Automobily. 1) Jízdní odpory, jízdní meze. Jízdní odpory jsou síly, které působí proti pohybu vozidla.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Automobily. 1) Jízdní odpory, jízdní meze. Jízdní odpory jsou síly, které působí proti pohybu vozidla."

Transkript

1 Automobily 1) Jízdní odpory, jízdní meze Jízdní odpory jsou síly, které působí proti pohybu vozidla. Odpor valivý Odpor valivý vzniká deformací pneumatiky a vozovky. Součinitel valivého odporu závisí především na: povrchu vozovky huštění pneumatiky rychlost vozidla zatáčení O f = O fi = Z i fi = f Z i = f ï i i G Odpor vzdušný ρ 2 OV = cx Sx vr 2 Při jízdě vozidla proudí část vzduchu kolem horní části karoserie a část musí projít mezi vozovkou a spodní částí vozidla. Za vozidlem nastává víření vzniká tak vzdušný odpor OV. Velikost této vzdušné síly je dána výslednicí normálových tlaků vzduchu na povrch karoserie a třecích sil, které působí v tečném směru na karoserii). Do celkového vzdušného odporu vozidla jsou zahrnuty také odpory vzniklé při průchodu vzduchu chladícím a větracím systémem a také tyž, jež vzniknou vířením otáčejících se kol.součinitel odporu vzduchu cx závisí především na tvaru vozidla. Odpor stoupání Odpor stoupání je určen složkou tíhy vozidla rovnoběžnou s povrchem vozovky O S s = = ± G sinα h l = tgα Odpor zrychlení Při zrychlování vozidla působí proti směru zrychlení setrvačná síla, kterou nazýváme odporem zrychlení. M = O r = M + M + M r Zr d rm rp r Mrm moment potřebný pro zrychlení rotujících částí motoru Mrp moment potřebný pro zrychlení rotujících částí převodového ústrojí Mr moment potřebný na zrychlení vozidlových kol

2 -Celkový jízdní odpor určíme sečtením jednotlivých dílčích odporů. F = O f + O V + O S + O Z ρ 2 && x F = f G + cx S x vr + G s + ϑ 2 g -Výkon, který musí být přiváděn na kola vozidla k překonání jízdních odporů P P = F M v = r d v x ρ = f + s + ϑ & G v + cx S x g 2 v 3 Jízdní meze Spojení mezi kolem a vozovkou je závislé na dosažitelné přilnavosti. Pneumatika se odvaluje bez klouzání jestliže: H B µ Z V V µ Z Působí-li ve stopě pneumatiky mimo obvodové síly ještě síla boční, pak nemá-li dojít ke smyku kola nesmí geometrický součet těchto sil překročit hodnotu danou přilnavostí a svislým zatížením Přilnavost v podélném a bočním směru není zcela stejná, budeme-li však přilnavost v podélném i bočním směru považovat za stejné nedopustíme se velké chyby. 2) Nápravy, jejich konstrukční principy, systémy odpružení a tlumení Zavěšení Závislé zavěšení (tuhá náprava) Tuhá náprava má řadu nevýhod, které způsobily že již nejsou používány v osobních vozidlech. V případě nákladních vozidel jsou nadále používány. - vysoká hmotnost - je potřeba velký prostor nad nápravou odpovídající výšce propružení - změna zatížení kola při jízdě - změna odklonu gyroscopický moment + jednoduché a levné na výrobu + nemění se rozchod, sbíhavost, odklon při klonění + nižší opotřebení pneumatik + nemění se odklon při klonění při průjezdu zatáčkou, boční síla na pneumatice konstantní + zachycování momentu způsobeného bočními silami Panhardskou tyčí (může být umístěna v libovolné výšce) - 2 -

3 - Tuhá náprava s listovými pružinami - Listové pružiny byly nahrazeny vinutými pružinami (nejsou schopny přenášet příčnou sílu). Pro vedení nápravy je tak nutné vybrat jeden z těchto způsobů: a) Čtyř podélné vzpěry a jedna příčná (Panhardská tyč) b) Wattův přímovod bez samořízení c) Ojnicové vedení Nezávislé zavěšení Přední náprava: lichoběžníková náprava náprava McPherson -Střed klopení nápravy McPherson -Střed klonění nápravy McPherson Zadní náprava: kyvadlová náprava kliková náprava(podélná ramena s příčnou osou kývání, zabírá jen málo místa, komponenty zavěšení nezasahují do místa pro zavazadlový prostor) náprava multi link Úhel sbíhavosti Odklon kola Příklon rejdové osy Poloměr rejdu Záklon rejdové osy(vraceni kola do přímého směru) - 3 -

4 systémy odpružení a tlumení Odpružením se zmenšuje přenos kmitavých pohybů náprav na vozidlo a na jeho podvozkové části a karoserii. - chrání posádku a náklad před nežádoucími otřesy - zajišťuje stálý styk pneumatiky s vozovkou - vozidlové tlumiče tlumí kmitavý pohyb náprav pružiny - ocelové pružiny listové Listová pružina jako svazek plátů z pružinové oceli. Použití dnes jen u nákladních automobilů a autobusů, návěsů, přívěsů. Listové pružiny mění při propružení svoji délku, musí být uloženy v otočných čepech na podpěře nebo třmenu. Při deformaci se jednotlivé listy vzájemně pohybují tím vzniká tření Suché tření vlivem nečistot dosedacích ploch. Vlastní tlumení dle velikosti tření Dříve se listové pružiny mazaly, dnes se používají plastové vložky. Listová pružina je schopna přenášet i boční síly! vinuté Vinuté pružiny se používají u osobních automobilů. Výhody malá hmotnost, žádná údržba, jednoduché uložení, žádné suché tření Nevýhody nemohou vést nápravu, nemají žádné vlastní tlumení Na obou koncích pružiny jsou závěrné závity pro připojení a přenos sil nejméně ¾ délky závitu. dosažení progresivity vinutých pružin se používá: - proměnlivosti stoupání závitů - proměnlivý průměr drátu - proměnlivý průměr pružiny torzní Je tyč s přímou osou kruhového průřezu na koncích opatřená momentovou pojistkou. Jeden konec je spojen s nápravou a druhý s karoserií.montují se s předpětím - pryžové Pryž se používá prakticky u každého vozidla jako přídavný pružící prvek. + nízká cena + vysoká životnost + žádná údržba + vysoké vlastní tlumení - 4 -

5 - pryž je citlivá na teplotu - stárnutí pryže - malá odolnost proti chemikáliím - plynové Plynová pružina využívá k pružení stlačitelnost plynu. Plynová pružina má progresivní deformační charakteristiku, protože objem plynu se při stlačování zmenšuje a pružina je tvrdší. Nosná síla je závislá na přetlaku. - Vzduchokapalinové(Hydropneumatické odpružení) onstantní hmotnost plynu. Nevyžaduje tlumič. - pryžokapalinové Tlumiče - Zajišťují vysoké bezpečnosti jízdy - Zvýšují jízdní pohodlí - Tlumí nárazy - mitání neodpružených částí udržují v co nejmenší možné míře styk kol s vozovkou - Odebírají mechanickou energii a mění ji v jinou formu energie. - TEPLO 3) Brzdové soustavy Aerodynamická brzda Třecí brzda Elektromagnetický retardér Hydrodynamický retardér Retardér s elektromotorem Jednookruhový brzdový systém Dvouokruhový brzdový systém Soustava provozní brzdy (primární brzdový systém) má snížit přímo nebo nepřímo rychlost vozidla nebo jej zastavit, účinek musí být odstupňovatelný Soustava nouzové brzdy (sekundární brzdový systém) má snížit přímo nebo nepřímo rychlost vozidla nebo jej zastavit v případě že selže systém pro provozní brzdění, účinek musí být odstupňovatelný Soustava pro parkovací brzdění mechanický, ručně či nožně ovládaný systém pro zabránění pohybu vozidla i na svahu zejména v nepřítomnosti řidiče Soustava pro odlehčovací brzdění umožňuje přímo i nepřímo ustálit nebo snížit rychlost, zejména na dlouhém svahu Soustava pro samočinné brzdění samočinně brzdí přípojné vozidlo při úmyslném nebo náhodném odpojení - 5 -

6 Brzdový systém z hlediska ústrojí pro dodávku energie: Přímočinná brzdová soustava brzdná síla dodávána svalovou silou řidiče Brzdová soustava s posilovačem svalová síla řidiče + ústrojí pro dodávku energie Strojní brzdová soustava energie vytvářena ústrojím pro dodávku energie s vyloučením svalové síly řidiče Nájezdová brzdová soustava energie vzniká přiblížením přívěsu k tažnému vozidlu Gravitační brzdová soustava energie se dodává tíhou klesající základní části přívěsu Třecí brzdy Podle způsobu uložení konců čelistí rozeznáváme čelisti: otočné volné plovoucí volné nakotvené a)brzdový buben s jedním obvodovým žebrem b) Buben s více obvodovými žebry c) Buben s příčnými žebry d) Dvoumateriálový buben s obvodovými žebry e) Dvoumateriálový buben s příčnými žebry Čelisti bubnových brzd mají obvykle základní průřez tvaru T Čelisti bubnových brzd jsou svařované z ocelového plechu, příp. odlévané z lehkých slitin (os. Vozidla) nebo litinové popř. ocelolitinové (nákladní vozidla) Třecí obložení je nalepené nebo přinýtované otoučové brzdy otoučová brzda používá plochý kotouč jako třecí plochu. Výhodou kotoučové brzdy proti brzdě bubnové je malá citlivost na změnu součinitele tření (stabilita brzdného účinku) vlivem malého vnitřního převodu a lineární charakteristiky, lepší odvod tepla tím i menší slábnutí brzd (fading), snadná výměna obložení, automatické seřizování vůle, menší hmotnost. Nevýhodu malý vnitřní převod vyžaduje větší ovládací sílu (proto posilovač), větší místní ohřátí, horší řešení parkovací brzdy a) otoučová brzda s pevným třmenem b) otoučová brzda s plovoucím třmenem Pevný třmen kotoučové brzdy (dvoupístkový) je nejjednodušší možnou konstrukcí. a) Plochý kotouč b) Hrncové kotouče c) Odvětraný kotouč - 6 -

7 Hydraulický systém Dvouokruhový brzdový systém: Standardní zapojení TT Diagonální zapojení X Zapojení HT Zapojení LL Zapojení HH Všichni výrobci na celém světě v dnešní době konstruují hlavní brzdové válce tak, aby při poruše na některém komponentu brzdové soustavy nedošlo k úplné ztrátě brzdného účinku obvykle musí dvě kola zůstat brzděná. Zdvojení celého brzdového systému by bylo příliš nákladné, proto výrobci vyrábí tzv. tandemové brzdové válce (viz. obr.), které mají dva pístky, každý obsluhující různou část brzdového systému. Celý systém je potom rozdělen na dvě nezávislé části. 4) Spojky, Převodovky, řazení, synchronizace, Převodovky s řazením pod zatížením Spojky slouží pro krátkodobé přerušení přenosu točivého momentu, například při řazení rychlostních stupňů Rozdělení spojek používaných v motorových vozidlech V konstrukci motorových vozidel se používají spojky: směrové pro řízení kolových a pásových traktorů, řadící pro řazení rychlostních stupňů v převodovkách, rozjezdové pro rozjezd vozidel. Podle konstrukčního uspořádání rozeznáváme spojky kotoučové lamelové. Podle způsobu ovládání dělíme spojky na mechanické, ovládané bezprostředně silou řidiče vozidla, automatické, které jsou ovládané servomechanismem řízeným automaticky pracujícím obvodem. Požadavky kladené na spojky spolehlivý přenos točivého momentu plynulý rozjezd vozidla přenos většího momentu než je maximální točivý moment motoru cca o 15-25%, například pro vyproštění uvíznutého vozidla, ovládání spojky malými silami. nenáročnou obsluhu i údržbu a dlouhou životnost (přes kilometrů)

8 Automatické spojky Automatickou spojku řidič neovládá samostatným ovládacím orgánem, ale funkce tohoto orgánu je nahrazena samočinným mechanismem. Ovládání vozidla se tak zjednodušuje na dvoupedálovou soustavu brzda - plyn, kdy činnost spojky je zpravidla odvozena od pohybu akceleračního pedálu a řadící páky. V konstrukci motorových vozidel se používají následující druhy automatických spojek: odstředivé spojky, elektromagneticky ovládané spojky, elektromagnetické (práškové) spojky, hydrodynamické spojky. Hydrodynamické spojky Mezi nejčastěji používané automatické spojky v moderních automobilech patří hydrodynamická spojka, která je nejjednodušším hydrodynamickým ústrojím, sloužícím k přenosu točivého momentu. V konstrukci motorových vozidel se používá HD spojka zpravidla nejjednoduššího provedení (neregulační) s radiálními rovinnými lopatkami čerpadlového i turbínového kola. Přenos točivého momentu je zprostředkován bez vzájemného dotyku kovových částí spojky (kromě ložisek a ucpávek), tím nedochází k opotřebení a provoz spojky je možný prakticky bez údržby Přednosti pohonu s HD spojkou plynulý a měkký rozjezd vozidla (HD spojka dovoluje plynulý rozjezd vozidla i při zařazení nejvyššího rychlostního stupně) zabraňuje zhasnutí motoru při prudkém zvýšení jízdních odporů (traktor s uvíznutým pluhem) tlumí torzní kmity v převodných ústrojích jednotlivé součásti nejsou namáhány na otěr maximální točivý moment lze přizpůsobit změnou velikosti olejové náplně minimální údržba - 8 -

9 Nevýhody pohonu s HD spojkou vyšší cena neustálý skluz mezi hnací a hnanou částí spojky (Tento skluz způsobuje, že HD spojka má nižší účinnost než spojka mechanická). spojka nelze snadno rozpojit pro řazení rychlostních stupňů (HD spojku je nutno pro tento účel kombinovat s mechanickou spojkou, nebo s převodovkou s řazením pod zatížením). nelze zajistit stojící vozidlo (k tomuto účelu se konstrukce doplňuje o volnoběžku), lze však brzdit motorem. Převodovky Musí plnit umožnit změnu převodového poměru umožnit zpětný chod vozidla umožnit rozpojení přenosu točivého momentu od motoru na hnací kola vozidla. Dále je třeba zabezpečit: vysokou mechanickou účinnost nízkou úroveň hluku a vibrací malé rozměry nízkou hmotnost dlouhodobou provozní spolehlivost a životnost výrobní jednoduchost a nízkou cenu. U stupňovitých převodovek s ozubenými koly musí být ještě navíc: zabezpečeno řazení jednotlivých stupňů bez rázů. tomu je třeba zajistit vyrovnání obvodových nebo úhlových rychlostí zapínaných částí (řidič, synchronizace) znemožněno současné zařazení dvou převodů zamezeno samovolnému vyřazení nebo zařazení jednotlivých převodových stupňů. Rozdělení převodovek Podle druhů převodů: převodovky s ozubenými koly, které se dále dělí podle uspořádání ozubených kol na převodovky: dvouhřídelové tříhřídelové planetové třecí převodovky, které mají převody vytvořeny třecími koly; převodový poměr se mění změnou polohy jednotlivých kol řemenové převody točivý moment přenášejí také třením, ale mezi kola (řemenice) je vložen klínový řemen hydrostatické převodovky hydrodynamické měniče elektrické převody

10 Podle způsobu změny převodového poměru se převodovky dělí na: převodovky stupňové se stupňovou změnou převodového poměru; do této skupiny patří všechny převodovky s ozubenými koly, starší převodovky třecí a řemenové (zvláště s plochými řemeny) převodovky plynulé s plynulou změnou převodového poměru; do této skupiny patří novější převodovky třecí a řemenové, moderní převodovky řemenové, hydrostatické převodovky, hydrodynamické měniče a elektrické převody. Podle druhu řazení rychlostních stupňů se převodovky dělí na: převodovky s přímým řazením, u nichž se jednotlivé rychlostní stupně řadí pouze silou řidiče převodovky s nepřímým řazením, u nichž řidič řadí rychlostní stupně prostřednictvím pomocného zařízení převodovky samočinné u nichž řazení rychlostních stupňů a změna převodového poměru probíhá samočinně, automaticky podle okamžitých podmínek jízdy (například podle otáček a zatížení motoru, rychlosti jízdy, jízdních odporů a podobně). Pilový diagram -ukazuje rozdělení převodových stupňů -ukazuje odečtení nejmenší a největší rychlosti na jednotlivý stupeň -umožňuje posoudit s rychlostní charakteristikou motoru, zda jsou převodové stupně vhodně zvoleny Pilový diagram geometricky odstupňované převodovky zřetelně ukazuje nevýhodu geometrického odstupňování. Spočívá v poměrně velkém rozdílu rychlostí mezi sousedními převodovými stupni (I-II, IV-V). Základní druhy stupňových převodovek Podle uspořádání hnacího a hnaného hřídele rozlišujeme převodovky předlohové planetové. Převodovky s předlohovou hřídelí bývají konstruovány jako souosé (tříhřídelové) nesouosé (dvouhřídelové). Nesouosé i souosé převodovky mohou mít řazení přesouváním ozubených kol, zubovými spojkami, synchronizované a automatické. Automatické převodovky bývají vždy souosé. Dále se dělí předlohové převodovky na jednoskupinové víceskupinové

11 Souosé převodovky Nesouosé převodovky Jednoskupinové převodovky Tyto převodovky mají pro každý převodový stupeň jeden vlastní pár ozubených kol (s výjimkou přímého záběru a zpětného chodu). e změně převodového stupně je nutno jednu řadící spojku zapojit a jinou uvolnit. Jednoskupinové převodovky se používají zpravidla u osobních automobilů. U nákladních automobilů se používají za předpokladu, že stačí maximálně 7 převodových stupňů. Výhody: volná volba převodů, snadné řazení Nevýhody: větší množství ozubených kol a řadících prvků, vyšší konstrukční náklady. Víceskupinové převodovky Skládají se z několika jedno skupinových převodovek jejichž převody mohou být navzájem různě kombinovány. Přitom jsou jednotlivé páry ozubených kol a jednotlivé radící prvky využívány ve více převodových skupinách. Proto při změně převodového stupně musí být uvolněno a uzavřeno více řadících prvků. Výhoda: větší počet převodových stupňů realizovaných menším počtem párů ozubených kol a řadících prvků. Řazení rychlostních stupňů Stupňové převodovky s ozubenými koly mívají řazení jednotlivých převodových stupňů realizované posuvnými koly(nejstarší a z hlediska konstrukčního i nejjednodušší způsob řazení rychlostních stupňů. Běžně se používalo v minulosti. Dnes se využívá tento způsob prořazení zpětného chodu, méně často pro řazení 1. rychlostního stupně) zubovými spojkami(ojediněle vyskytuje ještě u nákladních automobilů) spojkami se synchronizací samočinně, automaticky. Jednoduchá synchronizace(obr. ze sešitu)

12 Jištěná synchronizace(obr. ze sešitu) onstrukce jištěné synchronizace (obr. 3.9) je doplněna o clonící kroužek (5), který nedovolí přesunout řadící objímku dokud nejsou obvodové rychlosti spojovaných částí dokonale synchronizovány. Převodovky řazené pod zatížením Umožňují změnu převodového stupně bez přerušení hnací síly vozidla. Takové vozidlo plynule zrychluje bez řadících přestávek tím lze docílit lepších jízdních výkonů při plném zatížení významné pro vozidla s motory přeplňovanými turbodmychadly, protože při řazení není nutno přerušit dodávku paliva ( ubrat plyn ) a tím je zabráněno poklesu plnícího tlaku. při částečném zatížení není třeba ovládat spojkový pedál, změna převodových stupňů je jednoduší u vícestupňových převodovek se zjednodušuje řazení a tím se zvyšuje pohodlí řidiče, snižuje jeho únava, zvyšuje bezpečnost silničního provozu Dvoutoké Princip dvoutoké (dvousetrvačníkové) převodovky Porsche PD (podobná je v závodním voze Porsche 962) -dobrá účinnost -lze automatizovat -spojky ovládané hydraulicky Planetové převodovky Umožňují také řazení jednotlivých stupňů pod zatížení, bez přerušení přenosu točivého momentu. Oproti dvoutokým (čelním) soukolím mají řadu výhod: točivý moment je přenášen několika satelity, v ozubení působí menší síly, modul ozubení může být menší ložiska všech otočně uložených částí s výjimkou satelitů nejsou zatěžovaná radiálními silami, neboť tyto síly se navzájem vyruší planetové soukolí při správné konstrukci velmi dobře vyplňuje zaujímaný prostor planetové soukolí je schopno velmi dobře přenášet i vysoké otáčky. Nevýhodou planetových převodovek je jejich velká složitost při větším počtu převodových stupňů. Proto se upouští od konstrukce čtyř a pěti stupňových převodovek typu Wilson a používají se převážně dvou a třístupňové převodovky se zpětným chodem. ombinují se

13 s hydrodynamickou spojkou nebo měničem. Jejich řazení je ovládáno většinou poloautomaticky nebo zcela automaticky. Planetová soukolí se uplatňují také v konstrukci diferenciálů a rozvodovek, jako redukce v kolech hnací nápravy a v přídavných převodovkách. 5) Spojovací a kloubové hřídele, Rozvodovky, Diferenciály Spojovací a kloubové hřídele jsou určeny ke stálému přenosu točivého momentu mezi jednotlivými částmi převodného ústrojí. Spojovací hřídele Spojovací hřídele zajišťují spojení souosých částí převodného ústrojí, jejichž vzájemná poloha se při provozu vozidla nemění. Používají se v případech, kdy jednotlivé části převodného ústrojí jsou konstrukčně pevně spojeny a tvoří část nosného rámu vozidla. loubové hřídele loubové hřídele slouží ke spojení částí převodného ústrojí, které nemají souosé hřídele nebo svoji vzájemnou polohu při provozu vozidla mění. Tento případ přenosu točivého momentu mezi konstrukčními skupinami kolových vozidel je daleko častější. loubové hřídele mohou mít jeden, dva nebo tři klouby. Požadavky na spojovací a kloubové hřídele loubové hřídele musí zajistit: spolehlivý přenos točivého momentu v požadovaném rozmezí výklonu os spojovaných částí, synchronní pohyb spojovaných částí, klidný chod - kritické otáčky hřídelí musí být vždy vyšší než jejich maximální provozní otáčky

14 Rozvodovky Rozvodovku motorového vozidla tvoří zpravidla dvě základní části: stálý převod hnací nápravy a diferenciál Stálý převod Stálý převod se používá u všech soudobých motorových vozidel bez ohledu na druh a uspořádání jejich převodného ústrojí. Bývá umístěn zpravidla společně s diferenciálem v rozvodovce hnací nápravy. Někdy je část stálého převodu umístěna v bezprostřední blízkosti hnacích kol, potom se také někdy mluví o tzv. redukci v kolech. Účel stálého převodu Stálý převod motorového vozidla musí splnit následující úkoly: zvětšit točivý moment na hnacích kolech tak, aby vozidlo mělo dostatečnou sílu k překonání jízdních odporů, snížit otáčky hnacích hřídelů kol, přizpůsobit rychlostní charakteristiku motoru dynamické charakteristice vozidla, provádí se zpravidla pro zařazený nejvyšší převodový stupeň v převodovce, odlehčit předcházející skupiny převodného ústrojí, umožnit nesouosý přenos točivého momentu, osy spojovacích hřídelů a hnacích hřídelů kol jsou různoběžné nebo mimoběžné, zvětšit světlou výšku vozidla nebo snížit podlahu vozidla, např. u autobusu pro snadnější nástup a výstup cestujících

15 Požadavky kladené na stálý převod hnací nápravy Při své činnosti musí stálý převod splňovat následující požadavky: zajistit potřebný převodový poměr, mít malé rozměry, mít nízkou hmotnost, zabezpečit plynulý chod bez rázů, vykazovat nízkou hlučnost, mít vysokou mechanickou účinnost, zajistit dlouhodobou funkční spolehlivost a dlouhou životnost Základní uspořádání stálého převodu Existuje několik koncepčních druhů stálého převodu, které se navzájem od sebe liší počtem a uspořádáním ozubených kol. Rozeznáváme stálý převod: jednoduchý: kuželový hypoidní šnekový čelní dvoustranný dvojnásobný: sloučený

16 dvoustranný: vnitřní vnější: s čelním vnějším ozubením s vnitřním ozubením planetový dvoustupňový: s vnějším ozubením planetový

17 Rozdělení diferenciálů Podle účelu, který diferenciál v převodném ústrojí plní rozeznáváme nápravové diferenciály, mezinápravové diferenciály, ústřední diferenciály Podle konstrukčního provedení mohou být diferenciály kuželové čelní. Obě tato konstrukční provedení mohou být: s uzávěrkou, samosvorné, symetrické, nesymetrické. Schéma kuželového diferenciálu 1)centrální kuželové kolo, (2) satelit (3) čep satelitu (4) skříň diferenciálu (5) talířové kolostálého převodu uželový diferenciál je vzhledem ke své jednoduchosti značně rozšířen. Uzávěrka diferenciálu Aby bylo v takové situaci (na sněhu, ledě, mokré trávě) možné využít hnací moment daný okamžitou přilnavostí povrchu, je nutno diferenciál vyřadit z činnosti. tomu slouží uzávěrka diferenciálu (obr. 5.19). Ve své podstatě se jedná o zubovou spojku, která přesunutím po drážkované části hřídele hnacího kola spojí centrální kolo s klecí diferenciálu. Diferenciál se potom pohybuje jako jeden pevný celek. Zařazení uzávěrky diferenciálu se používá pouze při vyprošťování uvíznutého vozidla nebo při přejezdu kluzkého terénu. Po projetí překážky na volné vozovce musí být uzávěrka vypnuta. V opačném případě by docházelo k nadměrnému namáhání převodného ústrojí vozidla, opotřebovávání pneumatik a snížení bezpečnosti jízdy vozidla Samosvorné diferenciály Obsluha uzávěrky diferenciálu znesnadňuje řízení vozidla. Tento nedostatek odstraňují samosvorné diferenciály. Jejich účinek je založený na zvýšení tření v diferenciálu. Při jízdě po vozovce s dobrou adhezí plní samosvorný diferenciál stejnou funkci jako diferenciál obyčejný. Jakmile se začne jedno kolo otáčet podstatně rychleji, například v důsledku svého prokluzování, zvýší se v samosvorném diferenciálu tření, které umožní jen určitý rozdíl v otáčkách obou kol a zabrání tak volnému protáčení kol vůči sobě. Podle jejich konstrukce lze rozlišit tři základní typy samosvorných diferenciálů: vačkové diferenciály, dnes se používají zřídka, diferenciály se zvýšeným třením, automatické diferenciály. dosažení samosvornosti se běžně používají kuželové diferenciály se zvýšeným třením

HYDRODYNAMICKÁ SPOJKA

HYDRODYNAMICKÁ SPOJKA HYDRODYNAMICKÁ SPOJKA HD spojka - přenos Mt je zprostředkován bez vzájemného dotyku kovových částí spojky (s výjimkou ložisek a ucpávek), tím nedochází k opotřebení a provoz je možný bez údržby. Přednosti:

Více

PŘEVODOVÉ ÚSTROJÍ. přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem

PŘEVODOVÉ ÚSTROJÍ. přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem PŘEVODOVÉ ÚSTROJÍ přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem Uspořádání převodového ústrojí se řídí podle základní konstrukční koncepce automobilu. Ve většině

Více

Převodovky s ozubenými koly -manuální -1

Převodovky s ozubenými koly -manuální -1 Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 26.5.2013 Název zpracovaného celku: Převodovky s ozubenými koly -manuální -1 Převodovky jsou měniče velikosti točivého momentu a mají za

Více

Název zpracovaného celku: Rozvodovky

Název zpracovaného celku: Rozvodovky Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Název zpracovaného celku: Rozvodovky Rozvodovka je u koncepce s předním a zadním pohonem součástí převodovky.u klasické koncepce

Více

Nápravy: - nesou tíhu vozidla a přenáší ji na kola - přenáší hnací, brzdné a suvné síly mezi rámem a koly

Nápravy: - nesou tíhu vozidla a přenáší ji na kola - přenáší hnací, brzdné a suvné síly mezi rámem a koly Nápravy: Účel: - nesou tíhu vozidla a přenáší ji na kola - přenáší hnací, brzdné a suvné síly mezi rámem a koly Umístění: - jsou umístěny pod rámem úplně (tuhé nápravy), nebo částečně (ostatní druhy náprav)

Více

Název zpracovaného celku: Spojky

Název zpracovaného celku: Spojky Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 5.5.2013 Název zpracovaného celku: Spojky Spojka je mechanismus zajišťující spojení hnací a hnané hřídele, případně umožňující krátkodobé

Více

Název zpracovaného celku: Řízení automobilu. 2.natočit kola tak,aby každé z nich opisovalo daný poloměr zatáčení-nejsou natočena stejně

Název zpracovaného celku: Řízení automobilu. 2.natočit kola tak,aby každé z nich opisovalo daný poloměr zatáčení-nejsou natočena stejně Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 14.9.2012 Název zpracovaného celku: Řízení automobilu Řízení je nedílnou součástí automobilu a musí zajistit: 1.natočení kol do rejdu změna

Více

PŘEVODNÁ A PŘEVODOVÁ ÚSTROJÍ

PŘEVODNÁ A PŘEVODOVÁ ÚSTROJÍ 46 PŘEVODNÁ A PŘEVODOVÁ ÚSTROJÍ Převodná a převodová ústrojí 47 Spojky Jsou součástí převodných ústrojí umístěných mezi motorem a převodovkou. Spojka přenáší točivý moment a umožňuje jeho přerušení pro:

Více

Název zpracovaného celku: Nápravy automobilů

Název zpracovaného celku: Nápravy automobilů Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 25.9.2012 Název zpracovaného celku: Nápravy automobilů Náprava vozidla je část automobilu, jehož prostřednictvím jsou dvě protější vozidlová

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

1 BRZDY A BRZDNÁ ZAŘÍZENÍ AUTOMOBILŮ

1 BRZDY A BRZDNÁ ZAŘÍZENÍ AUTOMOBILŮ 1 BRZDY A BRZDNÁ ZAŘÍZENÍ AUTOMOBILŮ Brzdná zařízení automobilů je možno rozdělit na : Brzdové soustavy mají rozhodující vliv na bezpečnost jízdy automobilu. Zpomalovací soustavy ústrojí, sloužící ke zmírňování

Více

1 NÁPRAVY. UMÍSTNĚNÍ NA VOZIDLE Nápravy jsou umístěny pod rámem, a to podle konstrukce buď úplně (tuhé nápravy), nebo částečně (ostatní druhy).

1 NÁPRAVY. UMÍSTNĚNÍ NA VOZIDLE Nápravy jsou umístěny pod rámem, a to podle konstrukce buď úplně (tuhé nápravy), nebo částečně (ostatní druhy). 1 NÁPRAVY ÚČEL nést tíhu vozidla a přenášet ji na kola, přenášet hnací, brzdné a boční síly mezi kolem a rámem, umožnit odpružení vozidla pomocí pružin, které jsou uloženy mezi nápravami a vozidlem. UMÍSTNĚNÍ

Více

MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM

MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v

Více

Rozvodovky + Diferenciály

Rozvodovky + Diferenciály Rozvodovky + Diferenciály Téma 8 Teorie vozidel 1 Rozvodovka Konstrukčně nenahraditelná, propojuje převodovku a diferenciál Je konstantním činitelem v celkovém převodovém poměru HÚ Složení : skříň rozvodovky

Více

ŠKODA KODIAQ SCOUT Vznětové motory

ŠKODA KODIAQ SCOUT Vznětové motory Motor Motor vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový objem [cm 3 ] 1968 Vrtání zdvih [mm

Více

Zážehové motory. zážehový, řadový, chlazený kapalinou, OHC, uložený vpředu napříč

Zážehové motory. zážehový, řadový, chlazený kapalinou, OHC, uložený vpředu napříč ŠKODA Octavia Zážehové motory Technické údaje 1,4 MPI/59kW 1,6 MPI/ kw 1,6 MPI/ kw (A) 1,6 FSI/85 kw 1,6 FSI/85 kw (A) zážehový, řadový, chlazený kapalinou, 2x OHC, uložený vpředu napříč zážehový, řadový,

Více

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy.

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. 1 ŘÍZENÍ AUTOMOBILŮ Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. ÚČEL ŘÍZENÍ natočením kol do rejdu udržovat nebo měnit směr jízdy, umožnit rozdílný úhel rejdu rejdových kol při

Více

ŠKODA KAROQ Zážehové motory

ŠKODA KAROQ Zážehové motory Technické údaje 1,0 TSI/85 kw 1,0 TSI/85 kw 1,5 TSI/110 kw 1,5 TSI/110 kw Motor 1,5 TSI/110 kw 4 4 Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč

Více

Zážehové motory. Technické údaje 2,0 TSI/169 kw 2,0 TSI/169 kw (A) Motor Motor Počet válců Zdvihový objem [cm 3 ]

Zážehové motory. Technické údaje 2,0 TSI/169 kw 2,0 TSI/169 kw (A) Motor Motor Počet válců Zdvihový objem [cm 3 ] ŠKODA Octavia RS 230 Zážehové motory Technické údaje 2,0 TSI/169 kw 2,0 TSI/169 kw (A) Počet válců Zdvihový objem [cm 3 ] zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený

Více

ŠKODA KAROQ SCOUT Vznětové motory

ŠKODA KAROQ SCOUT Vznětové motory Motor Motor vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový objem [cm 3 ] 1968 Vrtání zdvih [mm

Více

ŠKODA KODIAQ SPORTLINE Zážehové motory

ŠKODA KODIAQ SPORTLINE Zážehové motory Zážehové motory Technické údaje 1,5 TSI/110 kw ACT 1,5 TSI/110 kw ACT (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový

Více

ŠKODA OCTAVIA Vznětové motory

ŠKODA OCTAVIA Vznětové motory Vznětové motory Technické údaje 1,6 TDI/66 kw*** 1,6 TDI/85 kw 1,6 TDI/85 kw 2,0 TDI/110 kw 2,0 TDI/110 kw Motor Motor vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený

Více

Technické údaje 1,8 TSI/132 kw (A) 2,0 TDI/110 kw 2,0 TDI/110 kw (A)*** 2,0 TDI/135 kw (A) Motor

Technické údaje 1,8 TSI/132 kw (A) 2,0 TDI/110 kw 2,0 TDI/110 kw (A)*** 2,0 TDI/135 kw (A) Motor ŠKODA OCTAVIA 4 4 zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený

Více

ŠKODA OCTAVIA COMBI Vznětové motory

ŠKODA OCTAVIA COMBI Vznětové motory Vznětové motory Technické údaje 1,6 TDI/66 kw*** 1,6 TDI/85 kw 1,6 TDI/85 kw (A) 2,0 TDI/110 kw 2,0 TDI/110 kw (A) Motor Motor vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový,

Více

ŠKODA KODIAQ Zážehové motory

ŠKODA KODIAQ Zážehové motory ŠKODA KODIAQ Zážehové motory Technické údaje 1,4 TSI/110 kw ACT 4 4 1,4 TSI/110 kw 4 4 (A) 2,0 TSI/132 kw 4 4 (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený

Více

Zážehové motory. bezolovnatý benzin min. o. č. 95 (91)*

Zážehové motory. bezolovnatý benzin min. o. č. 95 (91)* ŠKODA Octavia Zážehové motory Technické údaje 1,4 MPI/59 kw 1,6 MPI/ kw 1,6 MPI/ kw (A) 1,6 MPI/ kw Flex Fuel 1,6 MPI/ kw LPG zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč zážehový,

Více

ŠKODA KAROQ SPORTLINE Zážehové motory

ŠKODA KAROQ SPORTLINE Zážehové motory Zážehové motory Technické údaje 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 Zdvihový objem

Více

ŠKODA KAROQ Zážehové motory

ŠKODA KAROQ Zážehové motory Zážehové motory Technické údaje 1,0 TSI/85 kw 1,0 TSI/85 kw (A) 1,5 TSI/110 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč

Více

Zážehové motory. Technické údaje 1,4 MPI/59kW 1,6 MPI/75 kw 1,6 MPI/75 kw Motor. zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč

Zážehové motory. Technické údaje 1,4 MPI/59kW 1,6 MPI/75 kw 1,6 MPI/75 kw Motor. zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč ŠKODA Octavia Tour Zážehové motory Technické údaje 1,4 MPI/59kW 1,6 MPI/75 kw 1,6 MPI/75 kw zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč zážehový, řadový, chlazený kapalinou, OHC,

Více

i n - se skokovou ( několikastupňovou ) změnou převodového poměru - s ozubenými koly čelními nebo planetovým soukolím - řetězové

i n - se skokovou ( několikastupňovou ) změnou převodového poměru - s ozubenými koly čelními nebo planetovým soukolím - řetězové Převodovky Převodovka plní tyto funkce : - umožňuje změnu převodového poměru mezi motorem a koly a tím změnu hnací síly a otáček kol tak, aby motor mohl pracovat pokud možno neustále v ekonomicky úsporném

Více

ŠKODA Octavia Combi RS

ŠKODA Octavia Combi RS zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou, 2 OHC,

Více

ŠKODA OCTAVIA Zážehové motory

ŠKODA OCTAVIA Zážehové motory Zážehové motory Technické údaje 1,0 TSI/85 kw 1,0 TSI/85 kw (A) 1,5 TSI/110 kw 1,5 TSI/110 kw (A) 2,0 TSI/140 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC,

Více

Nápravy motorových vozidel

Nápravy motorových vozidel Nápravy motorových vozidel Rozdělení náprav podle funkce : řídící ( rejdové ) -nebo- pevné ( neřízené ) poháněné (hnací i nosné) -nebo- nepoháněné (pouze nosné) Co tvoří pojezdové ústrojí? Kolová vozidla

Více

ŠKODA FABIA Zážehové motory

ŠKODA FABIA Zážehové motory ŠKODA FABIA Motor Motor zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 3 Zdvihový objem [cm 3 ] 999 Vrtání zdvih [mm mm] 74,5 76,4 zážehový, přeplňovaný turbodmychadlem,

Více

Zážehové motory. Technické údaje 1,4 MPI/59kW 1,6 MPI/75 kw 1,6 MPI/75 kw Motor. zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč

Zážehové motory. Technické údaje 1,4 MPI/59kW 1,6 MPI/75 kw 1,6 MPI/75 kw Motor. zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč ŠKODA Octavia Tour Zážehové motory Technické údaje 1,4 MPI/59kW 1,6 MPI/ kw 1,6 MPI/ kw zážehový, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč zážehový, řadový, chlazený kapalinou, OHC, uložený

Více

Vznětové motory. dvě souosé spojky, suché, vícelamelové, elektrohydraulicky ovládané

Vznětové motory. dvě souosé spojky, suché, vícelamelové, elektrohydraulicky ovládané Vznětové motory Technické údaje 1,6 TDI CR DPF/77 kw 1,6 TDI CR DPF/77 kw (A) 2,0 TDI CR DPF/110 kw 2,0 TDI CR DPF/110 kw (A) vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový,

Více

ŠKODA SCALA Zážehové motory

ŠKODA SCALA Zážehové motory Technické údaje 1,0 TSI/85 kw 1,5 TSI/110 kw (A) Motor Motor zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 3 4 Zdvihový objem [cm 3 ] 999 1498

Více

1,2 TSI/63 kw* 1,0 TSI/85 kw (A) 1,8 TSI/ 132 kw (A) 1,4 TSI/ 110 kw. 1,4 TSI/ 110 kw (A) 1,8 TSI/ 132 kw. 1,0 TSI/85 kw. Technické údaje Motor

1,2 TSI/63 kw* 1,0 TSI/85 kw (A) 1,8 TSI/ 132 kw (A) 1,4 TSI/ 110 kw. 1,4 TSI/ 110 kw (A) 1,8 TSI/ 132 kw. 1,0 TSI/85 kw. Technické údaje Motor Technické údaje Motor Motor 1,2 TSI/63 kw* zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč Počet válců 4 3 4 Zdvihový objem [cm 3 ] 1197 999 1395 1798 Vrtání

Více

ŠKODA FABIA Vznětové motory

ŠKODA FABIA Vznětové motory Vznětové motory Technické údaje 1,4 TDI/55 kw*** 1,4 TDI/66 kw 1,4 TDI/66 kw (A) 1,4 TDI/77 kw Motor Motor vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou,

Více

Zážehové motory. zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč 4 Zdvihový objem [cm 3 ] 1395

Zážehové motory. zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč 4 Zdvihový objem [cm 3 ] 1395 Zážehové motory Technické údaje 1,4 TSI/92 kw 1,4 TSI/110 kw ACT 1,4 TSI/110 kw ACT (A) 1,8 TSI/132 kw 1,8 TSI/132 kw (A) 2,0 TSI/162 kw (A) Počet válců zážehový, přeplňovaný turbodmychadlem, řadový, chlazený

Více

Vznětové motory Vrtání zdvih [mm mm] Maximální výkon/otáčky [kw/min -1 ] 66/ /

Vznětové motory Vrtání zdvih [mm mm] Maximální výkon/otáčky [kw/min -1 ] 66/ / Vznětové motory Technické údaje 1,6 TDI/66 kw 1,6 TDI/85 kw 1,6 TDI/85 kw (A) 2,0 TDI/110 kw 2,0 TDI/110 kw (A) Počet válců vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový,

Více

Brzdy automobilu BRZDĚNÍ AUTOMOBILU. Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý Němec V. 14.10.2012. Název zpracovaného celku:

Brzdy automobilu BRZDĚNÍ AUTOMOBILU. Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý Němec V. 14.10.2012. Název zpracovaného celku: Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý Němec V. 14.10.2012 Název zpracovaného celku: Brzdy automobilu Účelem brzd je vozidlo zpomalit, nebo zastavit. DRUHY BRZDOVÝCH SOUSTAV 1.Provozní

Více

Zážehové motory. elektronické vícebodové vstřikování paliva MPI. elektronicky řízené přímé vstřikování paliva Zapalování Mazání Palivo Pohon Pohon

Zážehové motory. elektronické vícebodové vstřikování paliva MPI. elektronicky řízené přímé vstřikování paliva Zapalování Mazání Palivo Pohon Pohon Zážehové motory Technické údaje 1,0 MPI/44 kw 1,0 MPI/55 kw 1,2 TSI/66 kw 1,2 TSI/81 kw 1,2 TSI/81 kw (A) zážehový, řadový, chlazený kapalinou, 2 OHC, uložený zážehový, přeplňovaný turbodmychadlem, řadový,

Více

Vznětové motory. Technické údaje 2,0 TDI/81 kw 2,0 TDI/110 kw Motor Motor Počet válců Zdvihový objem [cm 3 ]

Vznětové motory. Technické údaje 2,0 TDI/81 kw 2,0 TDI/110 kw Motor Motor Počet válců Zdvihový objem [cm 3 ] Vznětové motory Technické údaje 2,0 TDI/81 kw 2,0 TDI/110 kw Počet válců Zdvihový objem [cm 3 ] vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený kapalinou,2 OHC,

Více

Rotační pohyb kinematika a dynamika

Rotační pohyb kinematika a dynamika Rotační pohyb kinematika a dynamika Výkon pro rotaci P = M k. ω úhlová rychlost ω = π. n / 30 [ s -1 ] frekvence otáčení n [ min -1 ] výkon P [ W ] pro stanovení krouticího momentu M k = 9550. P / n P

Více

Vznětové motory. Technické údaje 1,4 TDI/55 kw 1,4 TDI/66 kw 1,4 TDI/66 kw (A) 1,4 TDI/77 kw Motor Motor Počet válců Zdvihový objem [cm 3 ]

Vznětové motory. Technické údaje 1,4 TDI/55 kw 1,4 TDI/66 kw 1,4 TDI/66 kw (A) 1,4 TDI/77 kw Motor Motor Počet válců Zdvihový objem [cm 3 ] Vznětové motory Technické údaje 1,4 TDI/55 kw 1,4 TDI/66 kw 1,4 TDI/66 kw (A) 1,4 TDI/77 kw Počet válců Zdvihový objem [cm 3 ] vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový,

Více

pneumatiky a kola zavěšení kol odpružení řízení

pneumatiky a kola zavěšení kol odpružení řízení Podvozky motorových vozidel Obsah přednášky : pneumatiky a kola zavěšení kol odpružení řízení Podvozky motorových vozidel Podvozky motorových vozidel - nápravy 1. Pneumatiky a kola. Zavěšení kol 3. Odpružení

Více

PŘEVODOVÉ ÚSTROJÍ. přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem

PŘEVODOVÉ ÚSTROJÍ. přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem PŘEVODOVÉ ÚSTROJÍ přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem Uspořádání převodového ústrojí se řídí podle základní konstrukční koncepce automobilu. Ve většině

Více

ZKUŠEBNÍ TEST MVTV 2 technické části zkoušky způsobilosti k řízení speciálních hnacích vozidel

ZKUŠEBNÍ TEST MVTV 2 technické části zkoušky způsobilosti k řízení speciálních hnacích vozidel ZKUŠEBNÍ TEST MVTV 2 technické části zkoušky způsobilosti k řízení speciálních hnacích vozidel 1. Montážní vůz MVTV 2 má pojezd v provedení a) dvojkolí jsou vedena v rámu vozidla s vůlí v příčném směru,

Více

1 PŘEVODNÁ ÚSTROJÍ... 7 2 MOTORY... 93

1 PŘEVODNÁ ÚSTROJÍ... 7 2 MOTORY... 93 OBSAH 1 PŘEVODNÁ ÚSTROJÍ................................. 7 1.1 Účel převodných ústrojí a jejich částí....................... 7 1.2 Spojky................................................ 10 1.2.1 Druhy

Více

Zavěšení kol. Téma 9. Teorie vozidel 1

Zavěšení kol. Téma 9. Teorie vozidel 1 Zavěšení kol Téma 9 Teorie vozidel 1 Zavěšení kol Podvozek = spodní část motorového vozidla, která má následující části: 1. Kolo s pneumatikou (spojuje vozidlo s vozovkou, přenáší síly a momenty, pruží)

Více

Literatura: a ČSN EN s těmito normami související.

Literatura: a ČSN EN s těmito normami související. Literatura: Kovařík, J., Doc. Dr. Ing.: Mechanika motorových vozidel, VUT Brno, 1966 Smejkal, M.: Jezdíme úsporně v silniční nákladní a autobusové dopravě, NADAS, Praha, 1982 Ptáček,P.:, Komenium, Praha,

Více

Stabilizátory (pérování)

Stabilizátory (pérování) Stabilizátory (pérování) Funkce: Omezují naklánění vozidla při jízdě zatáčkou nebo při najetí na překážku. Princip: Propojují obě kola téže nápravy. Při souměrném propružení obou kol vyřazeny z funkce,

Více

PŘEVODY S OZUBENÝMI KOLY KUŽELOVÝMI A ŠROUBOVÝMI PLANETOVÝ PŘEVOD

PŘEVODY S OZUBENÝMI KOLY KUŽELOVÝMI A ŠROUBOVÝMI PLANETOVÝ PŘEVOD PŘEVODY S OZUBENÝMI KOLY KUŽELOVÝMI A ŠROUBOVÝMI PLANETOVÝ PŘEVOD Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál

Více

(lze je rozpojit i za běhu) přenáší pohyb prostřednictvím kapaliny. rozpojovat hřídele za běhu

(lze je rozpojit i za běhu) přenáší pohyb prostřednictvím kapaliny. rozpojovat hřídele za běhu zapis_casti_stroju_spojky08/2012 STR Bc 1 z 6 13. Hřídelové spojky Rozdělení: spojují #1 a přenáší mezi nimi otáčivý #2 Schéma zapojení spojky #4 Další funkce spojek vyrovnávají vyosení spojovaných hřídelů

Více

Název zpracovaného celku: RÁMY AUTOMOBILŮ

Název zpracovaného celku: RÁMY AUTOMOBILŮ Předmět: Ročník: Vytvořil: Datum: SILNIČNÍ VOZIDLA DRUHÝ NĚMEC V. 25.6.2012 Název zpracovaného celku: RÁMY AUTOMOBILŮ Rámy automobilů Rám je základní nosnou částí vozidla. S podvěsy, řízením a příslušenstvím

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registračníčíslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

Technické údaje 1,4 TSI/110 kw ACT 4 4 2,0 TSI/206 kw 4 4 (A) 2,0 TDI/110 kw 4 4 2,0 TDI/140 kw 4 4 (A) Motor

Technické údaje 1,4 TSI/110 kw ACT 4 4 2,0 TSI/206 kw 4 4 (A) 2,0 TDI/110 kw 4 4 2,0 TDI/140 kw 4 4 (A) Motor ŠKODA SUPERB 4 4 zážehový, přeplňovaný turbodmychadlem, řadový, chlazený kapalinou, 2 OHC, uložený vpředu napříč vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií lopatek, řadový, chlazený

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje MODUL 03- TP ing. Jan Šritr 1) Hydrodynamický měnič

Více

CZ.1.07/1.5.00/34.0581. Opravárenství a diagnostika. Princip a části kapalinových brzd

CZ.1.07/1.5.00/34.0581. Opravárenství a diagnostika. Princip a části kapalinových brzd Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_OAD_2.AE_01_KAPALINOVE BRZDY Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Pavel Štanc Tematická oblast

Více

Karoserie a rámy motorových vozidel

Karoserie a rámy motorových vozidel Karoserie a rámy motorových vozidel Karoserie je část vozidla, která slouží k umístění přepravovaných osob nebo nákladu. Karoserie = kabina + ložné prostory plní funkci vozidla Podvozek = rám + zavěšení

Více

Hnací hřídele. Téma 7. KVM Teorie vozidel 1

Hnací hřídele. Téma 7. KVM Teorie vozidel 1 Hnací hřídele Téma 7 KVM Teorie vozidel 1 Hnací hřídele Kloubový hnací hřídel Transmise Přenáší točivý moment mezi dvěma převodovými ústrojími Převodové ústrojí na výstupu je obvykle pohyblivé po definované

Více

Vznětové motory. 81,0 95,5 Maximální výkon/otáčky [kw/min -1 ] 79,5 80,5 88/ / Maximální točivý moment/otáčky [Nm/min -1 ]

Vznětové motory. 81,0 95,5 Maximální výkon/otáčky [kw/min -1 ] 79,5 80,5 88/ / Maximální točivý moment/otáčky [Nm/min -1 ] Vznětové motory Technické údaje 1,6 TDI/88 kw 1,6 TDI/88 kw (A) 2,0 TDI/110 kw 2,0 TDI/110 kw (A) 2,0 TDI/140 kw 2,0 TDI/140 kw (A) Počet válců vznětový, přeplňovaný turbodmychadlem s nastavitelnou geometrií

Více

PŘEVODY S OZUBENÝMI KOLY

PŘEVODY S OZUBENÝMI KOLY PŘEVODY S OZUBENÝMI KOLY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

KOLEJOVÁ ŽELEZNIČNÍ VOZIDLA

KOLEJOVÁ ŽELEZNIČNÍ VOZIDLA KOLEJOVÁ ŽELEZNIČNÍ VOZIDLA DRUHY KOLEJOVÝCH VOZIDEL Hnací vozidla - jsou schopna vyvinout tažnou sílu Přípojná vozidla - nejsou schopna vyvinout tažnou sílu DRUHY HNACÍCH VOZIDEL Lokomotivy - pouze strojní

Více

Řízení. Téma 1 VOZ 2 KVM 1

Řízení. Téma 1 VOZ 2 KVM 1 Řízení Téma 1 VOZ 2 KVM 1 Řízení Slouží k udržování nebo změně směru jízdy vozidla Rozdělení podle vztahu k nápravě řízení jednotlivými koly (natáčením kol kolem rejdového čepu) řízení celou nápravou (především

Více

Konstrukce a technická data traktorů Zetor

Konstrukce a technická data traktorů Zetor 2. kapitola Konstrukce a technická data traktorů Zetor Konstrukční charakteristika traktoru Zetor 15 Traktor Zetor 15 se vyráběl ve Zbrojovce Brno v letech 1948 1949 a stal se tak v pořadí druhým sériově

Více

Řízení. Slouží k udržování nebo změně směru jízdy vozidla

Řízení. Slouží k udržování nebo změně směru jízdy vozidla Řízení Slouží k udržování nebo změně směru jízdy vozidla ozdělení podle vztahu k nápravě 1. řízení jednotlivými koly (natáčením kol kolem rejdového čepu). řízení celou nápravou (především přívěsy) ozdělení

Více

TATRA ARMAX. Obchodní řada ARMAX je určena pro provoz v těžkých terénních a klimatických podmínkách, pro plnění a podporu mírových misí.

TATRA ARMAX. Obchodní řada ARMAX je určena pro provoz v těžkých terénních a klimatických podmínkách, pro plnění a podporu mírových misí. TATRA ARMAX Obchodní řada ARMAX je určena pro provoz v těžkých terénních a klimatických podmínkách, pro plnění a podporu mírových misí. Koncepčně vycházejí vozidla této řady z úspěšných civilních terénních

Více

MECHANICKÉ PŘEVODY STROJE STR A ZAŘÍZENÍ OJE ČÁSTI A MECHANISMY STROJŮ STR

MECHANICKÉ PŘEVODY STROJE STR A ZAŘÍZENÍ OJE ČÁSTI A MECHANISMY STROJŮ STR MECHANICKÉ PŘEVODY STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ MECHANICKÉ PŘEVODY Mechanické převody umožňují spojení hnacích a hnaných členů ve strojích, přičemž umožňují změnu rychlosti otáčení a kroutícího

Více

Hřídelové spojky. Spojky přenáší krouticí moment mezi hnacím a hnaným strojem nebo mezi jednotlivými částmi stroje či mechanismu.

Hřídelové spojky. Spojky přenáší krouticí moment mezi hnacím a hnaným strojem nebo mezi jednotlivými částmi stroje či mechanismu. Hřídelové spojky Spojky přenáší krouticí moment mezi hnacím a hnaným strojem nebo mezi jednotlivými částmi stroje či mechanismu. Další funkce spojek přerušení nebo omezení přenosu M k jako ochrana před

Více

Koncepce vozu OBSAH DOKUMENTU

Koncepce vozu OBSAH DOKUMENTU K o n c e p c e v o z u OBSAH DOKUMENTU 1 Úvod...3 2 Základní technické údaje...3 3 Koncepce vozu...4 3.1 Podvozek...4 3.1.1 Rám...4 3.1.2 Zavěšení...4 3.1.3 Brzdy...4 3.1.4 Ráfky...4 3.1.5 Pneumatiky...4

Více

Koncepční uspořádání převodného ústrojí osobních automobilů

Koncepční uspořádání převodného ústrojí osobních automobilů kubalista Koncepční uspořádání převodného ústrojí osobních automobilů Nejjednodušší uspořádání převodného ústrojí mívají menší osobní automobily (obr. 1.1). Točivý moment se u nich přenáší od vozidlového

Více

Rozvodovka a koncové převody

Rozvodovka a koncové převody 3. KAPITOLA Rozvodovka a koncové převody Skříň rozvodovky s pravým a levým portálem tvoří zadní nápravu traktorů Zetor. Koncepčně je provedení zadní nápravy u všech typů traktorů Z 2011 Z 6945 stejné a

Více

OBSAH PODVOZEK 1 KONTROLA STAVU ŘÍDICÍHO ÚSTROJÍ, KOL A JEJICH ZAVĚŠENÍ... 11

OBSAH PODVOZEK 1 KONTROLA STAVU ŘÍDICÍHO ÚSTROJÍ, KOL A JEJICH ZAVĚŠENÍ... 11 OBSAH PODVOZEK 1 KONTROLA STAVU ŘÍDICÍHO ÚSTROJÍ, KOL A JEJICH ZAVĚŠENÍ............................... 11 1.1 Kontrola vůlí v řízení a v zavěšení kol....................... 12 1.1.1 Mechanická vůle řízení

Více

Projekt: Autodiagnostika pro žáky SŠ - COPT Kroměříž, Registrační číslo: CZ.1.07/1.1.38/01.0006. Převodná ústrojí

Projekt: Autodiagnostika pro žáky SŠ - COPT Kroměříž, Registrační číslo: CZ.1.07/1.1.38/01.0006. Převodná ústrojí Převodná ústrojí Problematika převodných ústrojí je značně rozsáhlá, domnívám se, že několikanásobně překračuje možnosti a rámec tohoto projektu. Ve své práci zdůrazním jen vybrané pasáže, které považuji

Více

Sada Převody Kat. číslo

Sada Převody Kat. číslo Sada Převody Kat. číslo 101.5050 Strana 1 z 24 dynamo převod čelními koly mixér s pohonem převod čelními koly a řemenový převod ruční mixér převod čelními koly soustruh převod čelními koly otočná plošina

Více

OMEZOVAČE KROUTICÍHO MOMENTU

OMEZOVAČE KROUTICÍHO MOMENTU OMEZOVAČE KROUTICÍHO MOMENTU Přehledový katalog www.ulmer.cz Prezentace Firma Ulmer s.r.o. spolupracuje s renomovanou italskou firmou ComInTec S.r.l., která již 40 let vyrábí pod obchodní značkou OMC komponenty

Více

Pružné spoje 21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují

Pružné spoje 21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03-TP ing. Jan Šritr ing. Jan Šritr 2 1 ohybem

Více

Rámy a karoserie vozidel

Rámy a karoserie vozidel Rámy a karoserie vozidel Téma 10 Teorie vozidel 1 Karoserie Karoserie je část vozidla, určená k přepravě osob a nákladu a k jejich ochraně před nepříznivými vnějšími vlivy. Zajišťuje komfort a ochranu

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

Odpružení automobilů

Odpružení automobilů Předmět: Ročník: Vytvořil: Datum: Silniční vozidla Druhý NĚMEC V. 20. 7. 2012 Název zpracovaného celku: Odpružení automobilů Všechna vozidla motorová i kolejová jsou vybavena pružinami, které jsou umístěny

Více

1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy.

1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. 1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. Výtahy pracuji přerušovaně nebo plynule. Nastupování osob do výtahů nebo

Více

T163 - JAMAL. Pracovní stroj. Obchodní řada vozidel T 163 - JAMAL navazuje. na nejúspěšnější verze vozidel TATRA. Tyto

T163 - JAMAL. Pracovní stroj. Obchodní řada vozidel T 163 - JAMAL navazuje. na nejúspěšnější verze vozidel TATRA. Tyto T163 - JAMAL Obchodní řada vozidel T 163 - JAMAL navazuje na nejúspěšnější verze vozidel TATRA. Tyto těžké kapotové sklápěče pro silniční a zvláštní provoz mimo silnice nabízí TATRA, a. s. jako jeden z

Více

Terénní užitkové vozidlo

Terénní užitkové vozidlo Terénní užitkové vozidlo Společník pro práci a volný čas Mechron Je jedno, zda chcete pracovat na farmě nebo v lese, Kioti Mechron 4 4 se hodí pro všechny práce. Se čtyřmi nezávisle zavěšenými koly zadní

Více

Převodovka je realizace mechanického převodu, tj. technické zařízení, které mění vstupní rotační pohyb na rotační pohyb s obecně jinou úhlovou

Převodovka je realizace mechanického převodu, tj. technické zařízení, které mění vstupní rotační pohyb na rotační pohyb s obecně jinou úhlovou PŘEVODOVKY Převodovka je realizace mechanického převodu, tj. technické zařízení, které mění vstupní rotační pohyb na rotační pohyb s obecně jinou úhlovou rychlostí (otáčkami) a točivým momentem. Obvyklé

Více

Řízení motorového vozidla:

Řízení motorového vozidla: Řízení motorového vozidla: Účel: - natočením kol do rejdu měnit směr jízdy - umožnit rozdílný úhel rejdu rejdových kol při průjezdu zatáčkou - dostatečně zvětšit silový moment pro ovládání rejdových kol

Více

Řízení služeb provozu vojenské techniky a materiálu

Řízení služeb provozu vojenské techniky a materiálu Řízení služeb provozu vojenské techniky a materiálu T 2 - Používání VTM výzbroje a ostatní techniky Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního

Více

1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy.

1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. 1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. Výtahy pracuji přerušovaně nebo plynule. Nastupování osob do výtahů nebo

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

2. Použití páteřového nástavného rámu je nejvýhodnější pro: a) terénní nákladní automobily b) autobusy c) motocykly

2. Použití páteřového nástavného rámu je nejvýhodnější pro: a) terénní nákladní automobily b) autobusy c) motocykly Kontrolní test 1. Samonosná karoserie má: a) žebřinový rám b) nemá rám c) plošinový rám 2. Použití páteřového nástavného rámu je nejvýhodnější pro: a) terénní nákladní automobily b) autobusy c) motocykly

Více

ÚVOD DO PROBLEMATIKY TEKUTINOVÝCH MECHANISMŮ HYDROSTATICKÉ, PNEUMATICKÉ A HYDRODYNAMICKÉ

ÚVOD DO PROBLEMATIKY TEKUTINOVÝCH MECHANISMŮ HYDROSTATICKÉ, PNEUMATICKÉ A HYDRODYNAMICKÉ ÚVOD DO PROBLEMATIKY TEKUTINOVÝCH MECHANISMŮ HYDROSTATICKÉ, PNEUMATICKÉ A HYDRODYNAMICKÉ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice

Více

Geometrie řízení VY_32_INOVACE_AUT2_11

Geometrie řízení VY_32_INOVACE_AUT2_11 Geometrie řízení VY_32_INOVACE_AUT2_11 Geometrická poloha kol má zásadní vliv na bezpečnost provozu vozidel. Za jedoucím vozidlem zanechávají odvalující se kola stopy. Aby se kola vozidla odvalovala při

Více

DIESELOVÁ KOMPAKTNÍ TRAKTOROVÁ SEKAČKA

DIESELOVÁ KOMPAKTNÍ TRAKTOROVÁ SEKAČKA DIESELOVÁ KOMPAKTNÍ TRAKTOROVÁ SEKAČKA G Síla, G23/G26 Profesionální žací technika s integrovaným sběrným košem ovladatelnost a výdrž vysoce výkonné traktorové sekačky s integrovaným systémem vyprazdňování

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje MODUL 03 - TP ing. Jan Šritr ing. Jan Šritr 2 1 ing.

Více

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4 EZINÁPRAVOVÁ SPOJKA HALDEX 4. GENERACE ezinápravová spojka Haldex 4. generace ezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia

Více

b) P- V3S M2 valník P V3S valník

b) P- V3S M2 valník P V3S valník P - V3S a) P-V3S valník Automobil P-V3S je třínápravový střední nákladní terénní automobil 6 x 4 x 2 s polokapotovou valníkovou karosérií. Je určen pro přepravu materiálu nebo osob po komunikacích i v

Více

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Stručný obsah Předmluva xvii Část 1 Základy konstruování 2 1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí 119 5 Analýza deformací 185 Část 2 Porušování

Více