Co je obsahem předmětu. Organizace studia. Mapa předmětu. Program přednášek. Kontrola studia. Inženýrství chemicko-farmaceutických výrob

Rozměr: px
Začít zobrazení ze stránky:

Download "Co je obsahem předmětu. Organizace studia. Mapa předmětu. Program přednášek. Kontrola studia. Inženýrství chemicko-farmaceutických výrob"

Transkript

1 Co je obsahem předmětu [CZ] Inženýrství... výrob [EN]... process engineering aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...) Chemické a fyzikální procesy ve farmaceutických výrobách aparáty, jejich návrh a optimalizace modely procesů provoz a řízení aparátů, bezpečnost vlastnosti látek důležité z hlediska aparátů Úvod Mapa předmětu Sypké hmoty Kapaliny Plyny skladování, doprava úprava fyz. vlastností míchání, separace, změna velikosti, výměna tepla, hmoty úprava chemických vlastností reakce, reaktory Produkty (léčiva) Organizace studia Přednášky A0,Pátek (s přestávkou) Doc. Zámostný Cvičení Pondělí cca podle rozpisu ( skupiny paralelně) Ing. Patera, Ing. Karaba, Ing. Filip Obsah cvičení: Příklady výpočetních úloh ve farmaceutických procesech Simulace a návrh farmaceutických procesů v aplikacích AspenPlus a BatchPlus jednotkové operace + základní produktové informace Program přednášek Kontrola studia Datum Přednáška Charakteristika sypkých hmot Tok, doprava a skladování prášků (výuka do 1.00 náhrada) zrušeno - nepřítomnost vyučujícího Úprava velikosti částic, rozmělňování Aglomerace částic, vlhká granulace, zvětšování měřítka (výuka do 1.00) Zápočet = Projekt Jednoduchý projekt výpočetního charakteru Zkouška písemný test 15 otázek s možnostmi A-D, 60 minut, 50 % ústní zkouška Státní svátek Mísení prášků a segregace Kompaktace, extruze, sféronizace (výuka do 1.00 náhrada) Lisování tablet Den otevřených dveří - rektorský den Interakce partikulární látky s kapalinou Aplikovaná reakční kinetika Chemické reaktory a bioreaktory Řízení procesů 1

2 Partikulární látky ve výrobě pevných lékových forem (PLF) Partikulární látky a jejich charakteristika Lékové formy = disperzní systémy API a excipientů často obsahují pevné látky ve formě částic = partikulární látky (prášky, granuláty, krystaly, sypké materiály, ) Při výrobě jsou důležité vlastnosti partikulárních látek vlastnosti a chování částic chování souboru částic jako celku Částice plní řadu úloh API plniva pojiva rozvolňovadla maziva lastnosti API? kompatibilita ýrobní proces lastnosti LF lastnosti excipientů Neobvyklé chování partikulárních látek ysvětlení Přesýpací hodiny G konst D a h b 0» G... hmotový tok otvorem» D 0... průměr otvoru» h... výška sloupce látky» Naplněné kapalinou» průtok je závislý na výšce sloupce kapaliny» b = 0,5?» Naplněné pískem (sypkou hmotou)» rychlost sypání je přibližně konstantní, závislá na průměru otvoru» b = 0 0,05 1, D h p, max p, max p, p p = hρg Tlak ve vrstvě sypké hmoty neroste lineárně s hloubkou Způsobuje to vzájemné tření částic a stěn zařízení Tření Tření ideálně hladkých ploch závisí na materiálu = hustotě a síle interakcí (van der Waals) závisí na styčné ploše = celkovém počtu interakcí Příklad lepicí páska drží tím pevněji, čím je nalepena na větší ploše tření v kapalném filmu Tření Coulombovské tření odpovídá chování běžných pevných materiálů třecí síla nezávisí na celkové zdánlivé styčné ploše (A) skutečná styčná plocha jen nepatrnou částí A (a nezávisí na celkové ploše) A

3 Tření Coulombovské tření skutečná styčná plocha roste s normálovou působící silou F n F s a proto roste i maximální třecí síla Ft F t μf n F n aktuální třecí síla je však nejvýše stejná jako vnější síla F s a má opačný směr A F t Důsledky pro sypké hmoty Tření mezi částicemi závisí na vlastnostech pevné látky na tvaru a velikosti zrn Podobné důsledky pro adhezi částic Mechanické vlastnosti sypkých hmot závisí na vlastnostech jejich částic Partikulární látky (sypké hmoty, prášky) Sypká hmota (složená z pevných částic) = zvláštní stav hmoty Lože sypké hmoty (bulk solid) v různých aspektech se chová podobně jako kapaliny nebo pevné látky lože sypké hmoty odolá určitému smykovému napětí (v závislosti na těsnosti uspořádání) zanedbatelná pevnost lože v tahu řada charakteristik nemá stavové chování (závisí na procesu) Charakteristiky částic Distribuce velikosti částic (DČ/PSD) charakteristický rozměr částice statistická veličina (Distribuce) tvar(u) částic sféricita, angularita, konkávita/konvexita Materiálové charakteristiky částice porézní/neporézní, pevnost,... Měrná hustota látky (solid density) ρ s hustota jedné částice elikost částic Záleží na tvaru málokdy ideální yjádření průměru neideální částice Podle mikrosnímku Ekvivalentní kruhový průměr Martinův průměr Feretův průměr Posuvný průměr Podle ekvivalence fyzikální charakteristiky Definice velikosti částic na bázi ekvivalentní koule álec na obrázku má stejný objem jako uvedená koule => ekvivalentní objemový průměr

4 Ekvivalentní průměry pro různé aplikace Distribuce velikosti částic DČ, PSD (particle size distribution) Určuje s jak často jsou jednotlivé velikosti částic zastoupeny ve vzorku Řada různých metod rozdíly v citlivosti a rozsahu použitelnosti udávaná % hmoty nebo % četnosti Často lékopisně předepsaná charakteristika hodná definice záleží na použití d S dobře charakterizuje rychlost rozpouštění částice d dobře charakterizuje hmotnost, tepelnou kapacitu částice F = Kumulativní distribuce velikosti (podle četnosti) df/dx = f = ustota distribuce F je funkcí velikosti částic x, hodnoty 0.. 1, % ýznam F(x) F % částic ve vzorku bude mít velikost x nebo menší Medián velikosti taková velikost částice pro kterou je 50 % částic ve vzorku menších a 50 % větších hodnoty nejsou 0.. 1, % ýznam f(x) strmost kumulativní distribuce vyšší hodnoty znamenají častější výskyt částic dané velikosti Modus velikosti nejčastější velikost částice není totožný s mediánem DČ běžných populací částic Aritmetické-normální rozdělení f x = 1 σ π exp x x σ Reprezentace výsledků charakterizace istogram Kumulativní distribuce Log-normální rozdělení (typické) f z = 1 σ π exp z z σ z = log x 4

5 Reprezentace výsledků charakterizace Distribuce četnosti/objemu Number Distribution olume Distribution Frequency (number %) Frequency (volume %) Diameter Diameter Porovnání distribucí četnosti, povrchu, objemu Průměrná velikost částic = náhrada skutečného souboru částic idealizovaným Převod: objem 1 částice Počet částic e frakci x Nf N x f x Celkový objem částic Idealizovaný soubor má stejný počet částic jako původní soubor stejný součet jedné vlastnosti částic jako původní soubor velikost částic povrch částic objem částic Průměrná velikost částic Průměrná velikost částic - příklad ýpočet kubického průměru g x = x g x = 0, ,5 + 0,5 g x = 9,5 x = 9,5 =,1 Záleží na definici průměru g x = 1 0 g x df 1 0 df Každý z průměrů zachovává určitou vlastnost populace částic (délka, povrch, objem) Různé vzorky mohou mít stejný aritmetický průměr Pro různé účely se hodí různé typy průměrů d p = 1 g x = 1 0 g x df 1 = 1 0 g x df 0 df 1 d p = 1 d p = d p = ýpočet aritmetického průměru g x = x 1 g x = 0, ,5 + 0,5 g x = 1,75 x = 1,75 5

6 Průměrná velikost částic dobrovolný úkol Zjistěte hodnotu kvadratického průměru velikosti částic s distribucí danou v tabulce (výsledek je 7,5 um) d p, um F(x) 0 0, ,00 0 0, , , , , , , , , , , ,000 Metody charakterizace DČ Sítová analýza měření frakcí částic prošlých do různých vrstev sloupce sít s klesajícím rozměrem ok» Produkuje» hmotnostní distribuci prosevného průměru Metody charakterizace DČ Metody charakterizace DČ Omezení sítové analýzy obtížná interpretace pro částice s nízkou ψ částice do 150 μm (pro menší velikosti do 45 μm nebo 0 μm) Mikroskopie optická nebo SE (skenovací elektronová) přímé pozorování D projekce částic vyhodnocení nejlépe pomocí software pro analýzu obrazu výsledkem je distribuce četnosti omezení kvalita (kontrast) obrazu chybějící rozměr velikosti (obtížné odlišení kuliček a destiček) 0, 100 μm nutno vyhodnotit jednotlivé částice počet počítaných částic roste s rozsahem vzorku? Kolik je nutno vyhodnotit částic pro charakterizaci směsi 1:10 hmot./hmot. částic 1 μm a částic 100 μm Metody charakterizace DČ Metody charakterizace DČ Sedimentace Laserová difraktometrie rozdělení částic do frakcí podle rychlosti usazování 0,8 00 μm Elutriace měření difrakce laserového paprsku na modelovém shluku částic matematická rekonstrukce difrakčních obrazců 6

7 Metody charakterizace DČ Laserová difraktometrie citlivá na částice 0, μm (speciální přístroje 0,0 000 μm) problémy s transparentními částicemi Metody charakterizace DČ Rentgenová mikrotomografie (XMT) Rekonstruuje prostorový obraz lože sypké hmoty (podobně jako medicinální tomografie) ýsledky různých metod se liší vliv tvaru a fyzikálních vlastností částic metody měřící počet vs. objem (hmotnost) Charakterizace tvaru částic Na základě D nebo D obrazové analýzy Charakterizace tvaru částic Jednoduché parametry charakterizující tvar částice sféricita poměr povrchu koule o stejném objemu jako má částice k povrchu částice 1 6 p Ap angularita (členitost) konvexnost/konkávnost p A koule koule 4 r 4r koule koule r koule p 4 4 p 4 A koule 1 sféricita angularita Příklad znázornění distribuce tvaru částic Povrch částic (Particle surface area) Při dané velikosti částic je dán tvarem částic důležitý vztah k angularitě Metody zjištění Adsorpční metody ýpočet z distribuce velikosti a tvaru Měření permeability Udáváno jako specifický povrch 7

8 Charakteristiky lože sypké hmoty Sypná hustota lože (bulk density) ρ B hustota sypané vrstvy včetně volného prostoru závisí na historii nakládání se sypkou hmotou Setřesná hustota lože (tapped density) ρ T hustota vrstvy včetně volného prostoru po sklepání Součinitel zaplnění (packing fraction) η objem pevných částic / objem lože Mezerovitost (void fraction) ε = 1- η podíl volného prostoru v loži Tokové vlastnosti látek Dobře tekoucí látky větší velikost částic (s omezením) hladké částice kulovité, pravidelné částice Špatně tekoucí tátky velmi jemné výrazná textura povrchu jehličkovitý, destičkovitý tvar Tok látek řízen stavem napjatosti Měření tokových vlastností prášků Reálné sypné úhly Sypný úhel (úhel přirozené sklonitelnosti) velký úhel = špatná tokovost Měření času sypání látky standardní nálevkou (lékopisná metoda) Měření tokových vlastností prášků ausnerův poměr podíl setřesné a sypné hustoty charakterizuje stlačitelnost prášku špatná tokovost pro > 1,5 Carrsův index charakterizuje stlačitelnost prášku dobrá tokovost pro C < 15 % špatná tokovost pro C > 5 % běžný rozsah hodnot 5 40 % T B B T C 100 C B Sypké hmoty jako kontinuum Neuvažují se silová působení mezi jednotlivými částicemi, ale na rozhraní jednotlivých obj. elementů Stav napjatosti 8

9 Napětí ve D NAPĚTÍ = SÍLA / PLOCA [N.m - ] [Pa] Normálové a smykové (tečné) napětí σ = N / A; τ = S / A D stav napjatosti Rozložení síly, působící v daném bodě, do tří směrů KSS lze definovat napětí na třech rovinách procházejících daným bodem Normálová napětí σ x, σ y, σ z, Smyková napětí τ xy, τ yz, τ zx, τ yx, τ zy, τ xz τ zy = -τ yz apod. Tenzor napětí Smykové napětí Smykové napětí vzniká v důsledku tření Nerozhoduje, zda je hmota v klidu nebo pohybu elikost napětí závisí na vlastnostech povrchu a působící síle Napětí v sypké hmotě Neplatí Newtonův zákon (rovnoměrné šíření tlaku všemi směry) laterální poměr napětí λ ~ Smyková napětí na horním a spodním povrchu elementu jsou nulová při bočních stěnách bez tření jsou také nulová Napětí v sypké hmotě Transformace napětí na rovinu skloněnou o α» lze odvodit z bilance svislých a vodorovných sil Mohrova kružnice grafická analýza stavu napjatosti cos sin cos sin 9

10 Bonus: Mohrova kružnice napětí Literatura Dvojosý stav napjatosti lze graficky interpretovat pomocí tzv. Mohrovy kružnice. Kreslíme ji do grafu, na jehož vodorovnou osu vynášíme normálové napětí, na svislou osu smykové napětí. Střed Mohrovy kružnice leží na ose. yx xy Jeden bod Mohrovy kružnice představuje normálové napětí a smykové napětí, vztahující se k jedné určité rovině. y x Jeden průměr Mohrovy kružnice představuje stav napjatosti : dvě normálová napětí x a y (k sobě kolmá - = 180º) a dvě sdružená smyková napětí xy =- yx. 10

Inženýrství chemicko-farmaceutických výrob. aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...

Inženýrství chemicko-farmaceutických výrob. aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby... Úvod Co je obsahem předmětu [CZ] Inženýrství... výrob [EN]... process engineering aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...) Chemické a fyzikální procesy

Více

Pevné lékové formy. Lisování tablet. Plnění kapslí (strojní) Plnění kapslí (ruční) » Sypké hmoty stojí u zrodu většiny pevných lékových forem

Pevné lékové formy. Lisování tablet. Plnění kapslí (strojní) Plnění kapslí (ruční) » Sypké hmoty stojí u zrodu většiny pevných lékových forem UNIVERZITA 3. VĚKU U3V FAKULTA CHEMICKÉ TECHNOLOGIE 2011-2012 Sypké hmoty ve farmaceutických výrobách Doc. Ing. Petr Zámostný, Ph.D. VYSOKÁ ŠKOLA CHEMICKO TECHNOLOGICKÁ PRAHA Doc. Ing. Petr Zámostný, Ph.D.

Více

Výuka předmětu Inženýrství chemicko-farmaceutických výrob

Výuka předmětu Inženýrství chemicko-farmaceutických výrob Výuka předmětu Inženýrství chemicko-farmaceutických výrob Verze 1.1 z 15.9.2016 Inženýrství chemicko-farmaceutických [N111048] přednáší Doc. Ing. Petr Zámostný, Ph.D. (petr.zamostny@vscht.cz, 220 444 301)

Více

Literatura. Inženýrství chemicko-farmaceutických výrob. Sypké hmoty Doprava a skladování. Inženýrství chemicko-farmaceutických výrob

Literatura. Inženýrství chemicko-farmaceutických výrob. Sypké hmoty Doprava a skladování. Inženýrství chemicko-farmaceutických výrob Sypké hmoty Doprava a skladování Literatura 1 Skladování sypkých látek V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V zásobnících (silech) velké objemy

Více

Literatura. Skladování sypkých látek. Režim spotřeby skladové zásoby. Tok prášku. Vliv vlastností prášku na jeho tok

Literatura. Skladování sypkých látek. Režim spotřeby skladové zásoby. Tok prášku. Vliv vlastností prášku na jeho tok Literatura Sypké hmoty Doprava a skladování Skladování sypkých látek Režim spotřeby skladové zásoby V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V

Více

Kompaktace. Inženýrství chemicko-farmaceutických výrob. Suchá granulace Princip. Vazebné síly. Stlačování sypké hmoty mezi dvěma povrchy

Kompaktace. Inženýrství chemicko-farmaceutických výrob. Suchá granulace Princip. Vazebné síly. Stlačování sypké hmoty mezi dvěma povrchy Zvětšování velikosti částic Kompaktace, extrudace Kompaktace Suchá granulace Princip Stlačování sypké hmoty mezi dvěma povrchy Vazebné síly van der Waalsovy interakce mechanické zaklesnutí částic povrchové

Více

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice)

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice) Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH VÝROB MÍSENÍ Definice Operace při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné složky

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

Mísení. Inženýrství chemicko-farmaceutických výrob. Definice. Cíle

Mísení. Inženýrství chemicko-farmaceutických výrob. Definice. Cíle a segregace sypkých hmot Definice Operace při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné složky je co možná nejblíže nějaké částici všech ostatních

Více

Výroba tablet. Fáze lisování. Lisovací nástroje. Typy tabletovacích lisů. Inženýrství chemicko-farmaceutických výrob

Výroba tablet. Fáze lisování. Lisovací nástroje. Typy tabletovacích lisů. Inženýrství chemicko-farmaceutických výrob Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY piva, suchá pojiva, kluzné látky, rozvolňovadla homogenizace homogenizace tabletování z granulátu TABLETOVINA

Více

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá

Více

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D 2010 PharmDr. Zdenka Šklubalová, Ph.D. 10.6.2010 ZMĚNY D 2010 (harmonizace beze změn v textu) 2.9.1 Zkouška rozpadavosti tablet a tobolek 2.9.3 Zkouška disoluce

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících Skladování sypkých látek Sypké hmoty Doprava a skladování» V kontejnerech» menší objemy» zpracování a logistika na úrovni malých šarží» dlouhodobější skladování» V zásobnících (silech)» velké objemy (např.

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Smyková pevnost zemin

Smyková pevnost zemin Smyková pevnost zemin 30. března 2017 Vymezení pojmů Smyková pevnost zemin - maximální vnitřní únosnost zeminy proti působícímu smykovému napětí Efektivní úhel vnitřního tření - část smykové pevnosti zeminy

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

Návody k speciálním praktickým cvičením z farmaceutické technologie. doc. RNDr. Milan Řehula, CSc. a kolektiv. Autorský kolektiv:

Návody k speciálním praktickým cvičením z farmaceutické technologie. doc. RNDr. Milan Řehula, CSc. a kolektiv. Autorský kolektiv: Návody k speciálním praktickým cvičením z farmaceutické technologie doc. RNDr. Milan Řehula, CSc. a kolektiv Autorský kolektiv: doc. RNDr. Milan Řehula, CSc. Mgr. Pavel Berka doc. RNDr. Milan Dittrich,

Více

Tok, doprava a skladování sypkých hmot

Tok, doprava a skladování sypkých hmot Tok, doprava a skladování sypkých hmot Snímek 2 - Skladování sypkých látek Pro sypké hmoty ve farmaceutickém průmyslu je typické skladování v jednotkových obalech, kontejnerech, pytlích v menších objemech.

Více

24.9.2014. Sypké látky. Sypké hmoty. Úvod. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy)

24.9.2014. Sypké látky. Sypké hmoty. Úvod. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy) Inženýrství farmaceutických výrob Sypké látky Úvod Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty partikulární látky (částicové systémy) vlastnostmi a fyzikálními projevy se liší

Více

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství Pevné lékové formy Vlastnosti pevných látek stabilita Vlastnosti léčiva rozpustnost krystalinita ke zlepšení vlastností je vhodné využít materiálové inženýrství Charakterizace pevných látek difraktometrie

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Předmět: Vícefázové reaktory Jméno: Veronika Sedláková 3-fázové reakce Autoklávy (diskontinuální) Trubkové reaktory (kontinuální) Probublávané

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Konstrukce optického mikroviskozimetru

Konstrukce optického mikroviskozimetru Ing. Jan Medlík, FSI VUT v Brně, Ústav konstruování Konstrukce optického mikroviskozimetru Školitel: prof. Ing. Martin Hartl, Ph.D. VUT Brno, FSI 2008 Obsah Úvod Shrnutí současného stavu Měření viskozity

Více

Sypké látky. Sypké hmoty. Partikulární látky ve farmacii. Fyzikální vlastnosti. Úvod. Požadavky na farmaceutické sypké hmoty

Sypké látky. Sypké hmoty. Partikulární látky ve farmacii. Fyzikální vlastnosti. Úvod. Požadavky na farmaceutické sypké hmoty Inženýrství farmaceutických výrob Úvod Sypké látky Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty Partikulární látky ve farmacii partikulární látky (částicové systémy) vlastnostmi

Více

Základy chemických technologií

Základy chemických technologií 4. Přednáška Mísení a míchání MÍCHÁNÍ patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) hlavní cíle: odstranění

Více

Sypké látky Úvod. Sypké hmoty. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy)

Sypké látky Úvod. Sypké hmoty. Vlastnosti tuhých látek Úprava Třídění Skladování Doprava. partikulární látky (částicové systémy) Inženýrství farmaceutických výrob Sypké látky Úvod Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty partikulární látky (částicové systémy) vlastnostmi a fyzikálními projevy se liší

Více

Sypké látky Úvod. Sypké hmoty. Neobvyklé chování sypkých hmot. Partikulární látky ve farmacii. Sypké hmoty (prášky)

Sypké látky Úvod. Sypké hmoty. Neobvyklé chování sypkých hmot. Partikulární látky ve farmacii. Sypké hmoty (prášky) Inženýrství farmaceutických výrob Úvod Sypké látky Vlastnosti tuhých látek Úprava Třídění Skladování Doprava Sypké hmoty Neobvyklé chování sypkých hmot partikulární látky (částicové systémy) vlastnostmi

Více

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti Skladování sypkých látek Sypké hmoty Doprava, skladování, klasifikace» V kontejnerech» men objemy» zpracování a logistika na úrovni malých šarží» dlouhodoběj skladování» V zásobnících (silech)» velké objemy

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

5. Stavy hmoty Kapaliny a kapalné krystaly

5. Stavy hmoty Kapaliny a kapalné krystaly a kapalné krystaly Vlastnosti kapalin kapalných krystalů jako rozpouštědla Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti kapaliny nestálé atraktivní interakce (kohezní síly) mezi molekulami,

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Mechanika tekutin. Hydrostatika Hydrodynamika

Mechanika tekutin. Hydrostatika Hydrodynamika Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM - Základní materiálové parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN - Základní materiálové parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN - Základní materiálové parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN - Základní materiálové parametry Hustota vs. objemová hmotnost - V případě neporézních materiálů (kovy, ) je hustota rovná objemové hmotnosti - V případě

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení

Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Vliv úhlu distální anastomózy femoropoplitálního bypassu na proudové charakteristiky v napojení Manoch Lukáš Abstrakt: Práce je zaměřena na stanovení vlivu úhlu napojení distální anastomózy femoropoplitálního

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,

Více

10. Analýza částic Velikost částic. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

10. Analýza částic Velikost částic. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 10. Analýza částic Velikost částic Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Úvod Velkost částic je jedním z nejdůležitějších fyzikálních parametrů. Distribuce velikosti částic

Více

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3. obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

Zatížení stálá a užitná

Zatížení stálá a užitná ZÁSADY OVĚŘOVÁNÍ EXISTUJÍCÍCH KONSTRUKCÍ Zatížení stálá a užitná prof. Ing. Milan Holický, DrSc. Kloknerův ústav, ČVUT v Praze 1. Zatížení stálá 2. Příklad stanovení stálého zatížení na základě zkoušek

Více

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Adhezní síly Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Vazby na rozhraní Mezi fázemi v kompozitu jsou rozhraní mezifázové povrchy. Možné vazby na rozhraní

Více

Statistické vyhodnocení zkoušek betonového kompozitu

Statistické vyhodnocení zkoušek betonového kompozitu Statistické vyhodnocení zkoušek betonového kompozitu Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Středa 10:00-11:40, C -204 Přednášky a cvičení: Statistické vyhodnocení

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu Jsi chemikem ve farmaceutické společnosti, mezi jejíž činnosti, mimo jiné, patří analýza glycerolu pro kosmetické produkty. Dnešní

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Základní vlastnosti stavebních materiálů

Základní vlastnosti stavebních materiálů Základní vlastnosti stavebních materiálů Měrná hmotnost (hustota) hmotnost objemové jednotky látky bez dutin a pórů m V h g / cm 3 kg/m 3 V h objem tuhé fáze Objemová hmotnost hmotnost objemové jednotky

Více

Výuka předmětu Inženýrství chemicko-farmaceutických výrob

Výuka předmětu Inženýrství chemicko-farmaceutických výrob Výuka předmětu Inženýrství chemicko-farmaceutických výrob Verze 1.0 z 16.9.2013 Inženýrství chemicko-farmaceutických [N111048] přednáší Doc. Ing. Petr Zámostný, Ph.D. (petr.zamostny@vscht.cz, 220 444 222)

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Příklady z teoretické mechaniky pro domácí počítání

Příklady z teoretické mechaniky pro domácí počítání Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.

Více

STAVEBNÍ HMOTY. Přednáška 2

STAVEBNÍ HMOTY. Přednáška 2 STAVEBNÍ HMOTY Přednáška 2 Zkušebnictví ke zjištění vlastností materiálu je třeba ho vyzkoušet Materiál se zkouší podle zkušebních norem na vhodném vzorku Principy materiálového zkušebnictví zkoušíme za

Více

Smyková pevnost zemin

Smyková pevnost zemin Smyková pevnost zemin Pevnost materiálu je dána největším napětím, který materiál vydrží. Proto se napětí a pevnost udává ve stejných jednotkách nejčastěji kpa). Zeminy se nejčastěji porušují snykem. Se

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.7/2.2./28.9 Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc.

Více

Porušení hornin. J. Pruška MH 7. přednáška 1

Porušení hornin. J. Pruška MH 7. přednáška 1 Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost

Více