Skenovací elektronová mikroskopie Úvod do historie spíše než použití
|
|
- Rudolf Kolář
- před 6 lety
- Počet zobrazení:
Transkript
1 Skenovací elektronová mikroskopie Úvod do historie spíše než použití Jaromír Kopeček Oddělení funkčních materiálů FZÚ AV ČR Kopeček - U3V 1
2 Elektronová mikroskopie Proč byla vyvinuta? Má větší rozlišení než optická mikroskopie Umožňuje sledovat: Poruchy krystalové mříže Buněčné struktury Pracuje s dobře zvládnutou elektřinou Kopeček - U3V 2
3 Elektronová mikroskopie Proč byla vyvinuta? Kopeček - U3V 3
4 Typické cíle EM Virus 1962 Dislokace v Al-Cu, Kopeček - U3V 4
5 Dva přístupy Mikroskopický cílem je co nejostřejší svazek, který co nejméně poškozuje vzorek Spektroskopický cílem je co nejintenzivnější, stabilní svazek, který co nejméně poškozuje vzorek Výsledkem pak, že jsme nespokojeni buďto s rozlišením prostorovým nebo energiovým Kopeček - U3V 5
6 Skenovací elektronový mikroskop Tescan FERA 3 Jeol JXA Kopeček - U3V 6
7 Kopeček - U3V 7
8 Princip SEM a TEM Kopeček - U3V 8
9 Pohyb elektronu v elektromagnetickém poli Lorentzova síla: Díky ní se elektron pohybuje po Landauových hladinách a stáčí se o φ: Síla magnetické čočky Pro k 2 1 je φ = k Kopeček - U3V 9
10 Fyzikální rozlišení SEM Rayleighyho kritérium, kdy ještě dokážeme rozlišit dva blízké body: Kopeček - U3V 10
11 Fyzikální rozlišení SEM S využitím de Broglieho hypotézy je vlnová délka elektronu (E 0 = 511 kev): 1 ev J Což je λ = 38.8 pm pro E = 1 kev a 6.98 pm pro 30 kev Kopeček - U3V 11
12 Kulová vada δ S C S 3 Rayleighyho kritérium: δ d 0,61λ/ 0,75/[ V( V)] Kopeček - U3V 12
13 Barevná vada δ c = C c E E Kopeček - U3V 13
14 Astigmatismus Axiální astigmatismus δ A = f A Kopeček - U3V 14
15 Celková chyba zobrazení Předpokládáme, že příspěvky rozmazání zobrazovaného bodu jsou Gaussovské, proto jejich příspěvky sloučit konvolucí: Kopeček - U3V 15
16 Rozlišení, hloubka ostrosti a zvětšení T hloubka ostrosti Δ rozlišení M zvětšení P výstupní apertura objektivu LM limity optické mikroskopie Kopeček - U3V 16
17 Složení SEM Zdroj elektronů Zobrazovací soustava čočky Interakce se vzorkem Detektory Kopeček - U3V 17
18 Zdroje elektronů Tlak Jas Velikost stopy Energiový (ze zdroje) rozptyl [Pa] [A/cm 2 sr ] r [μm] ΔE [ev] Termoemise LaB ,5-2 Schottkyho ,4-0,6 Autoemise ,003 0,2-0, Kopeček - U3V 18
19 Konstrukce zdrojů elektronového svazku Termoemisní zdroj W drát Elektronové dělo Butlerova typu s polní emisí (autoemisní) Kopeček - U3V 19
20 Field electron microscope Zkonstruován Müllerem 1937 Zvětšení do 10 5 x, rozlišení 60 pm a lepší! Na snímku a) hrot W (110) s povrchovou kontaminací a b) W(111) hrot Kopeček - U3V 20
21 Erwin Wilhelm Müller John Panitz 1968 První, kdo pozoroval atom, se studentem Kanwarem Bahadurem Erwin Wilhelm Müller Biographical Memoirs of the National Academy of Sciences.pdf Student Gustava Hertze, Ing. 1935, doktor 1936 (FIM s rozlišením 2 nm), Výzkumný ústav Siemensu, Vynalezl: FEEM FIM Atom Probe Kopeček - U3V 21
22 Interakce elektronového svazku Kopeček - U3V 22
23 Schéma interakční oblasti - Primární svazek Charakteristické rentgenové záření - - Zpětně odražené elektrony - Sekundární elektrony, - Augerovy elektrony Kopeček - U3V 23
24 Spektrum elektronů ze vzorku Sekundární elektrony E SE 50 ev, low-loss electrons (LLE) ztráta energie oproti primárnímu svazku je jen několik stovek ev, backscattered electrons (BSE) zpětně odražené elektrony Kopeček - U3V 24
25 Srovnání zobrazovacích módů SE E-T In-Beam SE R-BSE In-Beam BSE + Higher surface sensitivity = better resolution + Large field of view + lower topography info Kopeček - U3V 25
26 Detekce elektronů Kopeček - U3V 26
27 Pohled do komory SEM Kopeček - U3V 27
28 Ernst August Friedrich Ruska Nobelova cena za elektronovou optiku 1931 ukázal, že cívka funguje jako čočka pro elektrony 1933 sestavil z více čoček elektronový mikroskop Od 1937 pracoval v Siemens-Reiniger- Werke AG a nechal zřídit visiting scientist laboratoř, kterou řídil jeho bratr Helmut, který prosazoval aplikace v medicíně Kopeček - U3V 28
29 Manfred von Ardenne 20 January May 1997 Asi 600 patentů řídil svou vlastní Forschungslaboratorium für Elektronenphysik, pak v SSSR jaderné zbraně (získal Stalinovu cenu) poprvé předvedl princip televize skenování obrazu Kopeček - U3V 29
30 Max Knoll 17 July November 1969 Elektroinženýr, šéf Rusky Po konstrukci EM 1931 v dubnu 1932 odešel do Telefunkenu, kde vyvíjel televizi Kopeček - U3V 30
31 První skenovací elektronový mikroskop pro zobrazování povrchů s rozlišením 100 nm. 1937, Knoll, von Ardenne Kopeček - U3V 31
32 Univerzální elektronový mikroskop pro energie 200 až 300 kev, M. von Ardenne, Kopeček - U3V 32
33 První BSE skenovací obraz, von Ardenne Kopeček - U3V 33
34 Historie SEM Zásadní titul: The Beginnings of Electron Microscopy, Peter W. Hawkes (Ed), Advances in Electronics and Electron Physics, Supplement 16, Peter W. Hawkes (Ed) - Academic Press, Inc., Orlando, Kopeček - U3V 34
35 Jiný zdroj: Kopeček - U3V 35
36 Washington state, USA: 1 st EM outside of Germany U. of Washington did pioneering research in CFEG in Some of the students, e.g. Gertrude Fleming-Rempfer, later transferred to Oregon. FEI (=Field Emission Incorporated) can trace its origin directly to their efforts Kopeček - U3V Kredit: 36
37 Kopeček - U3V 37
38 Historie EM v Československu Experimentální dvoučočkový elektronovo-optický mikroskop, Elektronový mikroskop vyrobený v ČSR A. Delong, V. Drahoš, L. Zobač, J. Speciálny Kopeček - U3V 38
39 Armin Delong Bartovice (Ostrava) Brno Delong Instruments: Kopeček - U3V 39
40 Přehled vyráběných typů Kopeček - U3V 40
41 Historie EM v Evropě Toulouse, 1942 Siegbahn-Schönanderův electronový microskop, Stockholm, okolo Kopeček - U3V 41
42 Francie 3MeV SEM G. Dupouy, F. Perrier: MeV, MeV Kopeček - U3V 42
43 TEM, MeV Kopeček - U3V 43
44 Výhoda velmi vysokého urychlovacího napětí kontrast na magnetických doménách v Fe- Si Kopeček - U3V 44
45 EM v biologii Kopeček - U3V 45
46 Brusel, 1932, L.L. Marton (aka Ladislaus Lászlo) Kopeček - U3V 46
47 První komerčně, sériově vyráběný EM, Siemens ÜM 100, Kopeček - U3V 47
48 První komerčně dodaný SEM Stereoscan Cambridge Instrument Company do du Pont Comp., U.S.A., rok výroby! Kopeček - U3V 48
49 Tesla BS 242 oceněný 1958 v Bruselu Kopeček - U3V 49
50 Další, analytické metody doprovázející v instalacích SEM EBSD (orientace) EDS (složení) Kopeček - U3V 50
51 Ocel AISI304 2 min žíhání 1000 C Kopeček SEM
52 Kopeček SEM
53 EBSD principy a pozice detektorů Scanning Microscopy for Nanotechnology Techniques and Applications - Weilie Zhou, Zhong Lin Wang (Eds), Springer Science+Business Media, LLC, Kopeček SEM
54 Kikuchiho obrazce Kopeček SEM
55 Modelování EBSP obrazců 9-i svazkový model Kopeček SEM
56 Krátká historie EBSD 1928 Shoji Nishikawa, Seishi Kikuchi kalcit, 50 KeV elektrony z plynového z výboje John Venables Bristol group computerisation (D.J. Dingley) OIM (Yale Univ, TSL, HKL) 1992 Použití Houghovy transformace pro vyhodnocení Kikuchiho obrazců HR-EBSD (Oxford Univ., BLG, Saint Etienne Univ, Brigham Univ) Kopeček SEM
57 Něco z historie metody EBSD Vůbec první Kikuchiho linie pozorované Kikuchim 1927 v kalcitu. Seishi Kikuchi (standing) Kopeček SEM
58 Něco z historie metody EBSD Kikuchi P-pattern from mica. Boersch 1937 Iron Kikuchi patterns Kopeček SEM
59 Projekce Kikuchiho linie na kouli Ferit Křemen Kopeček SEM
60 Nalezení píků a stanovení jejich intenzity Philippe T. Pinard Kikuchiho obrazec Houghova transformace Nalezení Kikuchiho pásů Jak se Kikuchiho linie vyhodnocují? Body Kopeček SEM
61 Jensen, Jeppe. "Hough Transform for Straight Lines". Mini-project in Image Processing, 7th semester es.pdf. Retrieved 16 December Houghova transformace od 1992 Převádí kartézské souřadnice na polární a tak Kikuchiho pásy na píky, jejichž detekce je snadná. Je speciálním případem Radonovy transformace (tomograf). Dříve probíhalo vyhodnocení každého bodu ručně prokládáním čar Kopeček SEM
62 Kikuchiho linie zpět ke kořenům Kopeček SEM
63 Houghova transformace Houghova transformace převádí čáry (Kikuchiho linie) na sinusoidy Kopeček SEM
64 Houghova transformace Slouží k transformaci Kikuchiho pásů na píky. Pás přímku si parametrizujeme v polárních souřadnicích, načež sečteme intenzitu po přímce. δ-funkce zajišťuje nenulovost na přímce Kopeček SEM
65 Houghova transformace Paul V. C. Hough Patent US A; 18. prosinec Patentoval až do roku 2004 (metody snímání v AFM 3 patenty) John Simmon Guggenheim fellow 1959 a 1973 Stanley R. Deans, Hough Transform from the Radon Transform, IEEE trans. PAMI Kopeček SEM
66 Radonova transformace Je zobecněním Houghovy transformace a také je starší. Johann Radon se narodil 16. prosince 1887 v Děčíně a v letech navštěvoval gymnázium v Litoměřicích. Od r působil Radon jako profesor na vídeňské univerzitě, kde vykonával krátce funkci děkana a později v r rektora. Zemřel 25. května (PokrokyMFA33-5-5) Allan MacLeod Cormack (fyzik), Godfrey Hounsfield (elektroinženýr) Nobelova cena za medicínu 1979 za CT tomograf (PokrokyMFA , A.M. Cormack, JAP ) Kopeček SEM
67 Prvkové složení zkoumaných materiálů - EDS Henry G. J. Moseley ( ) Kopeček SEM
68 Objev Moseley 1913 PhilMagSerie Kopeček SEM
69 Kopeček SEM
70 Objev G.W.C. Kaye ptrsla Kopeček SEM
71 Literatura Scanning Electron Microscopy Physics of Image Formation and Microanalysis, Ludwig Reimer, ISBN: Springer-Verlag Berlin Heidelberg 1985, 1998 Doporučená literatura: Scanning Electron Microscopy and X-Ray Microanalysis, J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig Jr., Ch. E. Lifshin, ISBN-13: , Plenum Press, New York, 1992, 1981 Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, Patrick Echlin, ISBN: , Springer Science+Business Media, LLC 2009 Electron Backscatter Diffraction in Materials Science, Adam J. Schwartz, Mukul Kumar, Brent L. Adams, David P. Field, 2nd Edition, ISBN , Springer Science+Business Media, LLC 2009 Introduction to Focused Ion Beams Instrumentation, Theory, Techniques and Practice, Lucille A. Giannuzzi, Fred A. Stevie, ISBN: , Springer Science + Business Media, Inc., 2005 Zkoumání látek elektronovým paprskem, V. Hulínsky, K. Jurek, SNTL, Praha 1982 Úvod do transmisní elektronové mikroskopie, Miroslav Karlík, ISBN: , ČVUT, Praha, Kopeček - U3V 71
72 Děkuji za pozornost! Kopeček - U3V 72
Elektronová Mikroskopie SEM
Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne
Elektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
Proč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček
Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie
Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
VŠCHT - Forenzní analýza, 2012 RNDr. M. Kotrlý, KUP Mikroskopie Rozlišovací schopnost lidského oka cca 025 0,25mm Vlnová délka světla je cca 0,4 µm => rozlišovací schopnost cca. 0,2 µm 1000 x víc než oko
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
Elektronová mikroskopie a mikroanalýza-2
Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství
Elektronová mikroskopie a RTG spektroskopie. Pavel Matějka
Elektronová mikroskopie a RTG spektroskopie Pavel Matějka Elektronová mikroskopie a RTG spektroskopie 1. Elektronová mikroskopie 1. TEM transmisní elektronová mikroskopie 2. STEM řádkovací transmisní elektronová
Elektronová mikroskopie (jemný úvod do SEM, TEM) Rostislav Medlín NTC, ZČU
Elektronová mikroskopie (jemný úvod do SEM, TEM) Rostislav Medlín NTC, ZČU Motivace Dynamická difrakce v TEM Kinematická a dynamická difrakce dvousvazková aproximace v ideálním krystalu intenzity přímého
EM, aneb TEM nebo SEM?
EM, aneb TEM nebo SEM? Jiří Šperka Přírodovědecká fakulta, Masarykova univerzita, Brno 2. únor 2011 / Prezentace pro studentský seminář Jiří Šperka (Masarykova univerzita) SEM a TEM 2. únor 2011 1 / 21
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ
DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY
4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE
SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, Olomouc 4.12. Workshop: Mikroskopické techniky SEM a TEM Obsah historie mikroskopie proč právě elektrony
Electron BackScatter Diffraction (EBSD)
Electron BackScatter Diffraction (EBSD) Informace o xtalografii objemových vzorků získané pomocí SEM + EBSD a) základní součásti systému EBSD 1. Základy EBSD Vzorek Detektor EBSD Fluorescenční stínítko
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX
/ 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek
/ 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní
Spektroskopie Augerových elektronů AES. KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE
Spektroskopie Augerových elektronů AES KINETICKÁ ENERGIE AUGEROVÝCH e - NEZÁVISÍ NA ENERGII PRIMÁRNÍHO ZDROJE Spektroskopie Augerových elektronů AES Jev Augerových elektronů objeven 1923 - Lise Meitner
Difrakce elektronů v krystalech a zobrazení atomů
Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289
OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Zeemanův jev. 1 Úvod (1)
Zeemanův jev Tereza Gerguri (Gymnázium Slovanské náměstí, Brno) Stanislav Marek (Gymnázium Slovanské náměstí, Brno) Michal Schulz (Gymnázium Komenského, Havířov) Abstrakt Cílem našeho experimentu je dokázat
Difrakce elektronů v krystalech, zobrazení atomů
Difrakce elektronů v krystalech, zobrazení atomů T. Sýkora 1, M. Lanč 2, J. Krist 3 1 Gymnázium Českolipská, Českolipská 373, 190 00 Praha 9, tomas.sykora@email.cz 2 Gymnázium Otokara Březiny a SOŠ Telč,
Přírodovědecká fakulta bude mít elektronový mikroskop
Přírodovědecká fakulta bude mít elektronový mikroskop Přístroj v hodnotě několika milionů korun zapůjčí Přírodovědecké fakultě Masarykovy univerzity (MU) společnost FEI Czech Republic, výrobce elektronových
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII
ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Zobrazovací metody v nanotechnologiích
Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší
Elektronová mikroanalýz Instrumentace. Metody charakterizace nanomateriálů II
Elektronová mikroanalýz ýza 1 Instrumentace Metody charakterizace nanomateriálů II RNDr. Věra V Vodičkov ková,, PhD. Elektronová mikroanalýza relativně nedestruktivní rentgenová spektroskopická metoda
Laboratoř charakterizace nano a mikrosystémů: Elektronová mikroskopie
: Jitka Kopecká ÚVOD je užitečný nástroj k pozorování a pochopení nano a mikrosvěta. Nachází své uplatnění jak v teoretickém výzkumu, tak i v průmyslu (výroba polovodičových součástek, solárních panelů,
Fotoelektronová spektroskopie ESCA, UPS spektroskopie Augerových elektronů. Pavel Matějka
Fotoelektronová spektroskopie ESCA, UPS spektroskopie Augerových elektronů Pavel Matějka Fotoelektronová spektroskopie 1. XPS rentgenová fotoelektronová spektroskopie 1. Princip metody 2. Instrumentace
Elektronová mikroskopie v materiálovém výzkumu
Elektronová mikroskopie v materiálovém výzkumu Kristina Hakenová Gymnázium Turnov kikihak@seznam.cz Karel Vlachovský Masarykovo gymnázium, Plzeň maoap1@gmail.com Abstrakt: Práce seznamuje čtenáře s elektronovým
ELEKTRONOVÁ MIKROANALÝZA. Vítězslav Otruba
ELEKTRONOVÁ MIKROANALÝZA Vítězslav Otruba 2011 prof. Otruba 2 Elektronová mikroanalýza trocha historie 1949 Castaing postavil první mikrosondu s vlnově disperzním spektrometrem a vypracoval teorii 1956
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
Mikroskopie, zobrazovací technika. Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz
Mikroskopie, zobrazovací technika Vizualizační technika Systém pro přímé sledování dějů ve spalovacím motoru AVL VISIOSCOPE, součástí zařízení je optické měřící zařízení pro měření teplot (VISIOFEM Temperature
Testování nanovlákenných materiálů
Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů
Mikroskopické techniky
Mikroskopické techniky Světelná mikroskopie Elektronová mikroskopie Mikroskopie skenující sondou Zkráceno z přednášky doc. RNDr. R. Kubínka, CSc. Zdroj informací: http://apfyz.upol.cz/ucebnice/elmikro.html
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)
LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných
Mikroskopie a zobrazovací technika. Studentská 1402/ Liberec 1 tel.: cxi.tul.cz
Mikroskopie a zobrazovací technika Oddělení vozidel a motorů Vizualizační technika Sledování dějů ve spalovacím motoru Systém pro přímé sledování dějů ve spalovacím motoru AVL VISIOSCOPE, součástí zařízení
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ
CHARAKTERIZACE MIKROSTRUKTURY OCELÍ POMOCÍ POMALÝCH A VELMI POMALÝCH ELEKTRONŮ Aleš LIGAS 1, Jakub PIŇOS 1, Dagmar JANDOVÁ 2, Josef KASL 2, Šárka MIKMEKOVÁ 1 1 Ústav přístrojové techniky AV ČR, v.v.i.,
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE
RENTGENKY V PROMĚNÁCH ČASU OD KATODOVÉ TRUBICE PO URYCHLOVAČE Vojtěch U l l m a n n f y z i k Klinika nukleární mediciny FN Ostrava Ústav zobrazovacích metod ZSF OU Ostrava VÝBOJKY: plynem plněné trubice
NOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY. Kontaktní e-mail: bui@cvrez.cz
NOVÁ METODIKA PŘÍPRAVY 1 MM FÓLIÍ PRO TEM ANALÝZU AUSTENITICKÝCH OCELÍ OZÁŘENÝCH NEUTRONY Petra Bublíková 1, Vít Rosnecký 1, Jan Michalička 1, Eliška Keilová 2, Jan Kočík 2, Miroslava Ernestová 2 1 Centrum
Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka
Optická konfokální mikroskopie a Pavel Matějka 1. Konfokální mikroskopie 1. Princip metody - konfokalita 2. Instrumentace metody zobrazování 3. Analýza obrazu 2. Konfokální 1. Luminiscenční 2. Ramanova
Typy interakcí. Obsah přednášky
Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip
Pedagogická fakulta. Katedra fyziky. Diplomová práce
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Pedagogická fakulta Katedra fyziky Diplomová práce Rozptyl primárních elektronů na atomech zalévacího média biologického materiálu u nízkonapěťového transmisního
Kryogenní elektronová mikroskopie aneb Nobelova cena za chemii v roce 2017
Kryogenní elektronová mikroskopie aneb Nobelova cena za chemii v roce 2017 Roman Kouřil Katedra Biofyziky (http://biofyzika.upol.cz) Centrum regionu Haná pro biotechnologický a zemědělský výzkum Přírodovědecká
Fluorescenční mikroskopie
Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE
Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková
Mikroskopie V M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Hloubka ostrosti problém m velkých zvětšen ení tloušťka T vrstvy vzorku kolmé k optické ose, kterou vidíme ostře zobrazenou Objektiv
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE
TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, UP Olomouc 4.12.2009 Workshop: Mikroskopické techniky SEM a TEM Obsah konstrukce transmisního elektronového mikroskopu
Elektronová mikroskopie II
Elektronová mikroskopie II Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Transmisní elektronová mikroskopie TEM Informace zprostředkována prošlými e - (TE, DE) Umožň žňuje studium vnitřní
Zobrazovací systémy v transmisní radiografii a kvalita obrazu. Kateřina Boušková Nemocnice Na Františku
Zobrazovací systémy v transmisní radiografii a kvalita obrazu Kateřina Boušková Nemocnice Na Františku Rentgenové záření Elektromagnetické záření o λ= 10-8 10-13 m V lékařství obvykle zdrojem rentgenová
Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT
pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
Testování nanovlákenných materiálů. Eva Košťáková KNT, FT, TUL
Testování nanovlákenných materiálů Eva Košťáková KNT, FT, TUL Obsah přednášky Testování nanovlákenných materiálů -Vizualizace (zobrazování nanovlákenných materiálů) -Chemické složení nanovlákenných materiálů
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
REM s ultravysokým rozlišením JEOL JSM 6700F v ÚPT AVČR. Jiřina Matějková, Antonín Rek, ÚPT AVČR, Královopolská 147, 61264 Brno
REM s ultravysokým rozlišením JEOL JSM 6700F v ÚPT AVČR Jiřina Matějková, Antonín Rek, ÚPT AVČR, Královopolská 147, 61264 Brno Projekt ÚPT 6351 na r. 2002 - JEOL JSM6700F- Cíl: Vybudovat pracoviště se
PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD
PŘEHLED KLASICKÝCH A MODERNÍCH MIKROSKOPICKÝCH METOD Jan Hošek Ústav přístrojové a řídící techniky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, Česká republika Ústav termomechaniky AV ČR,
Transmisní elektronová mikroskopie (TEM)
Historie vývoje elektronové mikroskopie Transmisní elektronová mikroskopie (TEM) 1897 J.J. Thomson objevil a popsal částici elektron při studiu vlastností katodového záření. Nobelova cena za fyziku v r.
Elektronová mikroanalýza trocha historie
Elektronová mikroanalýza trocha historie 1949 - Castaing postavil první mikrosondu s vlnově disperzním spektrometrem a vypracoval teorii 1956 počátek výroby komerčních mikrosond (Cameca) 1965 - počátek
Studentská tvůrčí a odborná činnost STOČ 2012
Studentská tvůrčí a odborná činnost STOČ 2012 MIKROVLNNÁ SKENOVACÍ MIKROSKOPIE Josef KUDĚLKA, Tomáš MARTÍNEK Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Nad Stráněmi 4511 760 05 Zlín
Princip CT. MUDr. Lukáš Mikšík, KZM FN Motol
Princip CT MUDr. Lukáš Mikšík, KZM FN Motol Tomografie tomos = řez; graphein = psát definice - zobrazení objektu pomocí řezů Damien Hirst Autopsy with Sliced Human Brain 2004 Historie 1924 - matematická
Mikroskopie rastrující sondy
Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor
METODA EBSD V ŘÁDKOVACÍ ELEKTRONOVÉ MIKROSKOPII
METODA EBSD V ŘÁDKOVACÍ ELEKTRONOVÉ MIKROSKOPII Vlastimil Vodárek VŠB-Technická Univerzita Ostrava 1 Úvod Pro komplexní popis strukturních parametrů krystalických materiálů jsou nezbytné informace o objemovém
Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.
Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SCINTILAČNÍ DETEKTOR SEKUNDÁRNÍCH ELEKTRONŮ PRO REM PRACUJÍCÍ PŘI VYŠŠÍM TLAKU V KOMOŘE VZORKU BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Mikroskopie se vzorkovací sondou. Pavel Matějka
Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití
STANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ. Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b
STANOVENÍ TVARU A DISTRIBUCE VELIKOSTI ČÁSTIC MODELOVÝCH TYPŮ NANOMATERIÁLŮ Edita BRETŠNAJDROVÁ a, Ladislav SVOBODA a Jiří ZELENKA b a UNIVERZITA PARDUBICE, Fakulta chemicko-technologická, Katedra anorganické
ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH
ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PŘIHLÁŠKA STUDENTSKÉHO PROJEKTU Projekt Název projektu: Rozptyl primárních elektronů na atomech zalévacího média biologického materiálu
Vliv komy na přesnost měření optických přístrojů. Antonín Mikš Katedra fyziky, FSv ČVUT, Praha
Vliv komy na přesnost měření optických přístrojů Antonín Mikš Katedra fyziky, FSv ČVUT, Praha V práci je vyšetřován vliv meridionální komy na přesnost měření optickými přístroji a to na základě difrakční
Elektronový mikroskop v Č(SS)R očima pamětníka Ladislav Zobač
1 Elektronový mikroskop v Č(SS)R očima pamětníka Ladislav Zobač Úvod Historie elektronového mikroskopu v Československu začala návrhem profesora Bláhy na celoústavní poradě o nových námětech vývoje vědeckých
POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum: 20.09.2013
Název: Školitel: POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD René Kizek Datum: 20.09.2013 Základy počítačové tomografie položil W. C. Röntgen, který roku 1895 objevil paprsky X. Tyto paprsky,
Defektoskopie a defektometrie
Defektoskopie a defektometrie Aplikace počítačového vidění Karel Horák Skupina počítačového ového vidění Ústav automatizace a měřicí techniky Fakulta elektrotechniky a komunikačních technologií Vysoké
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Ionizační detektor pro ESEM Ionization detector for ESEM DIPLOMOVÁ PRÁCE MASTER S THESIS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
BAKALÁŘSKÁ PRÁCE. Petr Lukáš Studium rozdělení disperzních částic v nerovnovážně utuhnutých hliníkových slitinách
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Petr Lukáš Studium rozdělení disperzních částic v nerovnovážně utuhnutých hliníkových slitinách Katedra fyziky materiálů Vedoucí
DETEKCE SIGNÁLNÍCH ELEKTRONŮ V ENVIRONMENTÁLNÍM RASTROVACÍM ELEKTRONOVÉM MIKROSKOPU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Optické metody a jejich aplikace v kompozitech s polymerní matricí
Optické metody a jejich aplikace v kompozitech s polymerní matricí Doc. Ing. Eva Nezbedová, CSc. Polymer Institute Brno Ing. Zdeňka Jeníková, Ph.D. Ústav materiálového inženýrství, Fakulta strojní, ČVUT
Metody povrchové analýzy založené na detekci iontů. Pavel Matějka
Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ ING. ZDENĚK FORET NÁVRH KONCEPCE A VÝVOJ JEDNOÚČELOVÉHO RASTROVACÍHO ELEKTRONOVÉHO MIKROSKOPU CONCEPT AND
VIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)
PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK
HODNOCENÍ VRYPOVÉ ZKOUŠKY SVĚTELNOU A ŘÁDKOVACÍ ELEKTRONOVOU MIKROSKOPIÍ EVALUATION OF THE SCRATCH TEST BY LIGHT AND SCANNING ELECTRON MICROSCOPY
HODNOCENÍ VRYPOVÉ ZKOUŠKY SVĚTELNOU A ŘÁDKOVACÍ ELEKTRONOVOU MIKROSKOPIÍ EVALUATION OF THE SCRATCH TEST BY LIGHT AND SCANNING ELECTRON MICROSCOPY Martina Sosnová a - sosnova@kmm.zcu.cz. Antonín Kříž a
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Mikroskop atomárních sil: základní popis instrumentace
Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Vliv pracovních podmínek na velikost signálu získaného pomocí LVSTD detektoru
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTROTECHNIKY FFACULTY OF ELECTRICAL ENGINEERING AND COMUNICATION DEPARTMENT
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
APPLICATION OF LOW VOLTAGE SEM FOR STUDY OF BLASTED SURFACES
APPLICATION OF LOW VOLTAGE SEM FOR STUDY OF BLASTED SURFACES Aleš LIGAS 1, Šárka MIKMEKOVÁ 1, Dagmar DRAGANOVSKÁ 2 1 Ústav přístrojové techniky AV ČR, v.v.i., Královopolská 147, 612 64 Brno, ales.ligas@isibrno.cz
Konfokální XRF. Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze
Konfokální XRF Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze Obsah Od klasické ke konfokální XRF Princip konfokální XRF Polykapilární
VÍCEELEKTRODOVÝ SYSTÉM IONIZAČNÍHO DETEKTORU PRO ENVIRONMENTÁLNÍ RASTROVACÍ ELEKTRONOVÝ MIKROSKOP
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROTECHNOLOGIE FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
F6450. Vakuová fyzika 2. Vakuová fyzika 2 1 / 32
F6450 Vakuová fyzika 2 Pavel Slavíček email: ps94@sci.muni.cz Vakuová fyzika 2 1 / 32 Osnova Vázané plyny Sorpční vývěvy kryogenní zeolitové sublimační iontové getrové - vypařované, nevypařované (NEG)
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV FYZIKÁLNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PHYSICAL ENGINEERING MIKROSKOPIE POMALÝMI