Mísení. Inženýrství chemicko-farmaceutických výrob. Definice. Cíle

Rozměr: px
Začít zobrazení ze stránky:

Download "Mísení. Inženýrství chemicko-farmaceutických výrob. Definice. Cíle"

Transkript

1 a segregace sypkých hmot Definice Operace při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné složky je co možná nejblíže nějaké částici všech ostatních složek Cíle Dosáhnout uniformity směsi uniformita výrobků z této směsi Maximalizovat styčnou plochu složek podpora fyzikálních a chemických procesů 1

2 je reverzibilní proces míchání, mísení (mixing, blending) rozdružování, segregace (demixing, segregation) Spontánnost mísení Pozitivní samovolné, probíhá bez vnějších sil např. difuzní promíchání plynů v nádobě Negativní samovolně probíhá segregace, bez vnějšího působení dojde k oddělení složek např. usazování suspenzí Neutrální bez vnějšího působení nedochází k míchání ani segregaci např. směs prášků 2

3 Uspořádání směsí dokonale oddělená směs dokonale smísená (uspořádaná) směs náhodná směs pravděpodobnost, že v libovolném bodě směsi nalezneme částici nějaké složky je rovná zastoupení dané složky ve směsi Reálné směsi Náhodné volně tekoucí látky Uspořádané kohezní látky interakce mezi různými složkami 3

4 Měřítko homogenity Homogenní směs = odebrané vzorky mají shodné vlastnosti Homogenita závisí na velikosti vzorku při dostatečné velikosti vzorku jsou všechny směsi homogenní Měřítko homogenity nejmenší velikost vzorku pro kterou je rozptyl vzorků pod zvolenou kritickou hodnotou Praxe homogenity ve farmacii Charakter směsi pravděpodobnost získání uspořádané směsi je malá většina směsí je náhodná (zvláště u prášků) statistický charakter homogenity Multikomponentní směsi důležitá je homogenita API pseudobinární pohled na směs API + excipienty Měřítko homogenity odpovídá velikosti konečné lékové formy 4

5 Statistické okénko Náhodná veličina proměnná, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu výsledek hodu kostkou obsah API ve vzorku náhodné směsi Střední hodnota náhodné veličiny součet hodnot všech možných výsledků náhodného pokusu násobených pravděpodobností jejich výskytu střední hodnota výsledku hodu kostkou E 1 X , Statistické okénko Střední hodnota náhodné veličiny střední hodnota obsahu API v odebraném vzorku E X lim N počet možných výsledků náhodného odběru je nekonečný Výběrová střední hodnota aritmetický průměr N i 1 N X střední hodnota obsahu API v odebraném vzorku pro nějaký výběr skutečně provedených pokusů i X N i 1 N X i 5

6 Statistické okénko Směrodatná odchylka náhodné veličiny měřítko variability náhodné veličiny pravděpodobnost, že se hodnota náhodné veličiny bude od střední hodnoty lišit nejvýše o jednu směrodatnou odchylku, je výrazně vyšší než 0,5 pravděpodobnost, že se hodnota bude lišit nejvýše o dvě směrodatné odchylky, je velmi vysoká. X N i 1 N X X i 2 Statistické okénko Výběrová směrodatná odchylka měřítko variability výsledků náhodných pokusů variabilita obsahu API v odebraných vzorcích Relativní (výběrová) směrodatná odchylka RSD % měřítko variability vztažené ke střední hodnotě např. porovnatelné pro obsahy API 2 mg a 4 mg s x N i 1 X X i N 1 RSD s X X 100 % 1 X N i 1 X X i 100 % N 1 6

7 Hodnocení homogenity Relativní výběrová směrodatná odchylka z odebraných vzorků jednoduchá často používaná paradoxně nemá rozsah % Index mísení řada různých vzorců rozsah 0 1 σ MAX zcela segregovaný stav σ MIN minimální dosažitelná nehomogenita (analýzy) 2 MAX API w 1 w 2 2 MAX 2 MIN M API 2 MIN W(API) sigmamax RSD_MAX 0,001 0, ,03 31,61 0,01 0,0099 0,10 9,95 0,1 0,09 0,30 3,00 0,2 0,16 0,40 2,00 0,3 0,21 0,46 1,53 0,4 0,24 0,49 1,22 0,5 0,25 0,50 1,00 0,6 0,24 0,49 0,82 0,7 0,21 0,46 0,65 0,8 0,16 0,40 0,50 0,9 0,09 0,30 0, ,00 0,00 Vlastnosti náhodné směsi Variabilita odebraných vzorků Předpoklad (pseudo) binární směsi podobných složek w API 1 w w API obsah jedné ze složek směsi (API) s směrodatná odchylka obsahu API n počet částic ve vzorku n API Definuje minimální počet částic na jednotku lékové formy umožňující homogenitu WAPI = 0,01 sigma_mi RSD_min, n n % 1 0, ,0 10 0, , , , , , , , , , ,95E-05 1, ,15E-05 0,3 7

8 Vzorkování sypkých látek Mechanismy mísení konvekce relativní pohyb skupin částic vůči jiným skupinám tzv. makroskopické mísení, disperze pohyb jednotlivých částic vůči toku částic tzv. mikromísení, střih pohyb jednotlivých vrstev částic důležitý k rozrušení shluků v kohezních směsích 8

9 sypkých látek Mechanismy mísení konvekce disperze a) střih b) c) Konvektivní a disperzní mísení 9

10 sypkých látek Rotační mísiče rotující nádoby s vestavbami převládá disperzní mechanismus frekvence otáčení 5 30 min -1 sypkých látek Konvekční mísiče orbitální míchadlo vertikální míchadlo horizontální míchadlo statická nádoba s dopravníkem převládá konvekce, střih vhodné pro aglomerující směsi obtížné čištění 10

11 sypkých látek Fluidní mísiče s tryskající vrstvou s proudem vzduchu velmi rychlé míchání možnost kombinovaného zařízení s jiným procesem sušení, granulace vhodné pro tekoucí a mírně kohezní prášky Volba mísiče pro sypké látky Ideální mísíč trojrozměrný pohyb částic (nikoliv shluků) eliminace mrtvých zón Reálný mísič kompromis kvality mísení a kompatibility s procesem Postup výběru eliminovat nevhodné typy vybrat optimální mísič z hlediska kvality mísení, výkonu, ceny 11

12 Vybrané faktory s vlivem na výběr Procesní požadavky Změna velikosti částic během mísení Možnost zachování čistoty Kontinuální / vsádkový provoz Poměr mezi mícháním a segregací Lepší u konvekčního mechanismu, horší u difuze a střihu Vliv tokovosti částic Procesní parametry bubnových mísičů Hlavní parametry frekvence otáčení f [s -1 ] stupeň zaplnění φ [%] velikost zařízení Kritická rychlost (frekvence) otáčení rychlost, při které dochází k odstředivému pohybu částic f c 1 2π g R 12

13 Pohyb prášků v mísíči a. b. c. d. e. f. Druhy pohybu prášků v mísiči a. klouzavý b. sesuvný (0 3 % f c ) c. rolovací (3 30 % f c ) d. kaskádový (3 30 % f c ) e. spádový ( % f c ) f. odstředivý pohyb Stupeň zaplnění, % b. d. c. a. e. f. Frekvence otáčení, ot.min -1 Pohyb prášků v mísíči Rolovací a spádový pohyb Aktivní oblast Aktivní oblast Statická oblast Statická oblast Rolovací pohyb Závisí na stupni zaplnění Kaskádový pohyb probíhá pouze v aktivní oblasti 13

14 API, mg API, mg Stupeň zaplnění Zaplnění větší než 50 % může dojít ke vzniku nepromíchávaného jádra Kinetika a rovnováha mísení Kinetika jak dlouho to trvá? Rovnováha jak dobře to lze zamíchat? ,5 7, ,5 2, Time Time Kinetika Kinetika 14

15 RSD, % Procesy při mísení prášků Segregace je vratný proces 0 Čas, min Kinetika mísení Počáteční stupeň homogenity, a+c RSD, % Konvekce Střih Nejvyšší stupeň homogenity, c Difúze čas, min Optimální doba mísení bt R k RSD k RSD RSD M S 0 SD a.e c drsd dt 15

16 Příčiny segregace Rozdíly ve velikosti částic Rozdíly v morfologii Rozdíly v hustotě Poměr složek Kohezní interakce vlhkost statický náboj Mechanismy segregace Dráhová Perkolační Fluidační 16

17 Mechanismy segregace Prosévání Fluidizace Segregace u stěny zařízení Tok částicové směsi poblíž stěny Adhezní síly závisejí na typu částice Některé částice mají vyšší afinitu ke stěně 17

18 Segregace Segregace v různých typech mísičů Příklady segregace Větší částice jsou hmotnější, mají větší setrvačnost a dokutálí se dále MAteriály mají různý sypný úhel 18

19 Příklady segregace Větší částice jsou hmotnější a propadnou do kráteru Klasické prosévání velké částice nemohou prostupovat malými, ale naopak ano Příklady segregace Velké částice jsou méně stabilně ukotveny a mohou strhnout lavinu Dráhová segregace v prostředí s aerodynamickým odporem 19

20 Příklady segregace Fluidační segregace při plnění sila Výtok segregované směsi nálevkovým tokem 20

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH

MÍSENÍ MÍSENÍ JE REVERZIBILNÍ PROCES. Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH Mísení a segregace sypkých hmot INŽENÝRSTVÍ FARMACEUTICKÝCH VÝROB MÍSENÍ Definice Operace při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné složky

Více

Přednáška 6 Mísení a segregace sypkých hmot

Přednáška 6 Mísení a segregace sypkých hmot Přednáška 6 Mísení a segregace sypkých hmot Snímek 2: Mísení Mísení lze definovat jako operaci, při které se na dvě nebo více oddělených složek působí tak, aby se dostaly do stavu, kdy každá částice jedné

Více

Pevné lékové formy. Lisování tablet. Plnění kapslí (strojní) Plnění kapslí (ruční) » Sypké hmoty stojí u zrodu většiny pevných lékových forem

Pevné lékové formy. Lisování tablet. Plnění kapslí (strojní) Plnění kapslí (ruční) » Sypké hmoty stojí u zrodu většiny pevných lékových forem UNIVERZITA 3. VĚKU U3V FAKULTA CHEMICKÉ TECHNOLOGIE 2011-2012 Sypké hmoty ve farmaceutických výrobách Doc. Ing. Petr Zámostný, Ph.D. VYSOKÁ ŠKOLA CHEMICKO TECHNOLOGICKÁ PRAHA Doc. Ing. Petr Zámostný, Ph.D.

Více

Základy chemických technologií

Základy chemických technologií 4. Přednáška Mísení a míchání MÍCHÁNÍ patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) hlavní cíle: odstranění

Více

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu.

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Účelem mícháním je dosáhnout dokonalé, co nejrovnoměrnější

Více

Volba vhodného typu mísiče může být ovlivněna následujícími podmínkami

Volba vhodného typu mísiče může být ovlivněna následujícími podmínkami MÍSENÍ ZRNITÝCH LÁTEK Mísení zrnitých látek je zvláštním případem míchání. Zrnité látky mohou být konglomerátem několika chemických látek. Z tohoto důvodu obvykle bývá za složku směsí považován soubor

Více

4.Mísení, míchání MÍCHÁNÍ

4.Mísení, míchání MÍCHÁNÍ 4.Mísení, míchání MÍCHÁNÍ - patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) - hlavní cíle: o odstranění

Více

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti

ší šířen Skladování sypkých látek Režim spotřeby skladové zásoby Tok prášku Vliv vlastností prášku na jeho tok Statické metody měření tokovosti Skladování sypkých látek Sypké hmoty Doprava, skladování, klasifikace» V kontejnerech» men objemy» zpracování a logistika na úrovni malých šarží» dlouhodoběj skladování» V zásobnících (silech)» velké objemy

Více

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících

Skladování sypkých látek. Tok prášku. Režim spotřeby skladové zásoby. Vliv vlastností prášku na jeho tok. Tok sypkých látek v zásobnících Skladování sypkých látek Sypké hmoty Doprava a skladování» V kontejnerech» menší objemy» zpracování a logistika na úrovni malých šarží» dlouhodobější skladování» V zásobnících (silech)» velké objemy (např.

Více

Pevné lékové formy. Výroba prášků. Distribuce velikosti částic. Prášek. » I. Sypké lékové formy

Pevné lékové formy. Výroba prášků. Distribuce velikosti částic. Prášek. » I. Sypké lékové formy UNIVERZITA 3. VĚKU U3V FAKULTA CHEMICKÉ TECHNOLOGIE 2009-2010 Výroba a kontrola kvality pevných lékových forem Doc. Ing. Petr Zámostný, Ph.D. VYSOKÁ ŠKOLA CHEMICKO TECHNOLOGICKÁ PRAHA Doc. Ing. Petr Z{mostný,

Více

Kompaktace. Inženýrství chemicko-farmaceutických výrob. Suchá granulace Princip. Vazebné síly. Stlačování sypké hmoty mezi dvěma povrchy

Kompaktace. Inženýrství chemicko-farmaceutických výrob. Suchá granulace Princip. Vazebné síly. Stlačování sypké hmoty mezi dvěma povrchy Zvětšování velikosti částic Kompaktace, extrudace Kompaktace Suchá granulace Princip Stlačování sypké hmoty mezi dvěma povrchy Vazebné síly van der Waalsovy interakce mechanické zaklesnutí částic povrchové

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

Pevná fáze ve farmacii

Pevná fáze ve farmacii Úvod - Jaké jsou hlavní technologické operace při výrobě léčivých přípravků? - Co je to API, excipient, léčivý přípravek, enkapsulace? - Proč se provádí mokrá granulace? - Jaké hlavní normy se vztahují

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Příkonové charakteristiky míchadel

Příkonové charakteristiky míchadel Míchání suspenzí Navrhněte míchací zařízení pro rozplavovací nádrž na vápenný hydrát. Požadovaný objem nádrže je 0,8 m 3. Největší částice mají průměr 1 mm a hustotu 2200 kg m -3. Objemová koncentrace

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Fyzikální chemie Úvod do studia, základní pojmy

Fyzikální chemie Úvod do studia, základní pojmy Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty

Více

MÍCHÁNÍ V KAPALNÉM PROSTŘEDÍ

MÍCHÁNÍ V KAPALNÉM PROSTŘEDÍ MÍCHÁNÍ V KAPALNÉM PROSTŘEDÍ Účel míchání: intenzifikace procesů v míchané vsádce (přenos tepla a hmoty) příprava směsí požadovaných vlastností (suspenze, emulze) Způsoby míchání: mechanické míchání hydraulické

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

10. Chemické reaktory

10. Chemické reaktory 10. Chemické reaktory V každé chemické technologii je základní/nejvýznamnější zařízení pro provedení chemické reakce chemický reaktor. Celý technologický proces se skládá v podstatě ze tří typů zařízení:

Více

Literatura. Inženýrství chemicko-farmaceutických výrob. Sypké hmoty Doprava a skladování. Inženýrství chemicko-farmaceutických výrob

Literatura. Inženýrství chemicko-farmaceutických výrob. Sypké hmoty Doprava a skladování. Inženýrství chemicko-farmaceutických výrob Sypké hmoty Doprava a skladování Literatura 1 Skladování sypkých látek V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V zásobnících (silech) velké objemy

Více

Literatura. Skladování sypkých látek. Režim spotřeby skladové zásoby. Tok prášku. Vliv vlastností prášku na jeho tok

Literatura. Skladování sypkých látek. Režim spotřeby skladové zásoby. Tok prášku. Vliv vlastností prášku na jeho tok Literatura Sypké hmoty Doprava a skladování Skladování sypkých látek Režim spotřeby skladové zásoby V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V

Více

Příkon míchadla při míchání nenewtonské kapaliny

Příkon míchadla při míchání nenewtonské kapaliny Míchání suspenzí Navrhněte míchací zařízení pro rozplavovací nádrž na vápenný hydrát. Požadovaný objem nádrže je 0,8 m 3. Největší částice mají průměr 1 mm a hustotu 2200 kg m -3. Objemová koncentrace

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.

Více

102FYZB-Termomechanika

102FYZB-Termomechanika České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI

MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI Technická univerzita v Liberci MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI J. Nosek, M. Černík, P. Kvapil Cíle Návrh a verifikace modelu migrace nanofe jednoduše

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup 3. FILTRACE Filtrace je jednou ze základních technologických operací, je to jedna ze základních jednotkových operací. Touto operací se oddělují pevné částice od tekutiny ( směs tekutiny a pevných částic

Více

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru Petr Svačina I. Vliv difuze vodíku tekoucím filmem kapaliny na průběh katalytické hydrogenace ve zkrápěných reaktorech

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

HYDROMECHANICKÉ PROCESY. Míchání v kapalném prostředí (přednáška)

HYDROMECHANICKÉ PROCESY. Míchání v kapalném prostředí (přednáška) HYDROMECHANICKÉ PROCESY Míchání v kapalném prostředí (přednáška) Doc. Ing. Tomáš Jirout, Ph.D. (e-mail: Tomas.Jirout@fs.cvut.cz, tel.: 435 681) MÍCHÁNÍ V KAPALNÉM PROSTŘEDÍ Účel míchání: intenzifikace

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Průtokové metody (Kontinuální měření v proudu kapaliny)

Průtokové metody (Kontinuální měření v proudu kapaliny) Průtokové metody (Kontinuální měření v proudu kapaliny) 1. Přímé měření: analyzovaná kapalina většinou odvětvena + vhodný detektor 2. Kapalinová chromatografie (HPLC) Stanovení po předchozí separaci 3.

Více

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1 Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Zkušenosti s tokem popílků v elektroodlučovačích a v silech

Zkušenosti s tokem popílků v elektroodlučovačích a v silech Zkušenosti s tokem popílků v elektroodlučovačích a v silech Jan Moša MOSA Solution s.r.o. 18. až 19. 5. MEDLOV 2016 Technologie pro elektrárny a teplárny na tuhá paliva MEDLOV - 2016 Zkušenosti s tokem

Více

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství Pevné lékové formy Vlastnosti pevných látek stabilita Vlastnosti léčiva rozpustnost krystalinita ke zlepšení vlastností je vhodné využít materiálové inženýrství Charakterizace pevných látek difraktometrie

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

VSTUPNÍ KONTROLA MATERIÁLU, SUROVIN A LÁZNÍ. Základní vlastnosti a zkoušky

VSTUPNÍ KONTROLA MATERIÁLU, SUROVIN A LÁZNÍ. Základní vlastnosti a zkoušky VSTUPNÍ KONTROLA MATERIÁLU, SUROVIN A LÁZNÍ Základní vlastnosti a zkoušky Konzistence, tekutost, sedimentace, hustota Obecně charakterizují zpracovatelnost nátěrových hmot Orientační určení konzistence

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Vliv koncentrace částic na suspendační účinky míchadla s rovnými lomenými lopatkami

Vliv koncentrace částic na suspendační účinky míchadla s rovnými lomenými lopatkami Vliv koncentrace částic na suspendační účinky míchadla s rovnými lomenými lopatkami T. Jirout, F. Rieger České vysoké učení technické v Praze, Fakulta strojní Ústav procesní a zpracovatelské techniky,

Více

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech Vícefázové reaktory MÍCHÁNÍ ve vsádkových reaktorech Úvod vsádkový reaktor s mícháním nejběžnější typ zařízení velké rozmezí velikostí aparátů malotonážní desítky litrů (léčiva, chemické speciality, )

Více

Separační procesy Separační procesy. Dělení heterogenních směsí

Separační procesy Separační procesy. Dělení heterogenních směsí Separační procesy Separační procesy Slouží k oddělení heterogenních i homogenních směsí chemických látek na základě odlišných fyzikálně-chemických vlastností. Nejčastěji se jedná o směs produktů (hlavní

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Tok, doprava a skladování sypkých hmot

Tok, doprava a skladování sypkých hmot Tok, doprava a skladování sypkých hmot Snímek 2 - Skladování sypkých látek Pro sypké hmoty ve farmaceutickém průmyslu je typické skladování v jednotkových obalech, kontejnerech, pytlích v menších objemech.

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU Znázornění odporů způsobujících snižování průtoku permeátu nástřik porézní membrána Druhy odporů R p blokování pórů R p R a R m R a R m R g R cp adsorbce membrána

Více

KOLONOVÉ EXPERIMENTY POROVNÁNÍ REAKTIVNOSTI NÁPLNĚ PRB PŘI REDUKCI CLU

KOLONOVÉ EXPERIMENTY POROVNÁNÍ REAKTIVNOSTI NÁPLNĚ PRB PŘI REDUKCI CLU KOLONOVÉ EXPERIMENTY POROVNÁNÍ REAKTIVNOSTI NÁPLNĚ PRB PŘI REDUKCI CLU Cíle experimentu 1. Návrh kolonových experimentů 2. Průběh redukce ClU za pomoci železných špon 3. Rychlost reakce, možné vlivy na

Více

Inženýrství chemicko-farmaceutických výrob. aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...

Inženýrství chemicko-farmaceutických výrob. aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby... Úvod Co je obsahem předmětu [CZ] Inženýrství... výrob [EN]... process engineering aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...) Chemické a fyzikální procesy

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

5. Stavy hmoty Kapaliny a kapalné krystaly

5. Stavy hmoty Kapaliny a kapalné krystaly a kapalné krystaly Vlastnosti kapalin kapalných krystalů jako rozpouštědla Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti kapaliny nestálé atraktivní interakce (kohezní síly) mezi molekulami,

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D

METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D 2010 PharmDr. Zdenka Šklubalová, Ph.D. 10.6.2010 ZMĚNY D 2010 (harmonizace beze změn v textu) 2.9.1 Zkouška rozpadavosti tablet a tobolek 2.9.3 Zkouška disoluce

Více

VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE PM 2,5 V BRNĚ ( ) Dr. Gražyna Knozová, Mgr. Robert Skeřil, Ph.D.

VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE PM 2,5 V BRNĚ ( ) Dr. Gražyna Knozová, Mgr. Robert Skeřil, Ph.D. VLIV METEOROLOGICKÝCH PODMÍNEK NA KONCENTRACE PM 2,5 V BRNĚ (2004-2014) Dr. Gražyna Knozová, Mgr. Robert Skeřil, Ph.D. Podklady denní koncentrace PM 2,5, Brno-Tuřany 2004-2014, dodatečně data z pěti stanic

Více

Míchačka s nuceným oběhem M 50 M 450. I. Použití stroje...2 II. Princip fungování...2 III. Popis stroje...3 IV. Technické údaje...

Míchačka s nuceným oběhem M 50 M 450. I. Použití stroje...2 II. Princip fungování...2 III. Popis stroje...3 IV. Technické údaje... Míchačky s nuceným oběhem řada M Technický list Míchačky s nuceným oběhem M 50 M 450 VÝROBCE: FILAMOS, s.r.o. Hatě 546, 261 01 Příbram, Česká republika Tel: + 420 318 637 763, Fax: + 420 318 624 181 www.filamos.cz

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme. Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

Problematika využití mikrovlnného ohřevu v sanačních technologiích Ing. Jiří Kroužek

Problematika využití mikrovlnného ohřevu v sanačních technologiích Ing. Jiří Kroužek Problematika využití mikrovlnného ohřevu v sanačních technologiích Ing. Jiří Kroužek Ing. Jiří Hendrych Ph.D., Ing. Pavel Mašín, Ing. Jiří Sobek Ph.D. Tepelná energie v sanačních technologií Zvýšení mobility

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus

Více

A/D převodníky - parametry

A/D převodníky - parametry A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický

Více

Kendallova klasifikace

Kendallova klasifikace Kendallova klasifikace Délka obsluhy, frontový režim, Littleovy vzorce Parametry obsluhy Trvání obsluhy - většinou předpokládáme, že trvání obsluhy jsou nezávisl vislé náhodné proměnné, se stejným rozdělením

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

PLÁN PROGRAMU ZKOUŠENÍ ZPŮSOBILOSTI. ZČB 2018/2 Zkoušení čerstvého betonu (ZČB 12350)

PLÁN PROGRAMU ZKOUŠENÍ ZPŮSOBILOSTI. ZČB 2018/2 Zkoušení čerstvého betonu (ZČB 12350) PLÁN PROGRAMU ZKOUŠENÍ ZPŮSOBILOSTI ZČB 018/ Zkoušení čerstvého betonu (ZČB 1350) Poskytovatel zkoušení způsobilosti při SZK FAST Veveří 95, 60 00 Brno Czech Republic www.szk.fce.vutbr.cz www.ptprovider.cz

Více

Co je obsahem předmětu. Organizace studia. Mapa předmětu. Program přednášek. Kontrola studia. Inženýrství chemicko-farmaceutických výrob

Co je obsahem předmětu. Organizace studia. Mapa předmětu. Program přednášek. Kontrola studia. Inženýrství chemicko-farmaceutických výrob Co je obsahem předmětu [CZ] Inženýrství... výrob [EN]... process engineering aplikace přírodních a technických věd na návrh, konstrukci a provozování procesů (výroby...) Chemické a fyzikální procesy ve

Více

Vulmproepox R RH. Vulmproepox R RH je dvousložková nátěrová hmota založená na bázi vody, která se skládá ze. Popis výrobku: Použití: Výhody:

Vulmproepox R RH. Vulmproepox R RH je dvousložková nátěrová hmota založená na bázi vody, která se skládá ze. Popis výrobku: Použití: Výhody: Technický list Datum vydání 04/2014 Vulmproepox R RH ROPOVODY, PLYNOVODY Nátěr na železné konstrukce, antikorozní základní i vrchní nátěr. Popis výrobku: Vulmproepox R RH je dvousložková nátěrová hmota

Více

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Adhezní síly Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Vazby na rozhraní Mezi fázemi v kompozitu jsou rozhraní mezifázové povrchy. Možné vazby na rozhraní

Více

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice

TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice TECHNIKA VYSOKÝCH NAPĚŤÍ #4 Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

Adhezní síly v kompozitech

Adhezní síly v kompozitech Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)

PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného

Více

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK

Sluneční dynamika. Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Sluneční dynamika Michal Švanda Astronomický ústav AV ČR Astronomický ústav UK Slunce: dynamický systém Neměnnost Slunce Iluze Slunce je proměnná hvězda Sluneční proměny Díky vývoji Dynamika hmoty Magnetická

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Specifická rizika chemických reakcí Reaktivita látek Laboratorní měření reaktivity Reaktory s

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více