Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, Základní algoritmy v praxi
|
|
- Anna Soukupová
- před 7 lety
- Počet zobrazení:
Transkript
1 Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, Základní algoritmy v praxi
2 Agenda Intro Řazení Vyhledávání Datové struktury LINQ to Objects
3 Intro
4 Asymptotická složitost algoritmů O-notace SLOŽITOST N = 10 N = 100 N = O(1) konstantní O(log n) logaritmická O(n) linární O(n log n) lineárně logaritmická O(n 2 ) kvadratická O(c n ) exponenciální (např. c=2) , , paměťová časová/operační
5 Pole jako základ všeho lineární souvislý paměťový blok homogenní prvky stejného typu (popř. reference/potomci) s přímým přístupem přímé adresování paměti indexem -O(1)
6 System.Arrayv.NET referenční datový typ deklarace nealokuje paměť int[] pole; instance se vytváří na heapu non-resizable pole = new int[20]; resize= nové pole + kopie dat -O(n) Array.Copy(pole, pole2, pole.length);
7 System.Array, Windows Debugger DEMO
8 List<T> interně ukládá prvky do pole System.Array automatické zvětšování pole výchozí kapacita 4 (není-li určena explicitně) při naplnění se zdvojnásobuje kopírování O(n) přidání prvku typicky O(1), nejhůře O(n) samo se nezmenšuje stálo by kopii O(n) do menšího list.capacity = list.count; list.trimexcess(); // Treshold 90% odebrání prvků = setřesení pole O(n)
9 Řazení
10 Řadící algoritmy stabilní / nestabilní s kvadratickou složitostí O(n 2 ) Bubble-Sort, Shaker-Sort, Select-Sort, Shell-Sort Insert-Sort jednotlivé průchody na sobě nezávislé s lineárně logaritmickou složitostí O(n log 2 n) výběrem z binárního stromu = > Heap-Sort Quick-Sort Merge-Sort
11 Insert Sort O(n 2 ) v každém průchodu zařadím jeden prvek na své místo do již seřazené části lze vylepšit pomocí BinnarySearch nad seřazenou částí
12 QuickSort O(n log n) vyberu prvek, tzv. pivot pole roztřídím na dvě části menší a větší než pivot opakuji pro každou takto vzniklou část (rekurze) dokud nemám část s jedním prvkem kritickým okamžikem je výběr pivota v nejhorším případě vede na O(n 2 )
13 HeapSort O(n log n) principiálně vychází z řazení výběrem z binárního stromu binární strom reprezentován v poli hromadou = Heap
14 HeapSort O(n log n)
15 Řazení v.net Framework Enumerable.OrderBy() stabilní verze QuickSort, pivotem prvek z prostředka partition Array.Sort(), List<T>.Sort() nestabilní prosté pole, primitivní číselné typy a default Comparer=> SZSort nativní implementace QuickSort, pivotem prvek z prostředka partition(jde o obejití CompareTo() ve prospěch rychlejších přímých číselných porovnání), jinak NET1.0 prostý QuickSort, pivotem prvek z prostředka partition NET2.0 pivotem medián (prostřední hodnota) z prvního, prostředního a posledního prvku partition NET4.5 významné optimalizace, O(n log n) i pro worst-case
16 Array.Sort() v.net 4.5 O(n log n) worst dle BinaryCompatibility.TargetsAtLeast_Desktop_V4_5 false=> Depth Limited Quick Sort hloubka rekurze omezena na 32, poté se partitionseřadí HeapSortem pivot se volí jako prostřední hodnota z prvního, posledního a prostředního prvku partition true => Introspective Sort (1997) QuickSort do hloubky 2 Floor(log n), pak HeapSort partition4-16 prvků se řadí Insert Sortem zarážka rekurze pro partition velkosti 1, 2 a 3 -nedělí se, ale porovná přímo (obě verze)
17 Vyhledávání
18 Vyhledávací algoritmy prvku v množině sekvenční průchod O(n) binární půlení seřazené množiny O(log n) + vyhledávací stromy hashovací tabulka (rozptylování) O(1) přímý přístup přes index O(1)
19 Hashovacítabulka pozice prvku v poli se spočítá index = f(hash_code) hashovací(rozptylovací) funkce, např. H(key) = key mod n kolizní strategie chaining spojový seznam další pole open addressing linearprobing-sekvenčně se hledá volné místo quadraticprobing-postupně se krok kvadraticky zvyšuje (1., 2., 4., 8., 16. pozice atd.) rehashing/double hashing-další hashovacífunkce spočte další pozici nebo posun
20 .NET Hashtable hashovací funkce H(HashCode) = [HashCode (((HashCode >> 5) + 1) % (HashSize 1))] % HashSize kolizní strategie = rehashing (double hashing) H k (HashCode) = [HashCode + k * (1 + (((HashCode >> 5) + 1) % (HashSize 1)))] % HashSize zvětšování při zaplnění loadfactor= 72% (odpovídá 1.0 ctoru!) thread-safe multi-read, single-write
21 Dictionary<TKey, TValue> jiná collision strategy chaining spojový seznam v poli (pomocí ofsetů) + FreeListpro díry private struct Entry { } public TKey key; public TValue value; public int hashcode; public int next; není thread-safe! rychlejší pro value-types
22 virtualintobject.gethashcode() musí splňovat pro stejné objekty (Equals) musí vracet stejný kód pro různé nemusí vracet různý dokud se objnezmění, musí vracet stejný kód (v čase per app) dobrá distribuce kódu (i malá změna obj, velká změna kódu) rychlý výpočet nevyhazovat výjimky obvyklá implementace využít existující.net implementaci public override int GetHashCode() { return this.id.gethashcode(); }
23 Operace nad.net datovými strukturami Přidání na konec Odebrání z konce Vložení doprostřed Odebrání z prostředka Přístup podle indexu Sekvenční přístup Vyhledávání elementu Poznámky Array O(n) O(n) O(n) O(n) O(1) O(1) O(n) seřaz. O(log N) Nejefektivnější využití paměti; vhodné v případě neměnného počtu položek. List<T> většinou O(1); nejhůře O(n) O(1) O(n) O(n) O(1) O(1) O(n) seřaz. O(log N) Vnitřně implementováno pomocí pole, při zaplnění se 2x zvětší. Přidávání nebo odebírání z prostředka či začátku jsou pomalé. LinkedList<T> O(1) O(1) O(1)* O(1)* O(n) O(1) O(n) Obousměrný spojový seznam. Pomalé přístupy doprostřed, rychlé přidávání na začátek a na konec. *) pokud už mám referenci na příslušnou položku Stack<T> většinou O(1); nejhůře O(n) O(1) N/A N/A N/A N/A N/A Zásobník, vhodné pro implementaci různých algoritmů. Last in, first out. Queue<T> většinou O(1); nejhůře O(n) O(1) N/A N/A N/A N/A N/A Fronta, vhodná pro implementaci různých algoritmů. First in, first out. Dictionary<K,T> HashTable většinou O(1); nejhůře O(n) O(1) většinou O(1); nejhůře O(n) O(1) O(1)* O(1)* O(1) Vnitřně implementováno pomocí hashovací tabulky, vhodné pro rychlé vyhledávání podle klíče. *) postavení pole Keys a Values má složitost O(n), ale stačí ho postavit jen jednou
24 LINQ to Objectsoptimalizace nespoléhá jen na IEnumerable<T> -sekvenční přístup MoveNext() zkouší různá rozhraní, která by mohla pomoci indexedaccess ElementAt, Skip, Last, LastOrDefault testuje implementaci rozhraní IList<T>, převod z O(n) na O(1) Countzkouší ICollectionpro O(1) místo O(n) Distinct, GroupBy, Joinpoužívá hashingpro O(n) místo O(n 2 ) Containszkouší ICollection, což např. pro HashSetje O(1) OrderBypoužívá stabilní QuickSort
25 Asymptotická časová složitost algoritmů O-notace SLOŽITOST PŘÍKLADY O(1) konstantní Přímý přístup, HashTable, Dictionary, HashMatch (SQL) O(log n) logaritmická BinnarySearch (půlení intervalu), vyhledávání ve stromu, IndexSeek O(n) linární Sekvenční průchod množinou vyhledávání v neseřazeném poli, přesuny dat, atp. IndexScan O(n log n) lineárně logaritmická Quick-Sort, Heap-Sort, Merge-Sort, Intro-Sort O(n 2 ) O(n m) kvadratická (m druhý vstup) Bubble-Sort, Insert-Sort, Shell-Sort, Select-Sort nested-loops O(c n ) exponenciální Prohledávání grafu možných řešení, problém obchodního cestujícícho (nalezení nejkratší možné cesty procházející všemi zadanými body na mapě)
Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, s.r.o. haken@havit.cz, @RobertHaken. Optimalizace výkonu webových aplikací
Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, s.r.o. haken@havit.cz, @RobertHaken Optimalizace výkonu webových aplikací Přemýšlejte v souvislostech... Scénáře a kontext použití aplikace
Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění
Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double
přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:
Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Třídění, vyhledávání Daniela Szturcová
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky
Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky 25 Pole Datová struktura kolekce elementů (hodnot či proměnných), identifikovaných jedním nebo více indexy, ze kterých
A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.
A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min
Kolekce, cyklus foreach
Kolekce, cyklus foreach Jen informativně Kolekce = seskupení prvků (objektů) Jednu již známe pole (Array) Kolekce v C# = třída, která implementuje IEnumerable (ICollection) Cyklus foreach ArrayList pro
Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)
13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací
Pole a kolekce. v C#, Javě a C++
Pole a kolekce v C#, Javě a C++ C# Deklarace pole typ_prvku_pole[] jmeno_pole; Vytvoření pole jmeno_pole = new typ_prvku_pole[pocet_prvku_pole]; Inicializace pole double[] poled = 4.8, 8.2, 7.3, 8.0; Java
Prioritní fronta, halda
Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje
ALG 09. Radix sort (přihrádkové řazení) Counting sort. Přehled asymptotických rychlostí jednotlivých řazení. Ilustrační experiment řazení
ALG Radix sort (přihrádkové řazení) Counting sort Přehled asymptotických rychlostí jednotlivých řazení Ilustrační experiment řazení Radix sort Neseřazeno Řaď podle. znaku Cbb DaD adb DCa CCC add DDb adc
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
Lineární datové struktury
Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Lineární datové
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2014 1 / 48 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý
Úvod Přetěžování Generika Kolekce Konec. Programování v C# Další jazykové konstrukce. Petr Vaněček 1 / 31
Programování v C# Další jazykové konstrukce Petr Vaněček 1 / 31 Obsah přednášky Přetěžování metody operátory Generika Kolekce třídy rozhraní 2 / 31 Překrytí vs. přetížení Rozdíl ve způsobu deklarace metody/operátoru
Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4
Fronta (Queue) Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Fronta uplatňuje mechanismus přístupu FIFO first
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
5. Vyhledávání a řazení 1
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 5 1 Základy algoritmizace 5. Vyhledávání a řazení 1 doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze
Seznamy a iterátory. Kolekce obecně. Rozhraní kolekce. Procházení kolekcí
Kolekce obecně Seznamy a iterátory doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Kolekce ::= homogenní sada prvků
Da D to t v o é v ty t py IB111: Datové typy
Datové typy IB111: Datové typy Data a algoritmizace jaká data potřebuji pro vyřešení problému? jak budu data reprezentovat? jaké operaci s nimi potřebuji provádět? Navržení práce s daty je velice důležité
Třetí skupina zadání projektů do předmětu Algoritmy II, letní semestr 2017/2018
Třetí skupina zadání projektů do předmětu Algoritmy II, letní semestr 2017/2018 doc. Mgr. Jiří Dvorský, Ph.D. 24. dubna 2018 Verze zadání 24. dubna 2018 První verze 1 1 Hašovací tabulka V tomto zadání
Datové typy a struktury
atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro
Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem
Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel
IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) {
Vyhledání extrému v poli použito v algoritmech řazení hledání maxima int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) // nikoli 0 if (Pole[i] > max) max = pole[i];
Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.
Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní
3 Algoritmy řazení. prvku a 1 je rovněž seřazená.
Specifikace problému řazení (třídění): A... neprázdná množina prvků Posl(A)... množina všech posloupností prvků z A ... prvky množiny Posl(A) q... délka posloupnosti Posl(A), přičemž Delka()
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
Algoritmizace řazení Bubble Sort
Algoritmizace řazení Bubble Sort Cílem této kapitoly je seznámit studenta s třídícím algoritmem Bubble Sort, popíšeme zde tuto metodu a porovnáme s jinými algoritmy. Klíčové pojmy: Třídění, Bubble Sort,
Spojová implementace lineárních datových struktur
Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Třídění a vyhledávání Searching and sorting
Třídění a vyhledávání Searching and sorting Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 33 Vyhledávání Třídění Třídící algoritmy 2 / 33 Vyhledávání Searching Mějme posloupnost (pole)
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
Dynamické datové struktury IV.
Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
Časová složitost / Time complexity
Časová složitost / Time complexity Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 24 Složitost algoritmů Algorithm complexity Časová a paměťová složitost Trvání výpočtu v závislosti
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Základní datové struktury
Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost
Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě
Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy
Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
V případě jazyka Java bychom abstraktní datový typ Time reprezentující čas mohli definovat pomocí třídy takto:
20. Programovací techniky: Abstraktní datový typ, jeho specifikace a implementace. Datový typ zásobník, fronta, tabulka, strom, seznam. Základní algoritmy řazení a vyhledávání. Složitost algoritmů. Abstraktní
HASHING GENERAL Hashovací (=rozptylovací) funkce
Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
Elegantní algoritmus pro konstrukci sufixových polí
Elegantní algoritmus pro konstrukci sufixových polí 22.10.2014 Zadání Obsah Zadání... 3 Definice... 3 Analýza problému... 4 Jednotlivé algoritmy... 4 Algoritmus SA1... 4 Algoritmus SA2... 5 Algoritmus
Šablony, kontejnery a iterátory
7. října 2010, Brno Připravil: David Procházka Šablony, kontejnery a iterátory Programovací jazyk C++ Šablony Strana 2 / 21 Šablona funkce/metody Šablona je obecný popis (třídy, funkce) bez toho, že by
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Rozptylovací tabulky
Rozptylovací tabulky Hash tables Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 31 Rozptylovací tabulka Hash table Rozptylovací tabulka = implementace množiny / asociativního pole
Úvod Třídy Rozhraní Pole Konec. Programování v C# Hodnotové datové typy, řídící struktury. Petr Vaněček 1 / 39
Programování v C# Hodnotové datové typy, řídící struktury Petr Vaněček 1 / 39 Obsah přednášky Referenční datové typy datové položky metody přístupové metody accessory, indexery Rozhraní Pole 2 / 39 Třídy
6. Problém typové anonymity prvků v kolekci Sjednocení typově rozdílných prvků pomocí rozhraní Kolekce pro jeden typ prvků...
Obsah 5 Obsah Úvod 11 Jak tato kniha vznikla... 11 Co můžete od knížky očekávat... 12 Jak jsou organizovány programy... 13 Poděkování... 14 Kde hledat nejnovější informace... 14 Typografické a syntaktické
Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III
Michal Krátký Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 tel.: +420 596 993 239 místnost: A1004 mail: michal.kratky@vsb.cz
Stromy. Jan Hnilica Počítačové modelování 14
Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A
Generické programování
Generické programování Od C# verze 2.0 = vytváření kódu s obecným datovým typem Příklad generická metoda, zamění dva parametry: static void Swap(ref T p1, ref T p2) T temp; temp = p1; p1 = p2; p2 =
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)
Základy algoritmizace. Hašování
Základy algoritmizace Hašování Problematika hašování Hašování - nástroj na jednoduchý způsob "zakódování vstupních dat. Vstupní data jsou zpracována hašovací funkcí jsou jistým způsobem komprimována. Relativně
Základy řazení. Karel Richta a kol.
Základy řazení Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Abstraktní datové typy
Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní datové typy BI-PA2, 2011, Přednáška 10 1/27 Abstraktní datové typy Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky,
Základy algoritmizace a programování
Základy algoritmizace a programování Složitost algoritmů. Třídění Přednáška 8 16. listopadu 2009 Který algoritmus je "lepší"? Různé algoritmy, které řeší stejnou úlohu zbytek = p % i; zbytek = p - p/i*i;
PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.
Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché
Dynamické datové struktury I.
Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Vyhledávání, zejména rozptylování
Datové struktury a algoritmy Část 11 Vyhledávání, zejména rozptylování Petr Felkel 16.5.2016 Topics Vyhledávání Rozptylování (hashing) Rozptylovací funkce Řešení kolizí Zřetězené rozptylování Otevřené
Výčtový typ strana 67
Výčtový typ strana 67 8. Výčtový typ V této kapitole si ukážeme, jak implementovat v Javě statické seznamy konstant (hodnot). Příkladem mohou být dny v týdnu, měsíce v roce, planety obíhající kolem slunce
Implementace překladače imperativního jazyka IFJ05
Dokumentace ke společnému projektu IFJ a IAL Implementace překladače imperativního jazyka IFJ05 16. prosince 2005 řešitelé David Bařina xbarin02 Kamil Dudka xdudka00 Jakub Filák xfilak01 Lukáš Hefka xhefka00
Algoritmy II. Otázky k průběžnému testu znalostí
Algoritmy II Otázky k průběžnému testu znalostí Revize ze dne 19. února 2018 2 Lineární datové struktury 1 1. Vysvětlete co znamená, že zásobník představuje paměť typu LIFO. 2. Co je to vrchol zásobníku?
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start
Časová složitost algoritmů
Časová složitost algoritmů Důležitou vlastností algoritmu je časová náročnost výpočtů provedené podle daného algoritmu Ta se nezískává měřením doby výpočtu pro různá data, ale analýzou algoritmu, jejímž
ADT/ADS = abstraktní datové typy / struktury
DT = datové typy obor hodnot, které může proměnná nabývat, s operacemi na tomto oboru určen: obor hodnot + výpočetní operace např. INT = { 2 147 483 648 až +2 147 483 647} + {+,,*,/,} ADT/ADS = abstraktní
Lineární datové struktury
Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 5. března 2019 Jiří Dvorský (VŠB TUO) Lineární datové
boolean hasnext() Object next() void remove() Kolekce
11. Kontejnery Kontejnery Kontejnery jako základní dynamické struktury v Javě Kolekce, iterátory (Collection, Iterator) Seznamy (rozhraní List, třídy ArrayList, LinkedList) Množiny (rozhraní Set, třída
Základní informace o předmětu Otázka:
Základní informace o předmětu Otázka: Proč vůbec porovnávat algoritmy? Vlastnosti algoritmů přirozenost a stabilita algoritmu časová náročnost algoritmu asymetrická a asymptotická časová náročnost algoritmů
IB015 Neimperativní programování. Časová složitost, Typové třídy, Moduly. Jiří Barnat Libor Škarvada
IB015 Neimperativní programování Časová složitost, Typové třídy, Moduly Jiří Barnat Libor Škarvada Sekce IB015 Neimperativní programování 07 str. 2/37 Časová složitost Časová složitost algoritmu IB015
Programování v C++ 2, 4. cvičení
Programování v C++ 2, 4. cvičení statické atributy a metody, konstruktory 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled Přístupová práva
Šablony, kontejnery a iterátory
11. března 2015, Brno Připravil: David Procházka Šablony, kontejnery a iterátory Programovací jazyk C++ Šablony Strana 2 / 31 Obsah přednášky 1 Šablony 2 Abstraktní datové struktury 3 Iterátory 4 Array
Hledání k-tého nejmenšího prvku
ALG 14 Hledání k-tého nejmenšího prvku Randomized select CLRS varianta Partition v Quicksortu 0 Hledání k-tého nejmenšího prvku 1. 2. 3. Seřaď seznam/pole a vyber k-tý nejmenší, složitost (N*log(N)). Nevýhodou
ˇ razen ı rychlejˇ s ı neˇ z kvadratick e Karel Hor ak, Petr Ryˇsav y 20. dubna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
řazení rychlejší než kvadratické Karel Horák, Petr Ryšavý 20. dubna 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Která z následujících posloupností představuje haldu uloženou v poli? 1. 9 5 4 6 3 2. 5 4
Rekurze a rychlé třídění
Rekurze a rychlé třídění Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 54 Rekurze Rychlé třídění 2 / 54 Rekurze Recursion Rekurze = odkaz na sama sebe, definice za pomoci sebe
Různé algoritmy mají různou složitost
/ 1 Různé algoritmy mají různou složitost 1/ 1 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená?? 2/ 1 Asymptotická složitost y y x x Každému algoritmu
Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti.
Seznamy a stromy Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Klíčové pojmy: Seznam, spojový seznam, lineární seznam, strom, list, uzel. Úvod
VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra elektrotechniky a informatiky Obor Počítačové systémy
VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra elektrotechniky a informatiky Obor Počítačové systémy Porovnání výkonosti polí, kolekcí a nástrojů pro práci s kolekcemi v prostředí.net/c# bakalářská práce Autor:
1 Nejkratší cesta grafem
Bakalářské zkoušky (příklady otázek) podzim 2014 1 Nejkratší cesta grafem 1. Uvažujte graf s kladným ohodnocením hran (délka). Definujte formálně problém hledání nejkratší cesty mezi dvěma uzly tohoto
Jazyk C# (seminář 3)
Jazyk C# (seminář 3) Pavel Procházka KMI 15. října 2014 Motivace Představme si problém, jak napsat seznam v C# class IntList{... int value; public void IntList( int val, List next ){... V čem je to nevýhodné?
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Složitost algoritmů. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Složitost algoritmů Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2017 Datové struktury a algoritmy, B6B36DSA 02/2017, Lekce 3
Návrh designu: Radek Mařík
Návrh designu: Radek Mařík 1. Hashovací (=rozptylovací) funkce a) převádí adresu daného prvku na jemu příslušný klíč b) vrací pro každý klíč jedinečnou hodnotu c) pro daný klíč vypočte adresu d) vrací
Bubble sort. příklad. Shaker sort
Bubble sort pseudokód function bubblesort(array a) for i in 1 -> a.length - 1 do for j in 1 -> a.length - i - 1 do if a[j] < a[j+1] prohoď(a[j], a[j+1]); //razeni od nejvyssiho function bubblesort(int[]
Datové struktury. Obsah přednášky: Definice pojmů. Abstraktní datové typy a jejich implementace. Algoritmizace (Y36ALG), Šumperk - 12.
Obsah přednášky: Definice pojmů o datový typ, o abstraktní datový typ Datové struktury Abstraktní datové typy a jejich implementace o Fronta (Queue) o Zásobník (Stack) o Množina (Set) Algoritmizace (Y36ALG),
Datové typy v Javě. Tomáš Pitner, upravil Marek Šabo
Datové typy v Javě Tomáš Pitner, upravil Marek Šabo Úvod k datovým typům v Javě Existují dvě základní kategorie datových typů: primitivní a objektové Primitivní v proměnné je uložena přímo hodnota např.
Konstruktory a destruktory
Konstruktory a destruktory Nedostatek atributy po vytvoření objektu nejsou automaticky inicializovány hodnota atributů je náhodná vytvoření metody pro inicializaci, kterou musí programátor explicitně zavolat,
vyhledávací stromové struktury
vyhledávací algoritmy Brute Force Binary Search Interpolation Search indexové soubory Dense index, Sparse index transformační funkce Perfect Hash, Close Hash Table, Open Hash Table vyhledávací stromové