Sypké látky Úvod. Sypké hmoty. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy)

Rozměr: px
Začít zobrazení ze stránky:

Download "Sypké látky Úvod. Sypké hmoty. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy)"

Transkript

1 Inženýrství farmaceutických výrob Sypké látky Úvod Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty partikulární látky (částicové systémy) vlastnostmi a fyzikálními projevy se liší od známých forem hmot (nové skupenství?) lože sypké hmoty se může chovat jako kapalina nebo pevná látka důsledkem dopravy, skladování, atd. změny některých vlastností sypkých hmot 1

2 Neobvyklé chování sypkých hmot Přesýpací hodiny» G... hmotový tok otvorem» D 0... průměr otvoru» h... výška sloupce látky» Naplněné kapalinou» průtok je závislý na výšce sloupce kapaliny» b = 0,5?» Naplněné pískem (sypkou hmotou)» rychlost sypání je přibližně konstantní, závislá na průměru otvoru» b = 0 0,05 Sypké hmoty (prášky) Sypká hmota (složená z pevných částic) = zvláštní stav hmoty Lože sypké hmoty v různých aspektech se chová podobně jako kapaliny nebo pevné látky lože sypké hmoty odolá určitému smykovému napětí (v závislosti na těsnosti uspořádání) zanedbatelná pevnost lože v tahu řada charakteristik nemá stavové chování (závisí na procesu) Partikulární látky ve farmacii stojí u zrodu většiny pevných lékových forem prášky zrněné prášky (granuláty) tablety tobolky a mikroformy 2

3 Požadavky na farmaceutické sypké hmoty Musí dobře téci (sypat se) aby mohlo zařízení pracovat s vysokým výkonem a spolehlivostí aby bylo přesné objemové odměřování Musí být homogenní aby byla léková dávka konstantní Musí mít dostatečný povrch aby se léčivá látka dobře rozpouštěla Charakteristiky sypké hmoty Specifická (měrná) hustota ρ s Hmotnost neporézní částice vztažená na její objem průměr hustot porézní částice a tekutiny v pórech Sypná hustota (bulk density) ρ B Hmotnost daného objemu volně sypaného prášku Setřesná hustota (tapped density) ρ T Určí se z objemu jednotkového množství látky po určitém počtu vibrací nebo době působení otřesů na zkoumaný materiál Hustota vrstvy včetně volného prostoru po sklepání Charakteristiky sypké hmoty Součinitel zaplnění objem pevných částic / objem lože Mezerovitost = 1 - podíl volného prostoru v loži Hausnerův poměr podíl setřesné a sypné hustoty charakterizuje stlačitelnost prášku špatná tokovost pro H > 1,25 Distribuce velikosti částic statistická veličina 3

4 Metody charakterizace DVČ Metody charakterizace DVČ Sítová analýza měření frakcí částic prošlých do různých vrstev sloupce sít s klesajícím rozměrem ok Omezení sítové analýzy částice do 150 μm (pro menší velikosti mokrá sítová analýza ) Metody charakterizace DVČ Výsledky různých metod se liší vliv tvaru a fyzikálních vlastností částic metody měřící počet vs. objem (hmotnost) Reprezentace výsledků charakterizace Histogram Kumulativní distribuce 4

5 Vlastnosti sypkých hmot Charakterizace tvaru částic Angularita členitost Charakteristický rozměr nepravidelných částic Sféricita poměr povrchu kuličky o stejném objemu jako částice k povrchu částice sféricita angularita Hodnocení velikosti částic Povrchový průměr d S průměr koule, která má stejný povrch jako částice Prosevný průměr d A minimální šířka otvoru čtvercové tkaniny, kterou je možné částici prosítovat Martinův průměr délka čáry, která půlí plochu průmětu disperzní částice Feretův průměr vzdálenost bodů, v nichž se dvě paralelní tečny dotýkají obvodu průmětu částice Tokové vlastnosti látek Dobře tekoucí látky větší velikost částic (s omezením) hladké částice kulovité, pravidelné částice Špatně tekoucí látky velmi jemné výrazná textura povrchu jehličkovitý, destičkovitý tvar 5

6 Měření tokových vlastností prášků Sypný úhel (úhel přirozené sklonitelnosti) velký úhel = špatná tokovost Měření času sypání látky standardní nálevkou (lékopisná metoda) Vlastnosti sypkých hmot Sypné úhly Statické násypná skluzová metoda výtoková sedimentační metoda Vlastnosti sypkých hmot Sypné úhly Dynamické rotační vibrační ventilační metoda 6

7 Fyzikální vlastnosti Doprava Smykové tření Charakterizuje odpor ke klouzání materiálu po nějakém tělese Závisí především na kvalitě styčných ploch (hladkosti, drsnosti, ) Statické tření Síla, která působí odpor proti uvedení tělesa do pohybu Valivé tření Uplatňuje se při kutálení tělesa po podložce Závisí na tvaru částice a povaze styčných ploch Skladování sypkých látek V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V zásobnících (silech) velké objemy (např. sušené byliny) vstup do kontinuálních procesů rozhraní mezi kontinuální a vsádkovou částí procesu např. zásobník u tabletovačky Skladování Plnění sypkých látek do zásobníku Dochází k segregaci komponent Jemné podíly uprostřed a hrubé u stěn Vypouštění sypkých látek ze zásobníku Koncentrace jemných podílů různá v různých fázích výtoku (závisí na charakteru toku) Velký význam ve farmaceutickém, potravinářském a chemickém průmyslu 7

8 Skladování Objemový tok Jádrový tok Schematické znázornění mechanismu toku sypké látky při vyprazdňování zásobníku Objemový tok stěnová oblast Jádrový tok osová oblast Posloupnost vyprazdňování zásobníku s kombinovaným tokovým mechanismem Isochronní plochy v zásobníku sypkého materiálu při jeho vypouštění Všechny částice ležící na křivce t = 1; t = 2; atd. se sejdou ve výpustním otvoru ve stejnou dobu Mechanismy toku Z tvaru izochron je zřejmý výskyt dvou charakteristických tvarů: Objemový výtok materiálu Izochrony pro čas t = 1 až t = 20 mají tvar přibližně eliptický Jádrový tok materiálu Izochromy pro čas t > 20 se v horní části rozevírají Postupným vyprazdňováním se hladina materiálu v zásobníku přibližuje sledované vrstvě. Jakmile hladina předběhne sledovanou vrstvu, pak vnější část sledované vrstvy sklouzne po povrchu výtokového kužele do tekoucího jádra První 4 vrstvy (viz předchozí obrázek) vytékají objemovým mechanismem toku a poslední dvě vrstvy mechanismem sklouzávání po povrchu nehybné části materiálu h f...výška výtokové oblasti u stěny [m] t čas, za který se jednotlivé objemy zásobníku vyprázdní [hod] 8

9 Poruchy toku sypkých látek Zablokování výsypného otvoru Snížení využitelného prostoru zásobníku FIFO -> LIFO režim vyprazdňování možnost degradace, expirace skladovaného materiálu Nekontrolovaný tok (flooding) Segregace různě velikých částic složek směsí Příklady poruchy toku sypkých látek Tvorba můstků (bridging, arching) stagnantní zaklíněný můstek kohezivní můstek Tvorba děr (ratholing) Volba režimu toku při návrhu Nálevkový tok = ekonomické řešení malé zkosení ve spodní části = prostorová úspornost pohyblivé částice mimo kontakt se stěnou = nízká abraze!!! nepůsobí problémy pouze pokud hmota obsahuje hrubé částice nelepivé částice nedochází k segregaci materiál se nekazí, nedegraduje, nemění vlastnosti Ve většině farmaceutických aplikací je třeba zajistit objemový tok 9

10 Zajištění objemového toku Překonání tření na výsypce Dostatečná velikost výsypného otvoru zamezení tvorby můstků překonání kohezní síly vrstvy Modifikace výsypky Modifikace tokových vlastností aditivy stearan hořečnatý koloidní oxid křemičitý Aerosil Modifikace výsypky Pro dosažení objemového toku obrácená kuželová vestavba uspořádání kužel v kuželu více výsypek Skladování - Kontrola teploty ve farmaceutických prostorech Teplota ovlivňuje koncentraci API, stabilitu, oxidaci, hydrolýzu, polymorfismus, fyzikální vlastnosti léčiv, absorpci vlhkosti závislost koncentrace API (%) na čase (roky) při různých teplotách skladování závislost rozkladu API v tabletách v čase při různých skladovacích podmínkách 10

11 Skladování - Kontrola teploty ve farmaceutických prostorech Prostorové snímače měření teploty a vlhkosti záznam každých 30 min umístěné na stěně skladu Nevýhody bodové měření teploty rozmístění jen na základě expertního odhadu ověření rozmístění jen na základě času potřeba velkého počtu termočlánků vysoký objem a tok číselných dat Skladování - Kontrola teploty ve farmaceutických prostorech Aplikace termovizního měření Skladování - Kontrola teploty ve farmaceutických prostorech Aplikace termovizního měření 11

12 Doprava Dávkování sypkých látek ze zásobníků Dávkovací zařízení napojeno na výtokový otvor zásobníku Různá konstrukce Kryté / otevřené Ploché / konvexní / se zarážkami Dopravníky s vodorovnou dopravní plochou Šnekové Pásové Vibrační Podavače Talířové turniketové Šnekový dopravník Na krátké vzdálenosti (pevnost hřídele v kroucení) Současné promíchávání, kypření Vhodné i pro zrnitý a kašovitý materiál a těstovité hmoty Podavače Pásový podavač limitujícím faktorem je maximální sklon, který závisí na materiálu (smykové tření) Talířový podavač 12

13 Vibrační podavač Spojení dopravy s tříděním Ne pro prašné, mokré a lepkavé látky Může docházet k segregaci prášků Doprava Dopravníky se svislou dopravní drahou kapsové, korečkové, košíkové dopravníky, elevátory Gravitační skluznice, tobogany, válečkové dráhy Pneumatické dopravníky Hydraulická doprava Pro suspenze, samovznětlivé látky Odstranění prašnosti Problémem je eroze zařízení Splavování spádem 3 6 % dopravní výkon [kg/h] G s = S u s x S...průřez potrubí u...rychlost proudění materiálu s...specifická hmotnost materiálu x...procento rozptýlení (objemový vzorek) 13

14 Pneumatická doprava Dispergace do proudu plynu Na velké výkony Podtlaková (vakuová) Přetlaková Výhody Pružnost dopravy, jednoduchá instalace Možnost změny směru Bezprašný provoz, větrání materiálu při dopravě Jednoduchá obsluha a údržba Pravidelný tichý chod a nízké investice Nevýhody Eroze Musíme vložit více energie než do mechanické Nevhodné materiály Hydroskopické, lepivé, kašovité, podléhající segregaci Nebezpečí statické elektřiny Doprava - bezpečnost Statická elektřina Představuje problém při manipulaci se sypkými látkami Vznik elektrického náboje na částicích materiálu podporuje jeho nízká elektrická vodivost a nevodivé prostředí, ve kterém se pohybuje Nezbytné uzemnění dopravních cest a zařízení Fyzikální vlastnosti úprava velikosti Tvrdost Odolnost k průniku jiné látky do struktury materiálů Křehkost Snadnost rozdrobení materiálu aniž by se předtím významně deformoval Houževnatost schopnost materiálů odolávat bez porušení deformační práci 14

15 Úprava velikosti částic Účinek léku závisí na velikosti částic účinné látky, ze které je složen Velikost částic se projevuje v jakosti konečného výrobku proto je distribuce velikosti části důležitým parametr pro hodnocení kvality účinné látky Před aplikací tuhých látek do lékových forem je nutné upravit a zkontrolovat průměr částic tuhé fáze Rozdrobňování zmenšování velikosti částic Zahrnuje drcení a mletí, vzrůstá účinný povrch, aplikace suchou i mokrou cestou Volba metody rozmělňování podle materiálu Napětí materiálu Plastická deformace Elastická deformace lom 1) Tažné materiály výrazná plastická deformace snižování vel. částic řezání strouhání 2) Křehké materiály snižování vel. částic drtiče mlýny Namáhání Mechanismy rozdrobňování Třením, roztíráním (síly působí soustavně a současně shora a z boku) Rozmačkáváním, tlakem (síla působí z jedné strany trvale) Nárazem,úderem (síla působí z jedné strany krátce ale opakovaně) Štípáním, řezáním, sekáním, střihem (síla působí na ostré pracovní plochy) 15

16 Spotřeba energie Fragmentace přibližně úměrná vznikajícímu povrchu Ztráty elastická deformace částic kompaktace částic tření plastická deformace částic Energetické nároky rozdrobňování Závislost práce nutné k dispergaci materiálu na původní velikosti částic (de/dx) = -kx -n E... Energie X... velikost částic n... řád procesu v případě hodnoty n=1 je vynaložená práce funkcí dispergačního poměru X 2 /X 1. (Kick) E = K k ln (X 2 /X 1 ) K K... Kickova konstanta f c... pevnost materiálu v tlaku [N.m -2 ] popis drcení (X > 50 mm) v případě hodnoty n=2 (Rittinger) E = K r f c (1/X 2 1/X 1 ) K R... Rittingerova konstanta popis jemného mletí (X < 0,05 mm) Úprava Drcení Rozdrobňování tvrdého a křehkého materiálu (nad 20 mm) Malé množství se obvykle drtí v třecí misce nebo hmoždíři Pro hrubé drcení se využívá čelisťový drtič 16

17 Typy zařízení Kuželový drtič Typy zařízení Válcový mlýn Rozmačkává materiál stálým tlakem Dvouválcový Používá se k drcení sypkých hmot Trojválcový Používají se k rozdrobňování materiálu ulpívajícího na válcích (mastě a čípkoviny) Maximální výkonnost válcových mlýnů V = bcω (b- výška pláště válce, c- šířka mezery mezi válci, ω- obvodová rychlost) Typy zařízení Kladivový mlýn Nárazový odstředivý mlýn Materiál se rozdrobňuje nárazy a štípáním o kladiva otáčející se velkou rychlostí Materiál nesmí být vlhký (max. 15% vlhkosti) 17

18 Typy zařízení Nárazový kolíkový mlýn Rozmělňuje materiál mezi kolíky upevněných na rychle se otáčejících kotoučích 2 typy: Oba kotouče se otáčejí Jeden kotouč se otáčí a jeden je pevný Fluidní mlýn (mikronizér) Srážky částic uvedených do vysoké rychlosti Hnací silou tlakový vzduch (jednotky až desítky bar) Vel. částic <30 m Kulový mlýn Používá se k jemnému mletí Materiál se rozdrobňuje pohybem a dopadem koulí, které se rozpohybují otáčením mlýna Diskontinuální i kontinuální provoz Materiál koulí ocel, kámen Řeší se kritická obvodová rychlost μ (ot/min) 18

19 Kulový mlýn Optimální pokud má koule co nejdelší dopadovou dráhu Stupeň naplnění mlýnu bývá cca 0,4 objemu Opotřebení: mlýn g/t ; koule g/t Výhody: přesně dané použití značný výkon konstantní jakost mletí Nevýhody: velký objem hlučné zařízení V laboratorním měřítku se používají tzv. planetové kulové mlýny. Zvláštní požadavky na aparáty Podle vlastností zpracovávané látky velmi tvrdá nízkorychlostní, nízkokontaktní aparáty plastická, vláknitá neúčinkuje náraz, tlak vlhká, kohezní špatné tokové vlastnosti teplotní citlivost nevhodné tření, vhodné zpracování za vlhka lepkavá kvůli údržbě je lepší jednoduché zařízení kluzká drcení bude neúčinné kvůli nízkému tření výbušná nutná inertní atmosféra zdraví škodlivá dobré ohraničení procesu, bezprašnost Třídění Vibrační třídiče Pneumatické S využitím fluidace se sérií cyklonových komor 19

20 Prosévání aparáty Nehybná síta materiál se prosévá pohybem kartáčů Pohyblivá síta třasadla, vibrační síta Cyklónový separátor Tangenciální proud vzduchu unáší částice Malé částice tvoří fluidní vrstvu Velké částice propadnou na dno 20

Sypké látky Úvod. Sypké hmoty. Neobvyklé chování sypkých hmot. Partikulární látky ve farmacii. Sypké hmoty (prášky)

Sypké látky Úvod. Sypké hmoty. Neobvyklé chování sypkých hmot. Partikulární látky ve farmacii. Sypké hmoty (prášky) Inženýrství farmaceutických výrob Úvod Sypké látky Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty Neobvyklé chování sypkých hmot partikulární látky (částicové systémy) vlastnostmi

Více

24.9.2014. Sypké látky. Sypké hmoty. Úvod. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy)

24.9.2014. Sypké látky. Sypké hmoty. Úvod. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy) Inženýrství farmaceutických výrob Sypké látky Úvod Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty partikulární látky (částicové systémy) vlastnostmi a fyzikálními projevy se liší

Více

Sypké látky. Sypké hmoty. Partikulární látky ve farmacii. Fyzikální vlastnosti. Úvod. Požadavky na farmaceutické sypké hmoty

Sypké látky. Sypké hmoty. Partikulární látky ve farmacii. Fyzikální vlastnosti. Úvod. Požadavky na farmaceutické sypké hmoty Inženýrství farmaceutických výrob Úvod Sypké látky Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty Partikulární látky ve farmacii partikulární látky (částicové systémy) vlastnostmi

Více

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti Skladování sypkých látek Sypké hmoty Doprava, skladování, klasifikace» V kontejnerech» men objemy» zpracování a logistika na úrovni malých šarží» dlouhodoběj skladování» V zásobnících (silech)» velké objemy

Více

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících Skladování sypkých látek Sypké hmoty Doprava a skladování» V kontejnerech» menší objemy» zpracování a logistika na úrovni malých šarží» dlouhodobější skladování» V zásobnících (silech)» velké objemy (např.

Více

Pevné lékové formy. Lisování tablet. Plnění kapslí (strojní) Plnění kapslí (ruční) » Sypké hmoty stojí u zrodu většiny pevných lékových forem

Pevné lékové formy. Lisování tablet. Plnění kapslí (strojní) Plnění kapslí (ruční) » Sypké hmoty stojí u zrodu většiny pevných lékových forem UNIVERZITA 3. VĚKU U3V FAKULTA CHEMICKÉ TECHNOLOGIE 2011-2012 Sypké hmoty ve farmaceutických výrobách Doc. Ing. Petr Zámostný, Ph.D. VYSOKÁ ŠKOLA CHEMICKO TECHNOLOGICKÁ PRAHA Doc. Ing. Petr Zámostný, Ph.D.

Více

Literatura. Skladování sypkých látek. Režim spotřeby skladové zásoby. Tok prášku. Vliv vlastností prášku na jeho tok

Literatura. Skladování sypkých látek. Režim spotřeby skladové zásoby. Tok prášku. Vliv vlastností prášku na jeho tok Literatura Sypké hmoty Doprava a skladování Skladování sypkých látek Režim spotřeby skladové zásoby V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V

Více

Literatura. Inženýrství chemicko-farmaceutických výrob. Sypké hmoty Doprava a skladování. Inženýrství chemicko-farmaceutických výrob

Literatura. Inženýrství chemicko-farmaceutických výrob. Sypké hmoty Doprava a skladování. Inženýrství chemicko-farmaceutických výrob Sypké hmoty Doprava a skladování Literatura 1 Skladování sypkých látek V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V zásobnících (silech) velké objemy

Více

Tok, doprava a skladování sypkých hmot

Tok, doprava a skladování sypkých hmot Tok, doprava a skladování sypkých hmot Snímek 2 - Skladování sypkých látek Pro sypké hmoty ve farmaceutickém průmyslu je typické skladování v jednotkových obalech, kontejnerech, pytlích v menších objemech.

Více

Úprava velikosti částic. Inženýrství chemicko-farmaceutických výrob. Důvody pro snížení velikosti částic. Zvýšení velikosti částic

Úprava velikosti částic. Inženýrství chemicko-farmaceutických výrob. Důvody pro snížení velikosti částic. Zvýšení velikosti částic Úprava velikosti částic Rozmělňování Úprava velikosti částic Důvoy pro snížení velikosti částic možnost přesnějšího ávkování zvýšení specifického povrchu rychlejší rozpouštění, sušení lepší tokové vlastnosti,

Více

Úprava velikosti částic. Teorie rozmělňování. Snížení velikosti částic. Rittingerův zákon (1867) Spotřeba energie

Úprava velikosti částic. Teorie rozmělňování. Snížení velikosti částic. Rittingerův zákon (1867) Spotřeba energie Úprava velikosti částic Důvoy pro snížení velikosti částic možnost přesnějšího ávkování zvýšení specifického povrchu rychlejší rozpouštění, sušení lepší tokové vlastnosti, lisovatelnost Zvýšení velikosti

Více

Kompaktace. Inženýrství chemicko-farmaceutických výrob. Suchá granulace Princip. Vazebné síly. Stlačování sypké hmoty mezi dvěma povrchy

Kompaktace. Inženýrství chemicko-farmaceutických výrob. Suchá granulace Princip. Vazebné síly. Stlačování sypké hmoty mezi dvěma povrchy Zvětšování velikosti částic Kompaktace, extrudace Kompaktace Suchá granulace Princip Stlačování sypké hmoty mezi dvěma povrchy Vazebné síly van der Waalsovy interakce mechanické zaklesnutí částic povrchové

Více

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH VÝROB MÍSENÍ Definice Operace při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné složky

Více

Inženýrství chemicko-farmaceutických výrob. aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...

Inženýrství chemicko-farmaceutických výrob. aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby... Úvod Co je obsahem předmětu [CZ] Inženýrství... výrob [EN]... process engineering aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...) Chemické a fyzikální procesy

Více

Mísení. Inženýrství chemicko-farmaceutických výrob. Definice. Cíle

Mísení. Inženýrství chemicko-farmaceutických výrob. Definice. Cíle a segregace sypkých hmot Definice Operace při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné složky je co možná nejblíže nějaké částici všech ostatních

Více

Volba vhodného typu mísiče může být ovlivněna následujícími podmínkami

Volba vhodného typu mísiče může být ovlivněna následujícími podmínkami MÍSENÍ ZRNITÝCH LÁTEK Mísení zrnitých látek je zvláštním případem míchání. Zrnité látky mohou být konglomerátem několika chemických látek. Z tohoto důvodu obvykle bývá za složku směsí považován soubor

Více

Přednáška 3 Rozmělňování: Komentář ke snímkům

Přednáška 3 Rozmělňování: Komentář ke snímkům Přednáška 3 Rozmělňování: Komentář ke snímkům Snímek 2: Úprava velikosti částic V řadě situací nevyhovuje materiál, který je k dispozici z hlediska své granularity - velikosti částic. V případě potřeby

Více

Na rozpojování se používají drtiče a mlýny. Drtiče poskytují výslednou velikost částic nad 1 mm. U mlýnů je výsledná velikost částic menší než 1 mm.

Na rozpojování se používají drtiče a mlýny. Drtiče poskytují výslednou velikost částic nad 1 mm. U mlýnů je výsledná velikost částic menší než 1 mm. 5. ROZPOJOVÁNÍ Tuhé suroviny zpravidla nemají vhodnou zrnitost pro dopravu nebo další zpracování. Základní operací úpravárenských procesů je rozpojování (rozmělňování). Rozpojování zároveň vede ke zvýšení

Více

Co je obsahem předmětu. Organizace studia. Mapa předmětu. Program přednášek. Kontrola studia. Inženýrství chemicko-farmaceutických výrob

Co je obsahem předmětu. Organizace studia. Mapa předmětu. Program přednášek. Kontrola studia. Inženýrství chemicko-farmaceutických výrob Co je obsahem předmětu [CZ] Inženýrství... výrob [EN]... process engineering aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...) Chemické a fyzikální procesy ve

Více

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu.

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Účelem mícháním je dosáhnout dokonalé, co nejrovnoměrnější

Více

Obr Způsoby rozpojování pevných částic. a drcení, b trhání, c smýkání, d lámání, e otírání, f rozbíjení, g - rozlupování

Obr Způsoby rozpojování pevných částic. a drcení, b trhání, c smýkání, d lámání, e otírání, f rozbíjení, g - rozlupování ROZPOJOVÁNÍ Cílem rozpojování je zmenšení velikosti částic, které je potřebné pro jejich další zpracování. Zmenšení velikosti částic je doprovázeno zvětšením jejich specifického povrchu, což může být výhodné

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech Vícefázové reaktory MÍCHÁNÍ ve vsádkových reaktorech Úvod vsádkový reaktor s mícháním nejběžnější typ zařízení velké rozmezí velikostí aparátů malotonážní desítky litrů (léčiva, chemické speciality, )

Více

Úprava velikosti částic. Důvody proč zvětšovat částice. Úprava velikosti částic sypkých hmot Aglomerační procesy

Úprava velikosti částic. Důvody proč zvětšovat částice. Úprava velikosti částic sypkých hmot Aglomerační procesy Úprava velikosti částic sypkých hmot Aglomerační procesy Úprava velikosti částic Zmenšování Rozdrobňování, rozmělňování Drcení Mletí Zvětšování Aglomerace Granulace (vlhká, fluidní) Kompaktace Extrudace

Více

Základy chemických technologií

Základy chemických technologií 4. Přednáška Mísení a míchání MÍCHÁNÍ patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) hlavní cíle: odstranění

Více

4. Vytváření. 2. Vytváření tažením z tvárného (plastického) těsta z těsta % vlhkost. Tlak průměrně 0,5-3,5 MPa. Šnekový lis.

4. Vytváření. 2. Vytváření tažením z tvárného (plastického) těsta z těsta % vlhkost. Tlak průměrně 0,5-3,5 MPa. Šnekový lis. 4. Vytváření - převedení polydisperzního systému výrobní směsi v kompaktní systém konkrétních geometrických rozměrů (= výlisek). - změna tvaru a změna vzájemné polohy částic působením vnějších sil. 1.

Více

TŘÍDIČE, DRTIČE, PODAVAČE A SÍTA

TŘÍDIČE, DRTIČE, PODAVAČE A SÍTA TŘÍDIČE, DRTIČE, PODAVAČE A SÍTA VVV MOST spol. s r.o. Sídlo společnosti: Topolová 1234, 434 01 MOST, IČO: 00526355, DIČ: CZ00526355, Web: www.vvvmost.cz Kontaktní osoba: Ing. Jaroslav Jochman, Tel.: +420

Více

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D 2010 PharmDr. Zdenka Šklubalová, Ph.D. 10.6.2010 ZMĚNY D 2010 (harmonizace beze změn v textu) 2.9.1 Zkouška rozpadavosti tablet a tobolek 2.9.3 Zkouška disoluce

Více

DOPRAVNÍKY. objemový průtok sypkého materiálu. Q V = S. v (m 3.s -1 )

DOPRAVNÍKY. objemový průtok sypkého materiálu. Q V = S. v (m 3.s -1 ) DOPRAVNÍKY Dopravníky jsou stroje sloužící k přemisťování materiálu a předmětů hromadného charakteru ve vodorovném, šikmém i svislám směru. Dopravní vzdálenosti jsou většinou do několika metrů, výjimečně

Více

SPOJOVÁNÍ AGLOMERACE

SPOJOVÁNÍ AGLOMERACE SPOJOVÁNÍ AGLOMERACE Aglomerace je opakem rozpojování. Jejím účelem je spojovat malé částice do větších elementů granulí nebo tablet. Tímto způsobem se eliminují některé vlastnosti příliš jemnozrných látek

Více

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství Pevné lékové formy Vlastnosti pevných látek stabilita Vlastnosti léčiva rozpustnost krystalinita ke zlepšení vlastností je vhodné využít materiálové inženýrství Charakterizace pevných látek difraktometrie

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě

Více

FDA kompatibilní iglidur A180

FDA kompatibilní iglidur A180 FDA kompatibilní Produktová řada Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Pro vlhká prostředí 411 FDA univerzální. je materiál s FDA certifikací

Více

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty Nízká cena iglidur Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty 399 iglidur Nízká cena. Pro aplikace s vysokými požadavky na teplotní odolnost. Může být podmíněně

Více

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití Biopolymer Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití 575 Biopolymer. Z 54% je založen na obnovitelných zdrojích. I přesto tento nový materiál splňuje

Více

Teplotně a chemicky odolný, FDA kompatibilní iglidur A500

Teplotně a chemicky odolný, FDA kompatibilní iglidur A500 Teplotně a chemicky odolný, FDA kompatibilní Produktová řada Samomazný a bezúdržbový Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Teplotní odolnost

Více

Nízká cena při vysokých množstvích

Nízká cena při vysokých množstvích Nízká cena při vysokých množstvích iglidur Vhodné i pro statické zatížení Bezúdržbový provoz Cenově výhodné Odolný vůči nečistotám Odolnost proti vibracím 225 iglidur Nízká cena při vysokých množstvích.

Více

STAVEBNÍ HMOTY. Přednáška 2

STAVEBNÍ HMOTY. Přednáška 2 STAVEBNÍ HMOTY Přednáška 2 Zkušebnictví ke zjištění vlastností materiálu je třeba ho vyzkoušet Materiál se zkouší podle zkušebních norem na vhodném vzorku Principy materiálového zkušebnictví zkoušíme za

Více

4.Mísení, míchání MÍCHÁNÍ

4.Mísení, míchání MÍCHÁNÍ 4.Mísení, míchání MÍCHÁNÍ - patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) - hlavní cíle: o odstranění

Více

Základní vlastnosti stavebních materiálů

Základní vlastnosti stavebních materiálů Základní vlastnosti stavebních materiálů Měrná hmotnost (hustota) hmotnost objemové jednotky látky bez dutin a pórů m V h g / cm 3 kg/m 3 V h objem tuhé fáze Objemová hmotnost hmotnost objemové jednotky

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

iglidur N54 Biopolymer iglidur N54 Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

iglidur N54 Biopolymer iglidur N54 Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití iglidur Biopolymer iglidur Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití 575 Biopolymer. Z 54% je založen na obnovitelných zdrojích. I přesto tento nový

Více

ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ

ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; platnost do r. 2016 v návaznosti na použité normy. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D. Kavková

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN - Základní materiálové parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN - Základní materiálové parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě

Více

Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost

Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost Bez PTFE a silikonu iglidur Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost HENNLIH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz 613 iglidur Bez PTFE a

Více

Dělení zrnité směsi dle velikosti zrn třídění. Pro dělení směsi obsahující zrna různých materiálů rozdružování

Dělení zrnité směsi dle velikosti zrn třídění. Pro dělení směsi obsahující zrna různých materiálů rozdružování DĚLENÍ SMĚSÍ ZRNITÝCH MATERIÁLŮ Dělení směsí zrnitých materiálů je opakem směšování. Jeho cílem je rozdělit částice směsi podle požadovaného účelu. Může to být např. rozdělení podle velikosti (u jednosložkových

Více

TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (1)

TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (1) 8. dubna 2015, Brno Připravil: Ing. Petr Junga, Ph.D. TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (1) Základní fyzikální principy využívané v rámci techniky pro zpracování odpadů Inovace studijních programů AF a ZF

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Předmět: Vícefázové reaktory Jméno: Veronika Sedláková 3-fázové reakce Autoklávy (diskontinuální) Trubkové reaktory (kontinuální) Probublávané

Více

Specifikace přístrojů pro laboratoř katalyzátorů

Specifikace přístrojů pro laboratoř katalyzátorů Specifikace přístrojů pro laboratoř katalyzátorů Uchazeč použije části odpovídající jeho nabídce. V tabulkách do sloupců doplní podle povahy parametru buď ANO/NE (případně jiný slovní údaj) nebo konkrétní

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky Pracoviště zkušební laboratoře: 1. Laboratoř stavební tepelné techniky K Cihelně 304, 764 32 Zlín - Louky 2. Laboratoř akustiky K Cihelně 304, 764 32 Zlín - Louky 3. Laboratoř otvorových výplní K Cihelně

Více

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost Elektricky vodivý Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost 59 Elektricky vodivý. Materiál je extrémní tuhý a tvrdý, kromě

Více

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky

Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky Pracoviště zkušební laboratoře: 1. Laboratoř stavební tepelné techniky K Cihelně 304, Zlín - Louky Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř poskytuje odborná

Více

- u souměrných součástí se kreslí tak, že jedna polovina se zobrazí v řezu, druhá v pohledu

- u souměrných součástí se kreslí tak, že jedna polovina se zobrazí v řezu, druhá v pohledu E- learning na den 16.1. 2014 pro tř.1.a, obor Zahradník Úkol: Prostudujte způsoby zobrazování součástí na stránkách 1 3. Nakreslete na volný list papíru dvě součásti znázorněné na str. 3, přesně podle

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

Pro vysoká zatížení iglidur Q

Pro vysoká zatížení iglidur Q Pro vysoká zatížení Produktová řada Vynikající odolnost proti opotřebení, zejména pro extrémní zatížení Doporučeno pro extrémní pv hodnoty Dobrý koeficient tření Necitlivé na znečištění 541 Pro vysoká

Více

Produktová řada Dobrá odolnost proti opotřebení Nízké tření bez mazání Cenově efektivní Nízké opotřebení

Produktová řada Dobrá odolnost proti opotřebení Nízké tření bez mazání Cenově efektivní Nízké opotřebení Nízká cena iglidur Produktová řada Dobrá odolnost proti opotřebení Nízké tření bez mazání Cenově efektivní Nízké opotřebení HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz

Více

Technologie pro výrobu krmiv

Technologie pro výrobu krmiv Technologie pro výrobu krmiv www.taurus-sro.cz ŠROTOVNÍKY Horizontální šrotovník HM Turbo šrotovník TM Stroj je určen pro drcení a rozmělňování suroviny s vyšším podílem H 2 O. Materiál je drcen, údery

Více

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost Elektricky vodivý iglidur Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost HENNLICH s.r.o. Tel. 416 711 338 ax 416 711 999 lin-tech@hennlich.cz

Více

PROTAHOVÁNÍ A PROTLAČOVÁNÍ

PROTAHOVÁNÍ A PROTLAČOVÁNÍ Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

Pro vysoké rychlosti iglidur L250

Pro vysoké rychlosti iglidur L250 Pro vysoké rychlosti Produktová řada Pro rotační aplikace Velmi nízký koeficient tření Vynikající odolnost proti opotřebení HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz

Více

Výběr pružných spojek

Výběr pružných spojek Výběr pružných spojek Výběr pružných spojek 1] Provozní faktor. Z tabulky 1 na str. 239, vyberte provozní faktor, který je vhodný pro aplikace Pružná spojka 2] Navrhovaný výkon. Vynásobte příkon řízeného

Více

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice)

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice) Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

Nízké tření a opotřebení: Pro rychlé i pomalé pohyby iglidur J

Nízké tření a opotřebení: Pro rychlé i pomalé pohyby iglidur J Nízké tření a opotřebení: Pro rychlé i pomalé pohyby iglidur Více než 250 rozměrů skladem ve výrobním závodě Nízké opotřebení s různými materiály hřídele Nízký koeficient tření za sucha Pohlcování vibrací

Více

Návody k speciálním praktickým cvičením z farmaceutické technologie. doc. RNDr. Milan Řehula, CSc. a kolektiv. Autorský kolektiv:

Návody k speciálním praktickým cvičením z farmaceutické technologie. doc. RNDr. Milan Řehula, CSc. a kolektiv. Autorský kolektiv: Návody k speciálním praktickým cvičením z farmaceutické technologie doc. RNDr. Milan Řehula, CSc. a kolektiv Autorský kolektiv: doc. RNDr. Milan Řehula, CSc. Mgr. Pavel Berka doc. RNDr. Milan Dittrich,

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

Příkon míchadla při míchání nenewtonské kapaliny

Příkon míchadla při míchání nenewtonské kapaliny Míchání suspenzí Navrhněte míchací zařízení pro rozplavovací nádrž na vápenný hydrát. Požadovaný objem nádrže je 0,8 m 3. Největší částice mají průměr 1 mm a hustotu 2200 kg m -3. Objemová koncentrace

Více

Synthesia, a.s. Pardubice. Teplárna Zelená louka

Synthesia, a.s. Pardubice. Teplárna Zelená louka Synthesia, a.s. Pardubice Teplárna Zelená louka Založena v roce 1992 v Ostravě Dodávky technologií na zpracování popelovin V roce 1998 založena pobočka Žamberk Rozšíření činnosti do dalších oblastí průmyslu

Více

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah

Více

iglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby

iglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby Pro horké tekutiny iglidur Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby 341 iglidur Pro horké tekutiny. Kluzná pouzdra iglidur byla vyvinuta pro aplikace pod vodou při teplotách

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Monitoring přehradních hrází doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Konstrukce železničního svršku

Konstrukce železničního svršku Konstrukce železničního svršku Otto Plášek, doc. Ing. Ph.D. Ústav železničních konstrukcí a staveb Tato prezentace byla vytvořen pro studijní účely studentů 4. ročníku bakalářského studia oboru Konstrukce

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

Přednáška 5 Kompaktace, extrudace, sféronizace

Přednáška 5 Kompaktace, extrudace, sféronizace Přednáška 5 Kompaktace, extrudace, sféronizace Snímek 2: Kompaktace Kompaktace ( Suchá granulace ) je způsob aglomerace částic sypké hmoty založený na interakcích s velmi krátkým dosahem. Aby tato aglomerace

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné

Více

fritsch PŘÍPRAVA VZORKŮ PŘEHLED VÝROBKŮ MLETÍ PROSÉVÁNÍ DĚLENÍ

fritsch PŘÍPRAVA VZORKŮ PŘEHLED VÝROBKŮ MLETÍ PROSÉVÁNÍ DĚLENÍ fritsch PŘÍPRAVA VZORKŮ PŘEHLED VÝROBKŮ MLETÍ PROSÉVÁNÍ DĚLENÍ f r i t s c h. V Ž D Y O K R O K N A P Ř E D. FRITSCH. je. přední. výrobce. uživatelsky. orientovaných. laboratorních. přístrojů. v. mezinárodním.

Více

Společnost RAYMAN spol. s r. o.

Společnost RAYMAN spol. s r. o. Společnost RAYMAN spol. s r. o. Systémy pneumatické dopravy vápna, cementu a dalších sypkých materiálů PROJEKTY. DODÁVKY. SERVIS. KONZULTACE. Tradice a historie Strojařská a podnikatelská rodinné tradice

Více

Pro vysoké rychlosti pod vodou

Pro vysoké rychlosti pod vodou Pro vysoké rychlosti pod vodou iglidur Produktová řada Pro aplikace pod vodou Pro rychlý a konstantní pohyb Dlouhá životnost HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz

Více

1 TVÁŘENÍ. Tváření se provádí : klidným působením sil (válcováním, lisováním), rázem (kování za studena a za tepla).

1 TVÁŘENÍ. Tváření se provádí : klidným působením sil (válcováním, lisováním), rázem (kování za studena a za tepla). 1 TVÁŘENÍ Mechanické zpracování kovů, při kterém se působením vnějších sil mění tvar předmětů, aniž se poruší materiál dochází k tvalému přemisťování částic hmoty. Tváření se provádí : klidným působením

Více

Bulk Solids Feeding. Rotační podávače do pneudopravy RVS Rotační podávače průtokové RVC

Bulk Solids Feeding. Rotační podávače do pneudopravy RVS Rotační podávače průtokové RVC Bulk Solids Feeding Rotační podávače do pneudopravy RVS Rotační podávače průtokové RVC Rotační podávače do pneudopravy RVS Rotační podávače RVC VYSOCE ÚČINNÉ A PŘESNÉ DÁVKOVÁNÍ A PNEUMATICKÁ DOPRAVA PRÁŠKŮ

Více

ZHUTŇOVÁNÍ ZEMIN vlhkosti. Způsob zhutňování je ovlivněn těmito faktory:

ZHUTŇOVÁNÍ ZEMIN vlhkosti. Způsob zhutňování je ovlivněn těmito faktory: ZHUTŇOVÁNÍ ZEMIN Zhutnitelnost zeminy závisí na granulometrickém složení, na tvaru zrn, na podílu a vlastnostech výplně z jemných částic, ale zejména na vlhkosti. Způsob zhutňování je ovlivněn těmito faktory:

Více

Pevnostní vlastnosti

Pevnostní vlastnosti Pevnostní vlastnosti J. Pruška MH 3. přednáška 1 Pevnost v prostém tlaku na opracovaných vzorcích Jedná se o mezní napětí při porušení zkušebního tělesa za jednoosého tlakového namáhání F R = mez d A pevnost

Více

4. SKLADOVÁNÍ 4.1 SKLADOVÁNÍ TUHÝCH LÁTEK

4. SKLADOVÁNÍ 4.1 SKLADOVÁNÍ TUHÝCH LÁTEK 4. SKLADOVÁNÍ 4.1 SKLADOVÁNÍ TUHÝCH LÁTEK Tuhé materiály jsou přechovávány ve skladech, silech a zásobnících. Sklady a sila jsou určeny pro skladování většího množství materiálu často dlouhodobě skladovaného,

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

Filtrace 18.9.2008 1

Filtrace 18.9.2008 1 Výpočtový ý seminář z Procesního inženýrství podzim 2008 Filtrace 18.9.2008 1 Tématické okruhy principy a instrumentace bilance filtru kalolis filtrace za konstantní rychlosti filtrace za konstantního

Více

Pevné lékové formy. Výroba prášků. Distribuce velikosti částic. Prášek. » I. Sypké lékové formy

Pevné lékové formy. Výroba prášků. Distribuce velikosti částic. Prášek. » I. Sypké lékové formy UNIVERZITA 3. VĚKU U3V FAKULTA CHEMICKÉ TECHNOLOGIE 2009-2010 Výroba a kontrola kvality pevných lékových forem Doc. Ing. Petr Zámostný, Ph.D. VYSOKÁ ŠKOLA CHEMICKO TECHNOLOGICKÁ PRAHA Doc. Ing. Petr Z{mostný,

Více

11. Zásobníky, nádrže, potrubí Zatížení, konstrukce stěn a podpor. Návrh upravuje ČSN EN 1993-4 bunkry sila

11. Zásobníky, nádrže, potrubí Zatížení, konstrukce stěn a podpor. Návrh upravuje ČSN EN 1993-4 bunkry sila 11. Zásobníky, nádrže, potrubí Zatížení, konstrukce stěn a podpor. Návrh upravuje ČSN EN 1993-4 Zásobníky - na sypké materiály bunkry sila Nádrže Plynojemy - na tekuté materiály - na plyny nízkotlaké (

Více

Identifikace zkušebního postupu/metody 2

Identifikace zkušebního postupu/metody 2 Pracoviště zkušební laboratoře:. Laboratoř stavební tepelné techniky K Cihelně 304, Zlín - Louky 2. Laboratoř akustiky K Cihelně 304, Zlín - Louky 3. Laboratoř otvorových výplní K Cihelně 304, Zlín - Louky

Více

Vysoké teploty, univerzální

Vysoké teploty, univerzální Vysoké teploty, univerzální Vynikající koeficient tření na oceli Trvalá provozní teplota do +180 C Pro střední a vysoké zatížení Zvláště vhodné pro rotační pohyb HENNLICH s.r.o. Tel. 416 711 338 Fax 416

Více

OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ

OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ 1. Spoje a spojovací součásti rozdělení spojů z hlediska rozebíratelnosti rozdělení spojů z hlediska fyzikální podstaty funkce 2. Spoje se silovým stykem šroubové

Více

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů.

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. M. Lachman, R. Mendřický - Elektrické pohony a servomechanismy 13.4.2015 Požadavky na pohon Dostatečný moment v celém rozsahu rychlostí

Více

Příklady z teoretické mechaniky pro domácí počítání

Příklady z teoretické mechaniky pro domácí počítání Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.

Více

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno Popis Prototyp automatického kotle o výkonu 100 kw

Více

1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul

1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul Látka a těleso 1) Tělesa se skládají z látky nebo menších těles mají tvar, polohu a rozměry všechna tělesa se pohybují! 2) Látky se skládají z atomů a molekul Druh látky (skupenství): pevné l. kapalné

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu

Více

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry získat výhodné mechanické vlastnosti ve vztahu k funkčnímu uplatnění tvářence Výhody tváření : vysoká produktivita práce automatizace

Více