstevnaté silikáty Fosforečnany Krystaly fullerenů Molekula fullerenu C60

25 Interkalace je proces při kterém se molekula nebo iont (host) umísťí do hostitelské mřížky. Struktura hostitele zůstává v interkalační sloučenině (interkalátu) stejná nebo pouze mírně odlišná od původního hostitele - topotaktická reakce. octadecylamin Mezi hostitelskou strukturou a hostem se nevytvoří kovalentní vazba. Interakce host-hostitel nekovalentní elektrostatická, Van der Waals a H- můstky Charakter Interakce se řídí povahou hostitele a hosta zabudování polárních molekul, nebo iontů do hostitelské struktury, Jak se interkaluje??? Interkalace z roztoku nebo v parách hosta, v mikrovnném poli, v elektrolytu za různých teplot a tlaků

26 Interkalace změna fyzikálních a chemických vlastností Cíl interkalace - řízená změna vlastností Využití interkalátů iontové vodiče, vodiče s kovovou vodivostí ve dvou dimenzích, supravodiče materiály pro elektrody baterií fotofunkční jednotky pro optoelektroniku (interkalace opticky aktívních molekul do vhodných hostitelských struktur) léčiva ( biologicky aktivní molekuly interkalované do vhodné matrice) chemické senzory selektívní sorbenty, katalyzátory.. nanokompozitní konstrukční materiály

27 Interkalační chemie Interkalace zabudování polárních molekul, iontů do hostiotelské struktury bez kovalentní vazby interakce host-hostitel je pouze slabá nevazební elektrostatická +VDW 6 + vodíkové můstky Grafitové interkalační sloučeniny Vazby uvnitř vrstev - kovalentní, mezi vrstvami - VDW Vazební délka C-C..1,42 Å 3,35 Å GIC: 1. donorové interkalanty host (interkalant) odevzdá elektron hostitelské vrstvě: alkalické kovy Li, K Rb, Cs a dvojmocné Ba, Ca, Sr, Příprava elektrochemickou reakcí v elektrolytu s grafitovou anodou 2. akceptorové interkalanty host (interkalant )přijme elektron od grafitové vrstvy: Chloridy přechodových kovů FeCl 3, TaCl 4, NbCl 4,HNO 3 V parách interkalantu za vysokých teplot

28 K + grafit a Li + grafit : Katalyzátory pro organické syntézy Materiály pro elektrody baterií Interkaláty grafitu: Během nabíjení a vybíjení se grafit interkaluje a deinterkaluje Lithiem katoda anoda

29 Interkalace etanolu do vrstevnaté struktury Zr(HPO 4 ) 2.H 2 O Hostitelská struktura: Zr(HPO 4 ) 2.H 2 O Interkalováno etanolem Interkaláty Zr(HPO 4 ) 2.H 2 O: protonové vodiče, katalyzátory, chemické senzory

30 Interkalace organických barviv do TaS 2 - Molekulární supravodiče Interkalace zvýšení T c - přechodu do supravodivého stavu Host Metylénová modř Hostitel TaS 2 T c = 0.6 K Fáze I T c = 5.21K Fáze II T c = 4.92K Fáze III T c = 4.24

31 Fullereny a deriváty Interkalace fullerenové struktury C60 Atomy zabudované uvnitř fullerenové molekuly = K, Rb,Cs.. K 3 C 60, a Rb 3 C 60 kovová vodivost K 6 C 60, a Rb 6 C 60 nevodivé K 3 C 60 supravodič, Tc ~ 28K

32 Vrstevnaté silikáty fylosilikáty - matrice pro funkční nanostruktury Jílové minerály - široké průmyslové využití: keramika, stavebnictví, plniva pro plasty, papír, kosmetické přípravky, sorbenty, katalyzátory. Výzva pro nové technologie - vhodné matrice pro ukotvení: organických molekul, komplexů, iontů, nanočástic. Pozoruhodné krystalochemické vlastnosti!! Vrstvy nesou záporný elektrický náboj!!!! Náboj vrstev je kompenzován kationty kovů. Interkalace silikátů je dvojího typu: (1) iontová výměna, nebo (2) ion-dipolová interkace - neutrální polární molekula vstoupí do mezivrství a původní mezivrstevní kationty tam zůstanou. Přírodní vrstevnatý silikát Vyměnitelné kationty v mezivrství Kompenzují náboj vrstev Iontová výměna: Komplexní kationty, Organoamoniové kationty Ion-dipolová interakce: Interkalace polárních organických molekul (oktadecylamin)

33 Vrstevnaté silikáty jako hostitelské struktury Montmorillonit. Náboj vrstev Si Al (Fe 3+,Fe 2+, Mg) Vrstva shora Vyměnitelné kationty + (H 2 O) Mezivrstevní kationty: Ca 2+, Na +, K + kompenzují náboj vrstev Počet a poloha substitucí atomů velikost a rozložení náboje na vrstvě vlastnosti a chování jílu

34 Vrstevnaté silikáty interkalované anorganickými kationty - sorbenty, katalyzátory. [Al 13 O 4 (OH) 24 (H 2 O) 12 ] 7+ Montmorillonite Výsledek molekulárních simulací: Nepravidelnost ukotvení komplexních kationtů k vrstvám Energeticky výhodné shluky hostů, problematická kontrola porozity!!!!

35 Interkalace organických molekul do vrstevnatých silikátů sorbenty nepolárních organických molekul pro organické znečištění ve vodě a vzduchu Interkalace HexaDecylTrimetyl amonia (HDTM) - organoamoniový kationt- do vermikulitu Účinný sorbent pro mono a polycyklické uhlovodíky z plynného prostředí čištění odpadních plynů Interkalace HexaDecylPyridinia (HDP) do vermikulitu Účinný sorbent pro mono a polycyklické uhlovodíky z vodního prostředí čištění odpadních vod PLACHÁ D., SIMHA MARTYNKOVÁ G., RŰMMELI M. Journal of Colloid and Interface Science 327, (2008),

36 Intenzita fotoluminiscence Interkalace organických barviv do vrstevnatých silikátů změna optických vlastností laditelnost fotoluminiscence RhB Metylenová modř Metylčervveň Interkalát RhB/MMT Vlnovou délku fotoluminiscence organických molekul je možné měnit typem silikátové hostitelské struktury!!!!! RhB/MMT vzorek RhB ve vodě 580 max [nm] RhB/MMT (RhB interkalovaný v montmorillonitu) 655 Vlnová délka (nm) Posuv emisního pásu RhB k vyšší vlnové délce po interkalaci do silikátu - montmorillonitu Podle: Čapková, P. Malý, M. Pospíšil, Z. Klika, et al.: J. Colloid Interface Sci., 277 (2004)

37 PL PL [arb. u.] PL [arb. u.] PL 0 Metylčerveń (MR) interkalovaná v silikátech 2 typy silikátů s různým složením vrstev a různým nábojem Montmorillonit Ivančice: Vermikulit Letovice: el na jedn. b el na jedn. b wavelength [nm] fotoluminiscence Čistá krystalická MR MR 442 nm Struktura MR-vermikulitu Pouze částečně interkalovaný 1, wavelength [nm] ,8 Struktura MR-montmorillonitu 0,6 0,4 MR vermikulit 0,2 Poloha emisních pásů fotoluminiscence Sample: MR- fine powder MR-VER MR-MMT 1,0 0,8 0, wavelength [nm] MRmontmorillonit Layer charge per unit cell el el 0,4 max (excitace 320nm) 800 nm 645 nm 565 nm 0,2 G. Simha Martynková, L. Kulhánková, P. Malý, M. Valášková, P. Čapková: J. Nanoscience and Nanotechnology, vol. 8, (2008) wavelength [nm]

38 Nanotechnologie: Využití mikroorganismů k syntéze nanočástic - nanobiotechnologie Zdrobňování: Desintegrace Příprava nanočástic zdrobňováním struktur: Mechanické postupy: různé mlecí techniky tryskové mletí Chemické postupy (delaminace vrstevnatých struktur...) Příprava nanočástic, nanovláken, nanovrstev a funkčních nanostruktur: kombinací fyzikálních a chemických metod. Příprava funkčních nanostruktur metodami supramolekulární chemie Cílená manipulace přírodních a syntetických krystalových struktur na nano-úrovni, vedoucí k novým syntetickým nanostrukturám, s novými vlastnostmi

39 Nanobiotechnologie a bionanotechnologie Nanobiotechnologie - využití nanočástic a nanomateriálů pro modifikaci a ovlivnění biologických systémů a procesů Bionanotechnologie produkce nanočástic biologickými systémy (Definice prof. Ivo Šafařík, Ústav systémové biologie a ekologie AV ČR, České Budějovice) Nanobiotechnologie Diagnosticke metody nanočástice pro zviditelnění nádorových tkání metodou magnetické rezonance nanočástice na silikátech pro diagnostiku tenkého střeva Destrukce nádorových tkání pomocí nanočástic Nanotechnologicke povrchy mohou zlepšit bioaktivitu a biokompatibilitu implantátů. Samoorganizujici se struktury otevírají cestu pro tkáňové inženýrství Biomimetické materiály - perspektiva pro transplantace syntetických orgánů Nové systémy pro podávání léků nosiče pro cílený transport léčiv Biosenzory Nanoroboti

40 Nanomateriály pro biomedicínské aplikace Požadavek netoxické biokompatibilní, biodegradovatelné Nanomateriály pro regenerativní medicínu: Tkáňové inženýrství - využití technologií biologických, chemických, lékařských a inženýrských principů vedoucích k obnovení, restaurování nebo regeneraci tkání, tedy pro tzv. regenerativní medicínu. Nanotechnologie v medicině : Nanotechnologie a nanomateriály tak mohou přispět k reprodukci nebo k opravě poškozené tkáně. Jak??? substrát pro pěstování tkání nebo pro implantáty Cíl: Nanomateriály, na kterých porostou buňky, a které budou organismem dobře přijímány a které by nahradily dnešní konvenční transplantace orgánů nebo umělé implantáty. Tato oblast vědy vyvíjí např. tzv. nosiče, tedy substráty, na kterých optimálně rostou buňky poškozená tkáň se sama opraví. rekonstrukci cév, kůže, kostí, chrupavek, svalů či nervové tkáně. Biodegradovatelné polymery - nosiče pro regeneraci tkání a tkáňové inženýrství. biomateriálů pro regenerativní medicínu Nanotextilie a nanovlákna substrát pro tkáňové inženýrství Uhlíkaté nanomateriály Kompozitní materiál simulující složení a architekturu kosti implantáty s dobrou adhezí k okolní tkáni - prorůstající do tkání

41 Další možnosti využití nanomateriálů v biomedicínských aplikacích: Diagnostika nádorových tkání (nanočástice oxidů železa) Destrukce nádorových buněk (nanočástice oxidů železa ve střídavém magnetickém poli) Design nových lékových forem pro cílený transport léčiva Nanoroboti Vyhledávání a ničení poškozených buněk, Doprava léčiv po těle Čištění krevního řečiště, Zvýšení pevnosti kostí pomocí nanočástic uhlíku

42 BIOSYNTÉZA KOVOVÝCH A OXIDOKOVOVÝCH NANOČÁSTIC A JEJICH APLIKACE Magnetické nanočástice produkované magnetotaktickými bakteriemi Intra - Extracelulární produkce magnetických oxidů železa Tvorba nanočástic (zejména ušlechtilých kovů) mikrobiální cestou širší využití Magnetotaktická bakterie V r byla objevena magnetotakticá bakterie (R.Blakemore), která si vytváří sférické krystality magnetitu (Fe3O4) o rozměru cca 50 nm, které jsou přesně orientované a předavaji ji magnetický moment rovnoběžný s jeji osou pohyblivosti. Řetizky nanočastic nazvanych magnetosomy slouži jako jednoduché střelky kompasu, ktere pasivně natáčí buňky bakterie, aby byly vyrovnány souběžně se zemským magnetickým polem. Využití magnetických nanočástic: V medicíně diagnostika a destrukce nádorů.

43 Prof. Ivo Šafařík, Ústav systémové biologie a ekologie AV ČR, České Budějovice produkce magnetických nanočástic pro diagnostiku a medicínské aplikace Výhoda bioprodukce: Pravidelné tvary a úzká distribuce velikostí nanočástic Biosyntéza nanočástic kovů a jejich oxidů je zvláštní případ chemické přípravy nanočástic probíhá chemickou cestou uvnitř živého organismu působením jeho enzymů či ostatních molekul. Přesný mechanismus biosyntézy není dosud detailně popsán buňka obsahuje proteiny, polysacharidy, nukleové kyseliny, tuky apod.), které obsahují volné funkční skupiny, jako jsou například hydroxyly nebo aminy. Tyto funkční skupiny mohou díky svému redukčnímu potenciálu participovat na redukci iontů kovu na jeho elementární formu.!!!! Možná aktivní účast některých enzymů v průběhu redukčního procesu.

44 Podmínky bio syntézy umístění mikroorganismů do vodných roztoků solí Microorganisms Products Culturing temperature Size (nm) Shape Location C Sargassum wightii Au Not available 8 12 planar Extracellular Rhodococcus sp. Au spherical Intracellular Shewanella oneidensis Au ± 5 spherical Extracellular Plectonemaboryanum Au <10 25 cubic Intracellular Escherichia coli CdTe spherical Extracellular Cr, Co, Mn, Pd, pt, Se, Hg Oxidy: Fe 3 O 4, Fe 2 O 3, TiO 2, ZrO 2..

45 Nanočástice v diagnostice zviditelnění pomocí magnetické rezonance Destrukce nádorových tkání pomocí magnetických nanočástic silného VF magnetického pole: Magnetické částice jsou zavedeny do krve a magnetickým polem jsou navedeny do oblasti, která je rakovinou postižena. Tyto částice jsou posléze vystaveny působení střídavého vnějšího magnetického pole, které zapříčiňuje jejich neustálou remagnetizaci, při níž se uvolňuje teplo v důsledku hysterezních ztrát. Teplota okolí nanočástice se tak zvětšuje, což vede k nekróze rakovinových buněk při určité teplotě (obvykle 42 C). nanoroboti. Maghemit -Fe 2 O 3 a magnetit Fe 3 O 4 - silně magnetické Magnetické nosiče molekul léčiv N Nanoparticle (magnetický nosič) C Coating layer (funkcionalizující slupka) B Bioactive substance (bioaktivní látka) N C B Nanočástice Fe 2 O 3 ukotvené na povrchu vrstevnatých silikátů: Perorální kontrastní látka pro zobrazení zažívacího traktu metodou magnetické rezonance.

46 Využití nanočástic v katalýze: Rozsivky : - další mikroorganismy schopné biosyntézy nanočástic kovů Rozsivky jsou jednobuněčné řasy s dvojdílnou křemitou schránkou schránkou Schránky odumřelých rozsivek tvoří horninu diatomit (křemelina), který se těží (v ČR například u Borovan u českých Budějovic) a využívá se jako filtrační či sorpční materiál. Příklad 285 rodů (navicula) Nanočástice zlata na povrchu schánky rozsivky Využití v katalýze, Materiál je katalyzátorem jako kompozit typu nanočástice ukotvená na křemičité schránce, není nutné separovat nanočástice pro katalytické využití

47 Biosenzory: Definice: biosenzor je analytické zařízení,které obsahuje citlivý prvek rozpoznávací prvek biologického původu, které převádí určitý fyzikální nebo chemický signál na jiný signál, lépe měřitelný, Rozpoznávací prvek: enzym, buňka, protein, biomolekuly. Bioreceptory - Biomolekuly rozpoznávající analytický cíl: Enzymy Protilátky Receptorové bílkoviny - molekuly se specifickou afinitou k hormonům, protilátkám, enzymům a dalším biologicky aktivním látkám Mikroorganismy Nukleové kyseliny Rostlinné a zvířecí tkáně

48 Princip biosenzoru: supramolekulární chemie - chemie host hostitel (zámek a klíč) Princip: receptor-substrát (analyt) zámek a klíč Molekulární rozpoznávání proces selekce substrátu (analytu) daným receptorem. analyt receptor převodník signál Optický (změna barvy, indexu lomu, absorpce, fluorescence) Elektrický (změna vodivosti, el. potenciálu ) Výhody biosenzorů: Velká selektivita odezvy. Taková, které u abiotických senzorů nelze dosáhnout. Použití protilátky umožňuje např. detekovat konkrétní bílkovinu ve směsi jí podobných bílkovin, Nízká cena

49 Využití biosenzorů: medicína, zemědělství, životního prostředí, potravinářský a farmaceutický průmysl. Pomocí biosenzorů lze stanovovat jak anorganické látky, např. Cu 2+ peroxid vodíku, oxid dusnatý, siřičitany, amoniak, tak velký počet látek organických a biologicky důležitých, např. cukry, zejména glukózu, ale též fruktózu, galaktózu,alkoholy, ethanol, proteiny, aminokyseliny, cholesterol, Škodliviny: fenoly, pesticidy a herbicidy Stanovení lze provádět i ve velice komplikovaných matricích jako krevní sérum, moč nebo potravinářské výrobky. Dále jako analyt mohou figurovat různé biologicky aktivní látky, jako např. protilátky a antigeny.

50 Nanotechnologie na Přírodovědecké fakultě UJEP Bionanotechnologie nanomateriály pro biomedicinské aplikace. Vyvájíme biosenzory (od molekul k fungujícímu zařízení ), Vyvíjíme nové lékové formy na bázi denrdimerů pro amyloidní onemocnění - Alzheimerova choroba Plazmové technologie nanomateriály připravené plazmovou technologií pro širokou škálu využití Studium nanovlákenných textilií připravených technologií nanospider Počítačový design nanomateriálů

51 Zdroje a doplňující literatura: 1. P. Hobza Pavel, R. Zahradník Rudolf : Slabé mezimolekulové interakce v chemii a biologii (I. teorie + II. aplikace) (2 svazky) 2. P. Lhoták, I. Stibor: Molekulární design, skripta, vydavatelství VŠCHT, Praha M. Wilson,K. Kannangara, G. Smith, M Simmons, B. Raguse: Nanotechnology, basic science and emerging technologies, 2002, ACRC Press company Crystal Design: Structure and Function. Volume 7, Edited by Gautam R. Desiraju, Copyright 2003 John Wiley & Sons, Ltd.,ISBN: M. Fraňová: Interakce Beta-cyklodextrinu s biologicky aktivními molekulami Diplomová práce, MFF UK M. Macháčková, J. Tokarský, P. Čapková: A simple molecular modeling method for the characterization of polymeric drug carriers European Journal of Pharmaceutical Sciences 48 (2013) http:// 7. Anton Lerf, Pavla Čapková: Dye/inorganic nanocomposites in Encyclopedia of Nanoscience and Nanotechnology, vol.2, pages , ISBN /$35.00, Editor H.S. Nalva, American Scientific publishers, Stevenson Ranch, California, USA, P. Čapková, H. Schenk: "Host-Guest Complementarity and Crystal Packing of Intercalated Layered Structures", in Journal of Inclusion Phenomena and Macrocyclic Chemistry, (2003), volume 47, num. 1-2, pages D.S. Goodsell : Bionanotechnology: Lessons from the Nature, Wiley Liss 2004, ISBN X 10. Renugopalakrishnan, V.; Lewis, Randy V. (Editors): ionanotechnology: Proteins to nanodevice, Springer 2006, ISBN

Funkční nanostruktury Pavla Čapková

Funkční nanostruktury Pavla Čapková Funkční nanostruktury Pavla Čapková Centrum nanotechnologií na VŠB-TU Ostrava. Centrum nanotechnologií na VŠB-TUO Nanomateriály Sorbenty Katalyzátory a fotokatalyzátory Antibakteriální nanokompozity Nové

Více

NANOTECHNOLOGIE 2. 12. ledna 2015 GYMNÁZIUM DĚČÍN

NANOTECHNOLOGIE 2. 12. ledna 2015 GYMNÁZIUM DĚČÍN NANOTECHNOLOGIE 2 CZ.1.07/2.3.00/45.0029 Věda pro život, život pro vědu 12. ledna 2015 GYMNÁZIUM DĚČÍN Nanotechnologie nový studijní program na Přírodovědecké fakultě Univerzity J.E. Purkyně v Ústí nad

Více

02 Nevazebné interakce

02 Nevazebné interakce 02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí

Více

3. Stavba hmoty Nadmolekulární uspořádání

3. Stavba hmoty Nadmolekulární uspořádání mezimolekulové interakce supramolekulární chemie sebeskladba molekulární zařízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti mezimolekulové interakce (nekovalentní) seskupování

Více

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková

Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Přírodovědecká fakulta UJEP Ústí n.l. a Ústecké materiálové centrum na PřF UJEP http://sci.ujep.cz/faculty-of-science.html Nanotechnologie a Nanomateriály na PřF UJEP Pavla Čapková Kontakt: Doc. RNDr.

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

Molekulární krystal vazebné poměry. Bohumil Kratochvíl

Molekulární krystal vazebné poměry. Bohumil Kratochvíl Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Chemická vazba. John Dalton Amadeo Avogadro

Chemická vazba. John Dalton Amadeo Avogadro Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba

Více

Chemické metody přípravy tenkých vrstev

Chemické metody přípravy tenkých vrstev Chemické metody přípravy tenkých vrstev verze 2013 Povrchové filmy monomolekulární Langmuirovy filmy PAL (povrchově aktivní látky) na polární kapalině (vodě), 0,205 nm 2 na 1 molekulu, tloušťka dána délkou

Více

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.

Toxikologie PřF UK, ZS 2016/ Toxikodynamika I. Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický

Více

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je

Více

MATERIÁLOVÁ PROBLEMATIKA PŘI SEPARACI PLYNŮ A PAR

MATERIÁLOVÁ PROBLEMATIKA PŘI SEPARACI PLYNŮ A PAR MATERIÁLOVÁ PROBLEMATIKA PŘI SEPARACI PLYNŮ A PAR Ing. Miroslav Bleha, CSc. Ústav makromolekulární chemie AV ČR, v.v.i. bleha@imc.cas.cz Membrány - separační medium i chemický reaktor Membránové materiály

Více

Katedra chemie FP TUL Chemické metody přípravy vrstev

Katedra chemie FP TUL   Chemické metody přípravy vrstev Chemické metody přípravy vrstev Metoda sol-gel Historie nejstarší příprava silikagelu 1939 patent na výrobu antireflexních vrstev na fotografické čočky 60. léta studium vrstev SiO 2 a TiO 2 70. léta výroba

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie. Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v

Více

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

John Dalton Amadeo Avogadro

John Dalton Amadeo Avogadro Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA VY_32_INOVACE_03_3_07_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA Volné atomy v přírodě

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.03.2013 Číslo DUMu: VY_32_INOVACE_09_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

Částicové složení látek atom,molekula, nuklid a izotop

Částicové složení látek atom,molekula, nuklid a izotop Částicové složení látek atom,molekula, nuklid a izotop ATOM základní stavební částice všech hmotných těles jádro 100 000x menší než atom působí jaderné síly p + n 0 [1] e - stejný počet protonů a elektronů

Více

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D.

Úvod do biochemie. Vypracoval: RNDr. Milan Zimpl, Ph.D. Úvod do biochemie Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Co je to biochemie? Biochemie je chemií živých soustav.

Více

Nanomateriály z pohledu ochrany zdraví při práci Jaroslav Mráz Státní zdravotní ústav, Praha

Nanomateriály z pohledu ochrany zdraví při práci Jaroslav Mráz Státní zdravotní ústav, Praha 1 Nanomateriály z pohledu ochrany zdraví při práci Jaroslav Mráz Státní zdravotní ústav, Praha 2 Nanomateriály (NM) z pohledu ochrany zdraví při práci Základní pojmy Základní charakteristiky vyráběných

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář

Více

Biologie buňky. systém schopný udržovat se a rozmnožovat

Biologie buňky. systém schopný udržovat se a rozmnožovat Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický

Více

Přírodní polymery proteiny

Přírodní polymery proteiny Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů

Více

Úvod do studia organické chemie

Úvod do studia organické chemie Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

1. ročník Počet hodin

1. ročník Počet hodin SOUSTAVY LÁTEK A JEJICH SLOŽENÍ rozdělení přírodních látek a vlastnosti chemických látek soustavy látek a jejich složení STAVBA ATOMU historie pohledu na atom složení a struktura atomu stavba atomu VELIČINY

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Zdravotní rizika

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Složení látek a chemická vazba Číslo variace: 1

Složení látek a chemická vazba Číslo variace: 1 Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.

Více

Ethery, thioly a sulfidy

Ethery, thioly a sulfidy Ethery, thioly a sulfidy Úvod becný vzorec alkoholů je R--R. Ethery Názvosloví etherů Názvy etherů obsahují jména alkylových a arylových sloučenin ze kterých tvořeny v abecedním pořadí následované slovem

Více

Chemická reaktivita NK.

Chemická reaktivita NK. Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově

Více

H H C C C C C C H CH 3 H C C H H H H H H

H H C C C C C C H CH 3 H C C H H H H H H Alkany a cykloalkany sexta Martin Dojiva uhlovodíky obsahující pouze jednoduché vazby obecný vzorec alkanů: C n 2n+2 cykloalkanů: C n 2n homologický přírůstek C 2 Dělení alkanů přímé větvené u větvených

Více

Supramolecular chemistry... Intermolecular interactions. Supramolecular chemistry is about design. Therefore people are important!

Supramolecular chemistry... Intermolecular interactions. Supramolecular chemistry is about design. Therefore people are important! K a t i o n t y Supramolecular chemistry... Intermolecular interactions Supramolecular chemistry is about design. Therefore people are important! Zatím ;-) Vazba kationtů Ionofor = přírodníči syntetický

Více

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod

Více

NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA

NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA Nano je z řečtiny = trpaslík. 10-9, 1 nm = cca deset tisícin průměru lidského vlasu Nanotechnologie věda a technologie na atomární a molekulární úrovni Mnoho

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

3) Vazba a struktura. Na www.studijni-svet.cz zaslal(a): Lenka

3) Vazba a struktura. Na www.studijni-svet.cz zaslal(a): Lenka Na www.studijni-svet.cz zaslal(a): Lenka CHEMICKÍ VAZBA = síly, kterými jsou k sobě navzájem vázány sloučené atomy v molekule, popř. v krystalové struktuře - v převážné většině jde o sdílení dvojic elektronů

Více

Bc. Miroslava Wilczková

Bc. Miroslava Wilczková KOMPLEXNÍ SLOUČENINY Bc. Miroslava Wilczková Komplexní sloučeniny Začal studovat Alfred Werner. Na základě získaných chemických a fyzikálních vlastností objasnil základní rysy jejich vnitřní struktury,

Více

Biosenzory. Helena Uhrová

Biosenzory. Helena Uhrová Biosenzory Helena Uhrová L.C.Clarc, článek o O 2 elektrodě, 1956 1962, symposium v New Yorku oxidoredukční enzym glukózooxidáza byl uchycen na dialyzační membránu a s ní na kyslíkovou elektrodu - enzymová

Více

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au Řada elektrochemických potenciálů (Beketova řada) v níž je napětí mezi dvojicí kovů tím větší, čím větší je jejich vzdálenost v této řadě. Prvek více vlevo vytěsní z roztoku kov nacházející se vpravo od

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.

V organismu se bílkoviny nedají nahradit žádnými jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy. BÍLKOVINY Bílkoviny jsou biomakromolekulární látky, které se skládají z velkého počtu aminokyselinových zbytků. Vytvářejí látkový základ života všech organismů. V tkáních vyšších organismů a člověka je

Více

Imunochemické metody. na principu vazby antigenu a protilátky

Imunochemické metody. na principu vazby antigenu a protilátky Imunochemické metody na principu vazby antigenu a protilátky ANTIGEN (Ag) specifická látka (struktura) vyvolávající imunitní reakci a schopná vazby na protilátku PROTILÁTKA (Ab antibody) molekula bílkoviny

Více

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemie rovnováhy a děje v soustavách nesoucích elektrický náboj Krystal kovu ponořený do destilované vody + +

Více

Organická chemie 3.ročník studijního oboru - kosmetické služby.

Organická chemie 3.ročník studijního oboru - kosmetické služby. Organická chemie 3.ročník studijního oboru - kosmetické služby. T-7 Funkční a substituční deriváty karboxylových kyselin Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu:

Více

Nanobiotechnologie a bionanotechnologie

Nanobiotechnologie a bionanotechnologie Nanobiotechnologie a bionanotechnologie Ivo Šafařík Oddělení nanobiotechnologie Ústav systémové biologie a ekologie AV ČR, v.v.i České Budějovice Nanobiotechnologie a bionanotechnologie z pohledu nanočástic

Více

Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_131_Elektrochemická řada napětí kovů_pwp

Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_131_Elektrochemická řada napětí kovů_pwp Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: STŘEDNÍ ODBORNÁ

Více

Analýza magnetických mikročástic mikroskopií atomárních sil

Analýza magnetických mikročástic mikroskopií atomárních sil Analýza magnetických mikročástic mikroskopií atomárních sil Zapletalová 1 H., Tvrdíková 2 J., Kolářová 1 H. 1 Ústav lékařské biofyziky, LF UP Olomouc 2 Ústav chemie potravin a biotechnologií, CHF VUT Brno

Více

2.3 CHEMICKÁ VAZBA. Molekula bílého fosforu P 4 a kyseliny sírové H 2 SO 4. Předpona piko p je dílčí jednotkou a udává velikost m.

2.3 CHEMICKÁ VAZBA. Molekula bílého fosforu P 4 a kyseliny sírové H 2 SO 4. Předpona piko p je dílčí jednotkou a udává velikost m. 2.3 CHEMICKÁ VAZBA Spojováním dvou a více atomů vznikají molekuly. Jestliže dochází ke spojování výhradně atomů téhož chemického prvku, pak se jedná o molekuly daného prvku (vodíku H 2, dusíku N 2, ozonu

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb

Více

Valenční elektrony a chemická vazba

Valenční elektrony a chemická vazba Valenční elektrony a chemická vazba Ve vnější energetické hladině se nacházejí valenční elektrony, které se mohou podílet na tvorbě chemické vazby. Valenční elektrony často znázorňujeme pomocí teček kolem

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

CHEMICKÁ VAZBA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

CHEMICKÁ VAZBA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý Autor: Mgr. Stanislava Bubíková CHEMICKÁ VAZBA Datum (období) tvorby: 13. 11. 01 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky; chemické reakce 1

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý Autor: Mgr. Stanislava Bubíková VLASTNOSTI KOVŮ Datum (období) tvorby: 12. 10. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci

Více

Chemické senzory Principy senzorů Elektrochemické senzory Gravimetrické senzory Teplotní senzory Optické senzory Fluorescenční senzory Gravimetrické chemické senzory senzory - ovlivňov ování tuhosti pevného

Více

Oddělení fyziky vrstev a povrchů makromolekulárních struktur

Oddělení fyziky vrstev a povrchů makromolekulárních struktur Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová

Více

HYDROXYDERIVÁTY. Alkoholy Fenoly Bc. Miroslava Wilczková

HYDROXYDERIVÁTY. Alkoholy Fenoly Bc. Miroslava Wilczková HYDROXYDERIVÁTY Alkoholy Fenoly Bc. Miroslava Wilczková HYDROXYDERIVÁTY Alkoholy -OH skupina vázána na uhlíkový atom alifatického řetězce Fenoly -OH skupina vázána na uhlíku, který je součástí aromatického

Více

Nanotechnologie a nanomateriály ve výuce přírodovědných oborů.

Nanotechnologie a nanomateriály ve výuce přírodovědných oborů. Nanotechnologie a nanomateriály ve výuce přírodovědných oborů. Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně Březen 2014 UJEP PřF, PF, FF, FSE, FVTM, FZS, FUD Nové objekty kampusu UJEP 2012

Více

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace VY_52_INOVACE_737 8. Chemie notebook Směsi Materiál slouží k vyvození a objasnění pojmů (klíčová slova - chemická látka, směs,

Více

Geochemie endogenních procesů 1. část

Geochemie endogenních procesů 1. část Geochemie endogenních procesů 1. část geochemie = použití chemických nástrojů na studium Země a dalších planet Sluneční soustavy počátky v 15. století spjaté zejména s kvalitou vody a půdy rozmach a první

Více

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 Kvantové tečky a jejich využití v bioanalýze Jiří Kudr Datum: 9.4.2015 Hvězdárna Valašské Meziříčí, p.o, Vsetínská 78, Valašské Meziříčí, Nanotechnologie

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,

Více

TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010

TEST + ŘEŠENÍ. PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2010 30 otázek maximum: 60 bodů TEST + ŘEŠEÍ PÍSEMÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CEMIE bakalářský studijní obor Bioorganická chemie 2010 1. apište názvy anorganických sloučenin: (4 body) 4 BaCr 4 kyselina peroxodusičná

Více

Potravinářské aplikace

Potravinářské aplikace Potravinářské aplikace Nanodisperze a nanokapsle Funkční složky (např. léky, vitaminy, antimikrobiální prostředky, antioxidanty, aromatizující látky, barviva a konzervační prostředky) jsou základními složkami

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci PŘÍKLADY SOUČASNÝCH

Více

Periodická tabulka prvků

Periodická tabulka prvků Periodická tabulka prvků 17. století s objevem dalších a dalších prvků nutnost systematizace J. W. Döberreiner (1829) teorie o triádách prvků triáda kovů (lithium, sodík, draslík reagují podobným způsobem)

Více

Mgr. Veronika Papoušková, Ph.D. Brno, 20. března 2014

Mgr. Veronika Papoušková, Ph.D. Brno, 20. března 2014 Co je to CEITEC? Mgr. Veronika Papoušková, Ph.D. Brno, 20. března 2014 Pět oborů budoucnosti, které se vyplatí studovat HN 28. 1. 2013 1. Biochemie 2. Biomedicínské inženýrství 3. Průmyslový design 4.

Více

10 CHEMIE. 10.1 Charakteristika vyučovacího předmětu. 10.2 Vzdělávací obsah

10 CHEMIE. 10.1 Charakteristika vyučovacího předmětu. 10.2 Vzdělávací obsah 10 CHEMIE 10.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vyučovací předmět Chemie zpracovává vzdělávací obsah oboru Chemie vzdělávací oblasti Člověk a příroda. Vzdělávání v předmětu chemie

Více

MATURITNÍ OTÁZKY Z CHEMIE

MATURITNÍ OTÁZKY Z CHEMIE MATURITNÍ OTÁZKY Z CHEMIE 1 Složení a struktura atomu Vývoj představ o složení a struktuře atomu, elektronový obal atomu, modely atomu, pojem orbital, typy orbitalů, jejich znázorňování a pravidla pro

Více

PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011

PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKOUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011 Kód uchazeče:... Datum:... PÍSEMNÁ ČÁST PŘIJÍMACÍ ZKUŠKY Z CHEMIE bakalářský studijní obor Bioorganická chemie 2011 30 otázek maximum: 60 bodů čas: 60 minut 1. Napište názvy anorganických sloučenin: (4

Více

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: PRVKY PÁTÉ SKUPINY Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: Obecná konfigurace: ns np Nejvyšší kladné

Více