Genetické markery. Marker (genetický marker) = signální gen, signální linie. morfologické bílkovinné (izoenzymy) DNA
|
|
- Radka Mašková
- před 7 lety
- Počet zobrazení:
Transkript
1 Genetické markery Marker (genetický marker) = signální gen, signální linie morfologické bílkovinné (izoenzymy) DNA 1. založené na hybridizaci DNA 2. založené na polymerázové řetězové reakci amplifikace - specifických sekvencí - náhodných sekvencí
2 Malát dehydrogenázy
3 Vlastnosti markerů 1. vysoký polomorfizmus 2. kodominantní charakter dědičnosti 3. častý výskyt v genomu 4. nezávislost na podmínkách prostředí 5. snadná dostupnost 6. snadné a rychlé testování 7. vysoká reprodukovatelnost 8. snadná výměna údajů mezi laboratořemi
4 Typy DNA markerů: 1. založené na hybridizaci DNA 2. založené na polymerázové řetězové reakci amplifikace - specifických sekvencí - náhodných sekvencí Klasifikace DNA markerů podle použitých sond = cílových lokusů (genů): 1. jednokopiové a vícekopiové sondy RFLP (Restriction fragment length polymorphism CAPS 2. mnohokopiové sondy mikrosatelity, RAPD, AFLP
5 Schéma RFLP markerů - Izolace DNA - Restrikční analýza - Elektroforetická separace - Přenos DNA na membránu - Značení sondy - Hybridizace - Vizualizace
6 Schéma SSR markerů
7 Schéma CAPS markerů
8 RAPD DAF - random amplified polymorphic DNA - DNA amplification fingerprinting SCAR - sequence characterised amplified regions
9 RAPD příklady : ječmen Analyzována kolekce jarních ječmenů využívaných ve šlechtění na sladovnickou kvalitu Malé rozdíly v genetickém založení kolekce NOVUM ALEXIS ATRIBUT BLENEHIM KARAT KRONA PERUN MALTINE HE4886 AMULET KM1174 CE790 BITRANA MARINA KRYSTAL OTIS JUBILANT CE758 A dendrogram generated from RAPD data for H.vulgare cultivars Unweighted pair-group average Jaccard s coefficients Linkage Distance Primer Sequence Primer Sequence ABN ACC AGG GGC A-3 ABN GAC CGA CCC A-3 ABN CAG CCC AGA G-3 ABN ACC TCA GCT C-3 ABN TGC CGG CTG G-3 ABN AGC GTC ACT C-3 Contents of CG pairs 70% ABN TCG TGC GGG T-3 ABN GGT GCT CCG T-3 AB GGT GCG GGA A-3 AB CTT CAC CCG A-3 AB CAC CAG GTG A-3 AB ACG GCG TAT G-3 60% ABN 13 x AB2 19 ABN 13 x AB2 10
10 AFLP - amplified fragment length polymorphism
11 Vhodný pro hodnocení genových zdrojů vyhledávání markerů kvantitativní znaky Kapilární elektroforéza
12 Využití genetických markerů Základní výzkum i šlechtění Studium rostlinných genomů 1. Otisk DNA (fingerprinting) 2. Stanovení evolučních vztahů (příbuznost genotypů), taxonomie 3. Genetické mapování
13 3. Genetické mapování 1. Konstrukce genetických map určitého druhu 2. Identifikace nových DNA markerů - Vytváření nástrojů pro MAS (markerassisted selection) - Poziční klonování genů
14 Konstrukce genetických map hlavních plodin mapa RFLP markerů u kukuřice a rajčete Databáze projektů zabývajících se mapováním rostlinných genomů (celkem pro 66 různých druhů rostlin)
15 Teoretické otázky genetického mapování rostlinných genomů Podstata genetického mapování Pravděpodobnost vzniku crossing-overu mezi 2 lokusy Polymorfizmus a jeho detekce Výchozí křížení
16 Populace využívané k mapování F 2 znak dominantní 3:1 znak kodominantní 1:2:1 B 1 1:1 Aneuploidní linie viz schéma Dihaploidní linie homozygotní materiál Rekombinantní inbrední linie (RIL) Izogenní linie (NIL) Znaky kvalitativní x znaky kvantitativní Velikost populace Počet DNA markerů pro zachycení vazby
17 Lokalizace genů do vazbových skupin pomocí aneuploidů trizomiků 1. Mutace a je lokalizována na trizomickém chromozomu P: AAA x aa F1: AAa Aa F2: 2 A a AA 2 AAA AAa 2 Aa 4 AAa 2 Aaa 2 A 4 AA 2 Aa a 2 Aa aa Fenotypové štěpné poměry: A-- : aaa 1 : 0 A- : aa 8 : 1
18 2. Mutace b není lokalizována na trizomickém chromozomu P: AAA BB x AA bb F1: AAA Bb AA Bb F2: AB Ab AAB AAA BB AAA Bb AAb AAA Bb AAA bb A B AA BB AA Bb A b AA Bb AA bb Fenotypové štěpné poměry: AAA B- : AAA bb 3 : 1 AA B- : AA bb 3 : 1
19 Příklad: Genetické mapování mutace u druhu s malým genomem lycopodioformis Arabidopsis thaliana Materiál: morfologická mutace ly Populace F 2 DNA markery SSR (Simple sequence repeats ) mikrosatelity CAPS (Cleaved amplified polymorphic sequences)
20 Columbia lycopodioformis
21 Schéma křížení
22 Genetická mapa DNA markerů u Arabidopsis thaliana Počet DNA markerů potřebných pro základní skríning genomu p ( g ) 1CH 2CH 3CH 4CH 5CH 3,9 11,4 28,1 29,9 33,8 34,0 49,6 EAT nga63 G2395 CAT3 F19G M235 UFO 9,6 34,5 50,7 57,0 nga1145 PHYB nga1126 C2SOD2 8,4 20,6 43,8 59,2 60,0 GAPC nga162 AthGAPAb TOPP5 F1P2-TGF 5,1 17,7 29,6 57,6 MI122 GA1.1 nga1111 G4539 8,5 9,0 14,3 15,0 16,0 17,0 18,1 23,7 38,7 50,5 MUK11D CIW15 CIW17 nga225 CIW18 CIW16 PAI2 nga158 nga249 R89998 nga139 66,3 83,8 87,0 GAPB.2 nga280 G ,8 87,6 90,8 nga168 MI79A Ml 75,2 86,4 Bgl1 nga6 78,9 82,3 83,4 85,3 PRHA ATMYB3R nga1139 CAT2 68,4 79,9 93,1 nga76 AthSO191 FM4 104,7 nga ,8 AthATPASE CAPS zeleně SSR černě 125,1 134,5 G2368 PDC2
23 Postup 20 až 30 vzorků DNA ly z F 2 Kontroly: rodiče, F 1 PCR pro SSR markery ELFO PCR pro CAPS markery Štěpení enzymem ELFO
24 Segregující populace F2 a molekulární analýza - příklady M C ly H nga bp 140 bp M C ly H nga bp 191 bp
25 Výpočet podílu rekombinace r : (1) r = j i C chromozomů všech chromozomů C rekombinovaný chromozom Výpočet střední chyby podílu rekombinace s r : (2) sr = r(1 r) n n celkový počet chromozomů
26 Odhad mapové vzdálenosti D dle Kosambiho mapovací funkce (Kosambi, 1944): (3) D = ln r 2r Výpočet střední chyby odhadu mapové vzdálenosti s D : (4) sd = r 2 sr
27 Lokalizace mutantní alely ly v genetické mapě Arabidopsis 1CH 2CH 3CH 4CH 5CH 1,0 3,9 5,0 7,0 7,1 9,0 11,4 12,6 15,8 28,1 29,9 31,2 33,8 34,0 39,0 40,0 49,6 60,0 66,3 83,8 87,0 PVV4.1 EAT PT1 NT7I T1G nga63 NCC1 VIII-111 G2395 CAT3 cp F19G NF19G9 M235 NF21J9 ZFPG UFO T27K12SP6 GAPB.2 nga280 G4026 9,6 34,5 50,7 57,0 58,0 59,0 73,8 90,8 97,0 nga1145 PHYB nga1126 CZSOD2 T27E13 C4H nga168 Ml 97 5,8 6,9 8,4 10,3 20,6 38,1 43,8 59,2 60,0 68,2 73,9 75,2 83,4 86,4 nga32 nga172 GAPC chm nga162 G4711 AthGAPAb TOPP5 F1P2-TGF R30025 AFC1 Bgl nga6 5,1 17,7 29,6 57,6 78,9 82,3 83,4 85,3 MI122 GA1.1 nga1111 G4539 PRHA ATMYB3R nga1139 CAT2 8,5 9,0 12,4 14,3 15,0 16,0 17,0 23,7 33,4 38,7 50,5 68,4 79,9 93,1 MUK11D CIW15 CIW17 ly nga225 CIW18 CIW16 PAI2 nga249 nga106 R89998 nga139 nga76 AthSO191 FM4 101, ,7 nga ,0 PCD2 117,8 135,0 AthATPASE 135 černá SSR markery zelená CAPS markery červená analyzované mutace 125, ,1 139,0 G
28 2. Zpřesnění mapové pozice (200 mutantních rostlin) vzdálenost 1 až 3 cm (200 až 600 kb, 45 až 135 genů) 3. Identifikace kandidátních genů až 2000 F 2 rostlin, identifikace dvou DNA markerů v co nejbližší pozici, identifikace rekombinantů Nezbytná vysoká vysycenost genomu DNA markery SNP, In/Del
29 Speciální problémy řešitelné mapováním u druhů s velkým genomem Podrobné mapování určité oblasti genomu fine mapping Mapování u druhů s velkým genomem Identifikace DNA markerů v těsné vazbě s genem Speciální populace pro mapování RIL, NIL, BSA (Bulk Segregant Analysis) s cílem MAS (marker assisted selection) selekce pristřednictvím DNA markerů Pyramidování genů ve šlechtitelských programech
30 RIL (recombinant isogenic lines) Rekombinantní inbrední linie časová náročnost vysoká homozygotnost Křížení polymorfních (fenotypově kontrastních) linií X F 1 F 2 50,0% F 3 75,0% F 4 87,5% F 5 93,8% F 6 96,9% F 7 98,7% F 8 99,5%
31 NIL (near isogenic lines) Izogenní linie časová náročnost vytvoření F x BC, selekce na daný gen (znak) v každé generaci vysoká homozygotnost, rozdíl jen v lokusu konkrétního genu a jeho okolí polymorfismus (DNA) mezi NIL s vysokou pravděpodobností souvisí s vazbou marker-gen P 1 Donor B 1 B 2 B 7 X 25% P 1 12,5% P 1 0,42% P 1 P 2 Recipientní rodič
32 BSA (bulk segregant analysis) rychlá příprava kontrastních skupin genotypů z F 2 generace dominance, recesivita Rezistentní Segregující Náchylné F 2 BSA Rodič R Rodič S F 1 R-Bulk S-Bulk RIL Rezistentní Náchylné
33 Genetické mapování genu odolnosti u ječmene Druh s velkým genomem Hordeum vulgare Padlí ječmene Šlechtění odolných odrůd původce Blumeria graminis f. sp. hordei v ČR i celosvětově jedna ze závažných chorob ječmene Významné zdroje genů odolnosti jsou plané ječmeny H. vulgare ssp. spontaneum, H. bulbosum 23 zdrojů (donorů) odolnosti ječmene (H. vulgare ssp. spontaneum) k padlí ječmene (PI..)
34 Genetické aspekty choroby Rostlina (hostitel) Patogen interaction genom 1 genom 2 geny odolnosti R geny avirulence Avr většinou dominant alela dominantní rozpoznání protein 1 protein 2=elicitor Aktivace mechanismů odolnosti
35 koncept gen proti genu geny R 1. Mají schopnost detekovat (rozpoznat) patogena 2. Mají schopnost aktivovat obranné mechanismy
36 Cíle studia donorů rezistence 1. Zjistit charakter dědičnosti genů v nových zdrojů odolnosti ječmene k padlí ječmene 2. Lokalizovat zjištěné geny odolnosti v genomu ječmene pomocí DNA markerů 3. Vyvinout molekulární markery pro některé ze zjištěných genů odolnosti 4. Pyramidování genů
37 Strategie řešení 1. Vytvoření vhodných populací pro analýzy odrůda Tiffany x zdroj odolnosti F 2 2. Fytopatologické testy P, F 1, F 2 3. Genetická analýza Určení počtu genů determinujících odolnost 4. Získání DNA markerů pro ječmen H. vulgare Určení polymorfismu u rodičů 5. Určení DNA markerů ve vazbě s jednotlivými geny odolnosti: Analýza balků náchylného a odolného Lokalizace genů na chromozomech ječmene
38 Mapa SSR markerů ječmene Počet DNA markerů potřebných pro základní skríning genomu
39 Druh ječmen Hordeum vulgare Hodnocený znak - odolnost k padlí travnímu Původce padlí travního Blumeria graminis f. sp. hordei (houba) Populace F2 po křížení náchylná (S) x odolná (R) H. vulgare cv. Tiffany x H. vulgare ssp. spontaneum PI (zdroj odolnosti planý ječmen) F 1 F 2 (100 rostlin)
40 Úkoly 1. Určit počet genů determinujících odolnost k padlí travnímu v uvedeném zdroji odolnosti ječmene, statisticky ověřit 2. Určit typ dědičnosti genu/genů odolnosti 3. Určit SSR/CAPS markery ve vazbě (analýzou balků) 4. Se kterými markery jsou vázány geny odolnosti (použitím SW MapQTL5)
41 Rostliny rodičovské, F 1 i jednotlivé rostliny F2 jsou otestovány virulentním izolátem Bgh Stupnice hodnocení: 0, 0-1, 1, 1-2, 2, 2-3, 3, 3-4, 4 0 až 3 rostliny odolné, 3-4 a 4 - rostliny náchylné Tiffany RT4 Zdroj odolnosti RT0 F 1 RT0 F 2 balky (DNA) každý 18 rostlin F rostlin (DNA) F rostlin (fytopatologická analýza)
42 Určení markerů ve vazbě s genem odolnosti k padlí travnímu u ječmene. Práce s balky. Materiál: Zdroj odolnosti (PI460200) Populace F 2 (Tiffany x PI460200) Krajní třídy RT0 a RT4 DNA markery SSR (Simple sequence repeats ) CAPS (cleaved amplified polymorphis sequence) chromozom 1H chromozom 6H chromozom 2H chromozom 7H chromozom 3H chromozom 4H chromozom 5H
43 Analýza bulků při dominanci odolnosti S z náchylných rostlin F2 R z odolných rostlin F2 S1 testovaný SSR marker není ve vazbě s genem odolnosti S2 testovaný SSR marker je ve vazbě s genem odolnosti
44 DNA markery aplikace ve šlechtění ČR Rezistentní šlechtění markery kosegregující se znakem odolnosti Pšenice geny rezistence ke rzi, lokusy Lr9, Lr24 a Lr35 Ječmen gen waxy, charakter endospermu gen pro β-amylázu gen pro α-amylázu gen pro odolnost k viru BYDV geny pro odolnost k padlí ječmene Pracoviště: VÚRV Praha-Ruzyně, Zemědělský VÚ Kroměříž
45 Brambor geny rezistence k háďátku bramborovému a plísni bramborové (Phytophthora infestans), lokusy H1, R1 Pracoviště: VÚ bramborářský Havlíčkův Brod, AF ČZU Meruňka mapování a identifikace AFLP markeru vázaného s genem pro odolnost k viru šarky švestky Pracoviště: VÚRV Praha-Ruzyně ve spolupráci s pracovištěm v USA.
46 Další oblasti aplikace genetických markerů Metody identifikace transgenních rostlin A) Selekce na médiu s antibiotikem kanamycin Gen NPT (neomycin phosphotransferase) B) Polymerázová řetězová reakce C) Southernova hybridizace
47 Identifikace transgenních rostlin Arabidopsis thaliana Agrobacterium tumefaciens T-DNA Gen selekční NPT Gen signální GUS
48 A) Postup Materiál: Kontrola Wassilevskaja transformované linie RJG, ER4 1. Příprava selekčního média s antibiotikem a bez antibiotika (kanamycin) 2. Sterilizace semen, metodika 3. Výsev na misky 4. Vyhodnocení klíčních rostlin Kan R, Kan S 5. Vyhodnocení počtu inzertů Kan R : Kan S 6. Přesazení rostlin Kan R, důkaz PCR
49 Vyhodnocení počtu inzertů Rezistence ke kanamycinu je dominantní znak 1 inzert 3 : 1 Kan R : Kan S 2 inzerty 15 : 1 3 inzerty 63 :1 1. Jak se změní štěpné poměry, jestliže 2 a více inzertů je ve vazbě? 2. Určení počtu inzertů u testovaných inzerčních linií. 3. Přesazení rostlin a identifikace inzertu PCR.
50 B) Postup PCR pro NPT Polymerázová řetězová reakce Primery pro NPT 5 CCCGCTCAGAAGAAGAACTCGTCA 3 5 TGGCTGCTATTGGGCGAAGTG 3 Program pro amplifikaci genu NPT (94 C 45s, 60 C 45s, 72 C 60s) 35x
51 Složení reakční směsi d H 2 O 5,6 μl dntp 0, μm 5x PCR pufr 2,0 Primer-1 0,5 Primer-2 0,5 Go Taq-polymeráza 0,15 0,75 U Rostlinná DNA 1,0 10,0
thaliana. balky. 1. Genetická analýza a identifikace počtu genů 2. Určení DNA markerů v genetické vazbě s genem
Praktikum z genetiky rostlin JS 2014 Genetická analýza a genetické markery 1. Genetická analýza a identifikace počtu genů odolnosti k padlí u ječmene. 2. Určení DNA markerů v genetické vazbě s genem odolnosti
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Genetické markery - princip a využití
Genetika a šlechtění lesních dřevin Genetické markery - princip a využití Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Využití molekulárních markerů v systematice a populační biologii rostlin. 12. Shrnutí,
Využití molekulárních markerů v systematice a populační biologii rostlin 12. Shrnutí, Přehled molekulárních markerů 1. proteiny isozymy 2. DNA markery RFLP (Restriction Fragment Length Polymorphism) založené
Mendelova genetika v příkladech. Genetické markery
Mendelova genetika v příkladech Genetické markery Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Hodnocení genetické proměnlivosti Fenotypový
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Genetické markery Genetické markery = znaky, které informují o genotypu - vhodné jsou znaky,
Genetické markery, markery DNA
Obecná genetika Genetické markery, markery DNA Prof. Ing. Dušan GÖMÖRY, DrSc. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Genotypování: Využití ve šlechtění a určení identity odrůd
Molekulární přístupy ve šlechtění rostlin Aplikovaná genomika Genotypování: Využití ve šlechtění a určení identity odrůd Miroslav Valárik 14.2. 2017 Šlěchtění rostlin: Cílený výběr a manipulace s genomy
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Molekulární genetika IV zimní semestr 6. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika IV zimní semestr 6. výukový týden (5.11. 9.11.2007) Nondisjunkce u Downova syndromu 2 Tři rodokmeny rodin s dětmi postiženými
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis.
Populační studie Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Molecular Ecology 10:205 216 Proč to studovali?
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
PRAKTIKUM Z OBECNÉ GENETIKY
RNDr. Pavel Lízal, Ph.D. Přírodovědecká fakulta MU Ústav experimentální biologie Oddělení genetiky a molekulární biologie lizal@sci.muni.cz 1) Praktikum z obecné genetiky 2) Praktikum z genetiky rostlin
Zaměření bakalářské práce (témata BP)
Zaměření bakalářské práce (témata BP) Obor: Buněčná a molekulární diagnostika - zadává katedra - studenti si témata losují Obor: molekulární biologie a genetika - témata BP vychází z vybraného tématu DP
Genetická diverzita masného skotu v ČR
Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická
Genová vazba. Obr. č. 1: Thomas Hunt Morgan
Genová vazba Jednou ze základních podmínek platnosti Mendelových zákonů je lokalizace genů, které podmiňují různé vlastnosti na různých chromozómech. Toto pravidlo umožňuje volnou kombinovatelnost genů
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
Využití rep-pcr v bakteriální taxonomii
Využití rep-pcr v bakteriální taxonomii Pavel Švec Česká sbírka mikroorganismů Přírodovědecká fakulta MU rep-pcr založeny na shlukové analýze PCR produktů získaných s primery komplementárními k rozptýleným
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 ZÁKLADNÍ GENETICKÉ POJMY Genetika je nauka o dědičnosti a proměnlivosti znaků. Znakem se
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
ODLIŠENÍ ODRŮD PŠENICE OBECNÉ TRITICUM AESTIVUM L. METODOU RAPD
ODLIŠENÍ ODRŮD PŠENICE OBECNÉ TRITICUM AESTIVUM L. METODOU RAPD Distinguishing of Wheat Varieties (Tritium aestivum L.) by Method RAPD Zuzana Kohutová, Zuzana Kocourková, Hana Vlastníková, Petr Sedlák
Polymerázová řetězová reakce
Polymerázová řetězová reakce doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2013 Obsah přednášky 1) Co je to PCR, princip, jednotlivé kroky 2) Technické provedení PCR 3) Fyzikální
Genetické mapování. v přírodních populacích i v laboratoři
Genetické mapování v přírodních populacích i v laboratoři Funkční genetika Cílem je propojit konkrétní mutace/geny s fenotypem Vzniklý v laboratoři pomocí mutageneze či vyskytující se v přírodě. Forward
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Využití molekulárních markerů v systematice a populační biologii rostlin. 10. Další metody
Využití molekulárních markerů v systematice a populační biologii rostlin 10. Další metody Další molekulární markery trflp ISSRs (retro)transpozony kombinace a modifikace různých metod real-time PCR trflp
Metody studia historie populací. Metody studia historie populací. 1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky.
1) Metody studiagenetickérozmanitosti komplexní fenotypové znaky, molekulární znaky. 2)Mechanizmy evoluce mutace, p írodnívýb r, genový posun a genový tok 3) Anagenezex kladogeneze-co je vlastn druh 4)Dva
Arabidopsis thaliana huseníček rolní
Arabidopsis thaliana huseníček rolní Arabidopsis thaliana huseníček rolní - čeleď: Brassicaceae (Brukvovité) - rozšíření: kosmopolitní, od nížin až do hor, zejména na výslunných stráních - poprvé popsána
Analýza DNA. Co zjišťujeme u DNA DNA. PCR polymerase chain reaction. Princip PCR PRINCIP METODY PCR
o zjišťujeme u DN nalýza DN enetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní mutace,
Kvantitativní detekce houbových patogenů v rostlinných pletivech s využitím metod molekulární biologie
Kvantitativní detekce houbových patogenů v rostlinných pletivech s využitím metod molekulární biologie Leona Leišová Přírodovědecká fakulta UK, Praha 2009 Metody kvantifikace: Nepřímé metody odhad míry
Autoindex nad DNA sekvencemi
Autoindex nd DNA sekvenemi do. Ing. Jn Holub, Ph.D. ktedr teoretiké informtiky Fkult informčníh tehnologií České vysoké učení tehniké v Prze ENBIK 2014 10. 6. 2014 ENBIK 2014, 10. 5. 2014 J. Holub: Autoindex
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské. doc. RNDr. Ivan Mazura, CSc.
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské praxi doc. RNDr. Ivan Mazura, CSc. Historie forenzní genetiky 1985-1986 Alec Jeffreys a satelitní DNA 1980 Ray
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Charakterizace hybridních trav pomocí cytogenetických a molekulárních metod
Molekulární přístupy ve šlechtění rostlin Olomouc 14. února, 2017 Charakterizace hybridních trav pomocí cytogenetických a molekulárních metod Jan Bartoš Ústav experimentální botaniky Olomouc, Czech Republic
MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 2.4 GENETICKÉ MANIPULACE in vitro - nekonvenční techniky, kterými lze modifikovat rostlinný
Co zjišťujeme u DNA ACGGTCGACTGCGATGAACTCCC ACGGTCGACTGCGATCAACTCCC ACGGTCGACTGCGATTTGAACTCCC
Analýza DNA Co zjišťujeme u DNA genetickou podstatu konkrétních proteinů mutace bodové, sekvenční delece/inzerce nukleotidů, chromosomové aberace (numerické, strukturální) polymorfismy konkrétní mutace,
Genotypování markerů užitkovosti a zdraví u skotu
Mezinárodní odborný seminář Využití chovatelských dat onemocnění skotu pro management stád, šlechtění a pro racionální užívání antimikrobik. Genotypování markerů užitkovosti a zdraví u skotu Jitka Kyseľová
Havarijní plán PřF UP
Havarijní plán PřF UP v němž se nakládá s geneticky modifikovanými organismy (GMO), zpracovaný podle 20, odst. 4 zákona č. 78/2004 Sb. pro pracoviště kateder Buněčné biologie a genetiky a Oddělení molekulární
Molekulární genetika II zimní semestr 4. výukový týden ( )
Ústav biologie a lékařské genetiky 1.LF UK a VFN, Praha Molekulární genetika II zimní semestr 4. výukový týden (27.10. 31.10.2008) prenatální DNA diagnostika presymptomatická Potvrzení diagnózy Diagnostika
Mendelistická genetika
Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí
USING MOLECULAR MARKERS FOR GENETIC DIVERSITY TESTING IN SPRING BARLEY WITH DIFFERENT SENSITIVITY AGAINST FHB
USING MOLECULAR MARKERS FOR GENETIC DIVERSITY TESTING IN SPRING BARLEY WITH DIFFERENT SENSITIVITY AGAINST FHB TESTOVÁNÍ GENETICKÉ DIVERZITY JEČMENE JARNÍHO S RŮZNOU CITLIVOSTÍ VŮČI FHB MOLEKULÁRNÍMI MARKERY
Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek
Cvičení č. 8 KBI/GENE Mgr. Zbyněk Houdek Genové interakce Vzájemný vztah mezi geny nebo formami existence genů alelami. Jeden znak je ovládán alelami působícími na více lokusech. Nebo je to uplatnění 2
Vyhledávání a charakteristika genů zodpovědných za modré zabarvení obilky pšenice seté (Triticum aestivum L.)
Předběžná oponentura disertační práce Vyhledávání a charakteristika genů zodpovědných za modré zabarvení obilky pšenice seté (Triticum aestivum L.) Školitel: Prof. RNDr. Ladislav Havel, CSc. Doktorandka:
POSOUZENÍ PRAKTICKÉ VYUŽITELNOSTI VYBRANÝCH DNA MARKERŮ REZISTENCE BRAMBORU VŮČI PHYTOPHTHORA INFESTANS
POSOUZENÍ PRAKTICKÉ VYUŽITELNOSTI VYBRANÝCH DNA MARKERŮ REZISTENCE BRAMBORU VŮČI PHYTOPHTHORA INFESTANS Assesment of Applicability of Elected Potato Resistance DNA Markers against Late Blight Petr Sedlák
Thomas Hunt Morgan ( ) americký genetik a embryolog pokusy s octomilkou (D. melanogaster)
Vazba vloh Thomas Hunt Morgan (1866 1945) americký genetik a embryolog pokusy s octomilkou (D. melanogaster) Morganova pravidla 1. geny jsou na chromozómu uspořádány lineárně za sebou 2. počet vazbových
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)
Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince
Genetika Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století DĚDIČNOST Schopnost
Detekce Leidenské mutace
Detekce Leidenské mutace MOLEKULÁRNÍ BIOLOGIE 3. Restrikční štěpení, elektroforéza + interpretace výsledků Restrikční endonukleasy(restriktasy) bakteriální enzymy štěpící cizorodou dsdna na kratší úseky
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
ACTIVATION OF DEHYDRIN GENES OF GERMINATE PLANTS OF BARLEY TO DROUGHT AND COLD AKTIVACE DEHYDRINOVÝCH GENŮ KLÍČNÍCH ROSTLIN JEČMENE SUCHEM A CHLADEM
ACTIVATION OF DEHYDRIN GENES OF GERMINATE PLANTS OF BARLEY TO DROUGHT AND COLD AKTIVACE DEHYDRINOVÝCH GENŮ KLÍČNÍCH ROSTLIN JEČMENE SUCHEM A CHLADEM Dokoupilová Z., Holková L., Chloupek O. Ústav pěstování
Nauka o dědičnosti a proměnlivosti
Nauka o dědičnosti a proměnlivosti Genetika Dědičnost na úrovni nukleových kyselin molekulární buněk organismů populací Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci Dědičnost znaků
Metody molekulární biologie
Metody molekulární biologie 1. Základní metody molekulární biologie A. Izolace nukleových kyselin Metody využívající různé rozpustnosti Metody adsorpční Izolace RNA B. Centrifugační techniky o Princip
Mendelova zemědělská a lesnická univerzita v Brně. Agronomická fakulta DIPLOMOVÁ PRÁCE
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta DIPLOMOVÁ PRÁCE BRNO 2009 MICHAL ROHRER Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav biologie rostlin
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
ISSR (Inter simple sequence repeat) Jiří Košnar
ISSR (Inter simple sequence repeat) Jiří Košnar Přírodovědecká fakulta Jihočeské univerzity v Č. Budějovicích HISTORIE relativně nová metoda: Zietkiewicz E., Rafalski A., Labuda D. (1994): Genome fingerprinting
GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost
GENETIKA vědecké studium dědičnosti a jejich variant studium kontinuity života ve vztahu ke konečné délce života individuálních organismů Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální
MOLEKULÁRNÍ TAXONOMIE - 4
MOLEKULÁRNÍ TAXONOMIE - 4 V této přednášce si představíme metody, které získávají molekulární znaky bez použití sekvenace. Všechny tyto metody je teoreticky možné sekvenací nahradit. Oproti sekvenaci celých
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316
Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Molekulární markery ve šlechtění rostlin Petr Smýkal Katedra botaniky, PřF UPOL 1. Mikrosatelitní markery
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH Michaela Nesvadbová Význam identifikace živočišných druhů v krmivu a potravinách povinností každého výrobce je řádně a pravdivě označit
Genetické markery. pro masnou produkci. Mgr. Jan Říha. Výzkumný ústav pro chov skotu, s.r.o.
Genetické markery ve šlechtění skotu pro masnou produkci Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Genetické markery Polymorfní místa v DNA, které vykazují asociaci na sledované znaky Příčinné
TESTOVÁNÍ GMO Praktikum fyziologie rostlin
Teoretický úvod: TESTOVÁNÍ GMO Praktikum fyziologie rostlin 1 Teoretický úvod: TESTOVÁNÍ GMO Obecně na úvod Určitě jste už slyšeli pojem geneticky modifikovaný organismus (GMO). Úprava vlastností přirozeně
Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK
MODULARIZACE VÝUKY EVOLUČNÍ A EKOLOGICKÉ BIOLOGIE CZ.1.07/2.2.00/15.0204 Molecular Ecology J. Bryja, M. Macholán MU, P. Munclinger - UK Co je molekulární ekologie? Uměle vytvořený obor vymezený technickým
Co zjišťujeme u DNA ACGGTCGACTGCGATGAACTCCC ACGGTCGACTGCGATCAACTCCC ACGGTCGACTGCGATTTGAACTCCC
Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní
Metody analýzy DNA využívané ve Výzkumném a šlechtitelském ústavu Holovousy RNDr. Jana Čmejlová, Ph.D.
Metody analýzy DNA využívané ve Výzkumném a šlechtitelském ústavu Holovousy RNDr. Jana Čmejlová, Ph.D. 1951 - Výzkumný ústav ovocnářský Holovousy 1997 - Výzkumný a šlechtitelský ústav ovocnářský Holovousy
ší šířen VAZEBNÁ ANALÝZA Vazba genů
VAZEBNÁ ANALÝZA Vazba genů Americký genetik Thomas Morgan při genetických pokusech s octomilkami (Drosophila melanogaster) popsal zákonitosti o umístění genů na chromosomech, které existují až do současnosti
Analýza DNA. Co zjišťujeme u DNA
Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů, záměny), chromosomové aberace (numerické, strukturní) Polymorfismy konkrétní
Amplifikační metody v molekulární diagnostice mikroorganismů. doc. RNDr. Milan Bartoš, Ph.D.
Amplifikační metody v molekulární diagnostice mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2012 Doporučená literatura 1) Persing et al. (1993): Diagnostic Molecular
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
USING OF AUTOMATED DNA SEQUENCING FOR PORCINE CANDIDATE GENES POLYMORFISMS DETECTION
USING OF AUTOMATED DNA SEQUENCING FOR PORCINE CANDIDATE GENES POLYMORFISMS DETECTION VYUŽITÍ AUTOMATICKÉHO SEKVENOVÁNÍ DNA PRO DETEKCI POLYMORFISMŮ KANDIDÁTNÍCH GENŮ U PRASAT Vykoukalová Z., Knoll A.,
Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP Polymerázová řetězová reakce (PCR) je in vitro metoda pro enzymatickou syntézu definované sekvence DNA. Reakce využívá dvou oligonukleotidových
L. acidophilus_(psmm _ TIDE):
L. acidophilus_(psmm _ TIDE): 2010-04-06 Ivo Sedláček a Pavel Švec Česká sbírka mikroorganismů Přírodovědecká fakulta MU Tvrdého 14, 602 00 Brno Projekt FI-IM5/205 problematika taxonomie Polyfázová taxonomie
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
Genetika kvantitativních znaků
Genetika kvantitativních znaků Kvantitavní znaky Plynulá variabilita Metrické znaky Hmotnost, výška Dojivost Srstnatost Počet vajíček Velikost vrhu Biochemické parametry (aktivita enzymů) Imunologie Prahové
GENETIKA POPULACÍ ŘEŠENÉ PŘÍKLADY
GENETIKA POPULACÍ ŘEŠENÉ PŘÍKLADY 5. Speciální případy náhodného oplození PŘÍKLAD 5.1 Testováním krevních skupin systému AB0 v určité populaci 6 188 bělochů bylo zjištěno, že 2 500 osob s krevní skupinou
polymorfní = vícetvarý, mnohotvárný
Genetický polymorfismus s Řeckyy morphos = tvar polymorfní = vícetvarý, mnohotvárný Genetický polymorfismus je tedy označení pro výskyt téhož znaku ve více tvarech, formách, přičemž tato mnohotvárnost
Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ
BIOLOGICKÉ VĚDY EVA ZÁVODNÁ Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století
Biologie - Oktáva, 4. ročník (přírodovědná větev)
- Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické kontigové mapy Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s konstrukcí
UTILIZATION OF WHEAT AND RYE SSR MARKERS IN TRITICALE VYUŽITÍ SSR MARKERŮ PŠENICE A ŽITA U TRITIKALE
UTILIZATION OF WHEAT AND RYE SSR MARKERS IN TRITICALE VYUŽITÍ SSR MARKERŮ PŠENICE A ŽITA U TRITIKALE Slezáková K., Nevrtalová E., Vyhnánek T. Ústav biologie rostlin, Agronomická fakulta, Mendelova zemědělská
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
KBI / GENE Mgr. Zbyněk Houdek
Dědičnost komplexních a kvantitativních znaků KBI / GENE Mgr. Zbyněk Houdek Komplexní znaky Komplexní fenotypy mohou být ovlivněny genetickými faktory a faktory prostředí. Mezi komplexní znaky patří např.
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Příprava rekombinantních molekul pro diagnostické účely
1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky
Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky
Genetika kvantitativních znaků Genetika kvantitativních znaků - principy, vlastnosti a aplikace statistiky doc. Ing. Tomáš Urban, Ph.D. urban@mendelu.cz Genetika kvantitativních vlastností Mendelistická
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat Určování a ověřování paternity u koní. Bakalářská práce Brno 2006 Vedoucí bakalářské
Referenční lidský genom. Rozdíly v genomové DNA v lidské populaci. Odchylky od referenčního genomu. Referenční lidský genom.
Referenční lidský genom Rozdíly v genomové DNA v lidské populaci Zdroj DNA: 60% sekvencí pochází ze sekvenování DNA od jednoho dárce (sekvenování a sestavování BAC klonů) některá místa genomu se nepodařilo