Přednáška 13 Redukce dimenzionality

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 13 Redukce dimenzionality"

Transkript

1 Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 / 19

2 Motivace pro redukci dimezionality Prokletí dimenzionality obtížnost učení roste exponenciálně s počtem dimenzí, v řadě problémů je ale vnitřní dimenzionalita nižší než ta nominální, tj. než je počet příznaků. Snížení dimenzionality transformace z prostoru vyšší dimenze do prostoru nižší dimenze s co nejmenší ztrátou informace, typicky jde o maximalizaci rozptylu, zachování podobnosti mezi objekty atd. Jednu metodu snížení dimenzionality již známe samoorganizující se mapy, redukce dosáhneme náhradou původních souřadnic objektů souřadnicemi jim nejbližšího neuronu v mřížce sousednosti. ČVUT (FEL) Redukce dimenzionality 2 / 19

3 Motivace pro redukci dimezionality (II) ČVUT (FEL) Redukce dimenzionality 3 / 19

4 Analýza hlavních komponent Jde o statistickou metodu pro redukci dimenzionality. Označení PCA z anglického Principal Component Analysis. Jde o lineární transformaci nové příznaky jsou lineární kombinací původních, v původním prostoru je lze popsat jako osy, první osa vede směrem, který má největší rozptyl hodnot, druhá osa směrem, kde je druhý největší rozptyl, atd. osy jsou ortogonální, tedy vzájemně pravoúhlé. Vrátí stejný počet nových os, jako mají původní data dimenzí je tedy bezeztrátová, ale já se mohu rozhodnout některé nepoužít. ČVUT (FEL) Redukce dimenzionality 4 / 19

5 Analýza hlavních komponent (II) Kudy vede osa s největším rozptylem hodnot? ČVUT (FEL) Redukce dimenzionality 5 / 19

6 Analýza hlavních komponent (II) Kudy vede osa s největším rozptylem hodnot? ČVUT (FEL) Redukce dimenzionality 6 / 19

7 Analýza hlavních komponent (II) Kudy vede osa s největším rozptylem hodnot? ČVUT (FEL) Redukce dimenzionality 7 / 19

8 Analýza hlavních komponent (III) Výpočet nových souřadnic pomocí kovariance, vlastních čísel a vlastních vektorů. Uvažujme projekci na u 1 jednotkové délky projekce objektů xi do nové osy dosáhneme skalárním součinem u 1 x i resp. u T 1 x i, střední hodnota projekce v dané ose odpovídá projekci střední hodnoty u 1 x resp. u T 1 x, maximalizujeme-li rozptyl projekce, maximalizujeme výraz 1 N N (u T 1 x i u 1T x) 2 = u T 1 Su 1 i=1 kde N je počet instancí a S je kovarianční matice dat, řešením je největší vlastní vektor S Su 1 = λu 1 u1 je první hlavní komponentou, další z dalších vlastních vektorů. ČVUT (FEL) Redukce dimenzionality 8 / 19

9 Využití PCA obecně PCA je nejčatěji používanou metodou redukce dimenze silný předpoklad linearity vztahů mezi proměnnými nemusí vždy platit, umožňuje ale robustní výpočet i pro malý počet trénovacích instancí vzhledem k dimenzi. Další využití má v dekorelaci proměnných ta může být na obtíž např. u lineární regrese. Nevýhodou je umělost nových os jež znesnadňuje interpretaci získaných výsledků: petal length petal width sepal length sepal width. ČVUT (FEL) Redukce dimenzionality 9 / 19

10 Vztah PCA a LDA Obě metody jsou lineární transformací použitelnou pro snížení dimenze. Maximalizace rozptylu nebere nijak v potaz závisle proměnnou. PCA není optimální z hlediska možné příští separace tříd. Tuto separaci maximalizuje Fisherův diskriminant použitý v lineární diskriminační analýze. ČVUT (FEL) Redukce dimenzionality 10 / 19

11 Využití PCA v SOM Mohu provést PCA projekci SOM sítě do 2D a zobrazit si ji. ČVUT (FEL) Redukce dimenzionality 11 / 19

12 Sammonova projekce Jinou možností redukce dimenze je Sammonova projekce. Ta netransformuje osy, ale znovu umísťuje objekty v novém (méně dimenzionálním) prostoru. Při umisťování se snaží zachovat vztahy v datech (data, která byla blízko v původním prostoru, budou blízko i v novém prostoru). ČVUT (FEL) Redukce dimenzionality 12 / 19

13 Sammonova projekce (2) Sammonova projekce minimalizuje stresovou funkci: 1 (dist E = (x i, x j ) dist(x i, x j )) 2 i<j dist (x i, x j ) dist (x i, x j ) dist (x i, x j ) je vzdálenost x i a x j v původním prostoru. i<j dist(x i, x j ) je vzdálenost x i a x j v novém prostoru (v projekci). Pro minimalizaci se používají standardní optimalizační metody pro tuto úlohu typicky iterační metody. Při minimalizaci se pohybuje body v novém prostoru (v projekci). Tím ovlivníte dist(x i, x j ) a můžete dosáhnout zmenšení E. ČVUT (FEL) Redukce dimenzionality 13 / 19

14 Sammonova projekce - ukázka Ukázka několika iterací Sammonovy projekce na Iris datech. Počáteční stav 1. iterace 10. iterace ČVUT (FEL) Redukce dimenzionality 14 / 19

15 SOM vs PCA SOM je nelineárním zobecněním PCA. ČVUT (FEL) Redukce dimenzionality 15 / 19

16 Výběr relevatních příznaků Co mohu dělat v úlohách, kde je určena závisle proměnná? Co mohu dělat kromě transformace, tj. extrakce nových příznaků? Potřebuji opravdu všechny vstupní proměnné ke klasifikaci? Při klasifikaci zdravých a nemocných lidí asi bude hrát větší roli jejich teplota a tlak, než barva vlasů. Techniky, které vybírají vhodné vstupní proměnné, se označují jako feature selection (případně feature ranking) metody. A dělí se do dvou hlavních kategorií: feature selection tyto metody dodají seznam vstupních proměnných (atributů), které považují za důležité, feature ranking tyto metody přiřadí každému atributu skóre, který indikuje vliv atributu na výstupní třídu. ČVUT (FEL) Redukce dimenzionality 16 / 19

17 Feature selection Typicky hledají podmnožinu atributů, na které model ještě funguje dobře. Dělí se do 3 hlavních kategorií: Wrappers vyberou skupinu atributů, nad ní naučí nějaký model, spočítají jeho přesnost a podle přesnosti upraví skupinu atributů, atd... Filters vybírají atributy nezávisle na modelu, vyhodnocují se tzv. filtry těmi se v této souvislosti rozumí například korelace mezi vybranou skupinou vstupů a výstupem nebo vzájemná informace,... obvykle časově méně náročný přístup, mohou vybírat vzájemně redundantní příznaky. Embedded techniques tento způsob je zabudován do učícího algoritmu modelu a podle toho, které proměnné model využívá, se sestavuje seznam důležitých atributů. ČVUT (FEL) Redukce dimenzionality 17 / 19

18 Feature selection (2) Při hledání vhodné kombinace se často uplatňuje hladový přístup. Nejprve hledám množinu s jedním atributem, která má nejvyšší skóre (například nejvyšší přesnost modelu). K této jednoprvkové množině zkouším přidávat další atribut a hledám, který přinese největší zlepšení modelu. Pak hledám třetí, a tak dále, dokud se model nepřestane zlepšovat. ČVUT (FEL) Redukce dimenzionality 18 / 19

19 Feature ranking Přiřazuje každé vstupní proměnné skóre, které určuje její významnost. Často se používají stejné metody, které se na předchozím slajdu označovaly jako filters: vzájemná informace mezi jednotlivými atributy a výstupem, korelace, informační entropie, přesnost perceptronu s jedním vstupem. Je pak na člověku, jak těchto informací využije. ČVUT (FEL) Redukce dimenzionality 19 / 19

Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)

Více

Miroslav Čepek

Miroslav Čepek Vytěžování Dat Přednáška 5 Self Organizing Map Miroslav Čepek Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 21.10.2014 Miroslav Čepek

Více

Státnice odborné č. 20

Státnice odborné č. 20 Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Zpracování digitalizovaného obrazu (ZDO) - Popisy III

Zpracování digitalizovaného obrazu (ZDO) - Popisy III Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování

Více

Miroslav Čepek 16.12.2014

Miroslav Čepek 16.12.2014 Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 16.12.2014

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/32 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology

Více

LDA, logistická regrese

LDA, logistická regrese Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Klasifikace a rozpoznávání. Extrakce příznaků

Klasifikace a rozpoznávání. Extrakce příznaků Klasifikace a rozpoznávání Extrakce příznaků Extrakce příznaků - parametrizace Poté co jsme ze snímače obdržely data která jsou relevantní pro naši klasifikační úlohu, je potřeba je přizpůsobit potřebám

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma

Více

Předzpracování dat. Lenka Vysloužilová

Předzpracování dat. Lenka Vysloužilová Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Ordinační analýzy principy redukce dimenzionality Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Ordinační analýza a její cíle Cíle ordinační analýzy

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Získávání znalostí z dat

Získávání znalostí z dat Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace

Více

Statistické modely tvaru a vzhledu

Statistické modely tvaru a vzhledu Kapitola 1 Statistické modely tvaru a vzhledu V této kapitole nastíním problematiku statistických modelů tvaru, jejich využití a metod potřebných pro jejich výpočet a použití. Existují dvě hlavní metody;

Více

Statistická analýza dat

Statistická analýza dat Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte

Více

Měření dat Filtrace dat, Kalmanův filtr

Měření dat Filtrace dat, Kalmanův filtr Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah

Více

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost. Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy

Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování

Více

AVDAT Mnohorozměrné metody metody redukce dimenze

AVDAT Mnohorozměrné metody metody redukce dimenze AVDAT Mnohorozměrné metody metody redukce dimenze Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování vlastní čísla a vlastní vektory A je čtvercová matice řádu n. Pak

Více

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 1/50 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical

Více

Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.

Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci. Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci

Více

Extrakce a selekce příznaků

Extrakce a selekce příznaků Extrakce a selekce příznaků Based on slides Martina Bachlera martin.bachler@igi.tugraz.at, Makoto Miwa And paper Isabelle Guyon, André Elisseeff: An Introduction to variable and feature selection. JMLR,

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

Pokročilé neparametrické metody. Klára Kubošová

Pokročilé neparametrické metody. Klára Kubošová Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle kurzu: seznámit posluchače s vybranými statistickými metodami, které jsou aplikovatelné v ekonomických

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Matematika pro geometrickou morfometrii

Matematika pro geometrickou morfometrii Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 3 1/29 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

Selekce a extrakce příznaků 2

Selekce a extrakce příznaků 2 Selekce a extrakce příznaků. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Selekce a extrakce příznaků Proč?..............................................................................................................

Více

Předzpracování dat. Pavel Kordík. Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague

Předzpracování dat. Pavel Kordík. Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Cvičení 1: Visualizace MI-PDD, 09/2011 MI-POA Evropský sociální fond

Více

Algoritmy pro shlukování prostorových dat

Algoritmy pro shlukování prostorových dat Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň

Více

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost

Více

Úvod do vícerozměrných metod. Statistické metody a zpracování dat. Faktorová a komponentní analýza (Úvod do vícerozměrných metod)

Úvod do vícerozměrných metod. Statistické metody a zpracování dat. Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Úvod do vícerozměrných metod Statistické metody a zpracování dat Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný O řadě jevů či procesů máme k dispozici ne jeden statistický

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Statistické metody a zpracování dat. IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný

Statistické metody a zpracování dat. IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný Statistické metody a zpracování dat IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný Úvod do vícerozměrných metod O řadě jevů či procesů máme k dispozici ne jeden statistický

Více

Měření dat Filtrace dat, Kalmanův filtr

Měření dat Filtrace dat, Kalmanův filtr Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

Katedra kybernetiky, FEL, ČVUT v Praze.

Katedra kybernetiky, FEL, ČVUT v Praze. Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.

Více

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Geometrické transformace

Geometrické transformace 1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37.

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37. Vzorová úloha 4.7 Užití lineární diskriminační funkce Předpokládejme, že máme data o 2 třídách objektů tibetských lebek v úloze B4.14 Aglomerativní hierarchické shlukování při analýze lebek Tibeťanů: prvních

Více

Klasifikační metody pro genetická data: regularizace a robustnost

Klasifikační metody pro genetická data: regularizace a robustnost Odd medicínské informatiky a biostatistiky Ústav informatiky AV ČR, vvi Práce vznikla za finanční podpory Nadačního fondu Neuron na podporu vědy Klasifikační metody pro genetická data Regularizovaná klasifikační

Více

Asociační i jiná. Pravidla. (Ch )

Asociační i jiná. Pravidla. (Ch ) Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Faktorová analýza (FACT)

Faktorová analýza (FACT) Faktorová analýza (FAC) Podobně jako metoda hlavních komponent patří také faktorová analýza mezi metody redukce počtu původních proměnných. Ve faktorové analýze předpokládáme, že každou vstupující proměnnou

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Algoritmy a struktury neuropočítačů ASN P3

Algoritmy a struktury neuropočítačů ASN P3 Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální

Více

Analýza hlavních komponent

Analýza hlavních komponent Analýza hlavních komponent Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Analýza

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Detekce neznámých typů mutantů na základě odlišnosti kinetiky fluorescence

Detekce neznámých typů mutantů na základě odlišnosti kinetiky fluorescence Detekce neznámých typů mutantů na základě odlišnosti kinetiky fluorescence Jan Vaněk 1, Radek Tesař 1, Jan Urban 1, Karel Matouš 2 1 Katedra kybernetiky, Fakulta aplikovaných věd, Západočeská univerzita

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah

Více

ZX510 Pokročilé statistické metody geografického výzkumu

ZX510 Pokročilé statistické metody geografického výzkumu ZX510 Pokročilé statistické metody geografického výzkumu Téma: Explorační faktorová analýza (analýza hlavních komponent) Smysl a princip faktorové analýzy v explorační verzi není faktorová analýza určena

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

(n, m) (n, p) (p, m) (n, m)

(n, m) (n, p) (p, m) (n, m) 48 Vícerozměrná kalibrace Podobně jako jednorozměrná kalibrace i vícerozměrná kalibrace se používá především v analytické chemii Bude vysvětlena na příkladu spektroskopie: cílem je popis závislosti mezi

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Umělé neuronové sítě

Umělé neuronové sítě Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační

Více

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Algoritmy a struktury neuropočítačů ASN P6

Algoritmy a struktury neuropočítačů ASN P6 Algoritmy a struktury neuropočítačů ASN P6 Syntéza neuronových sítí Optimalizace struktury Klestění neuronové sítě Výběr vstupních dat Syntéza neuronových sítí kanonické N je počet neuronů N=N krit dělení

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody

Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte

Více

OSA. maximalizace minimalizace 1/22

OSA. maximalizace minimalizace 1/22 OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,

Více

1 0 0 u 22 u 23 l 31. l u11

1 0 0 u 22 u 23 l 31. l u11 LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 3. přednáška SIMPLEXOVÁ METODA I. OSNOVA PŘEDNÁŠKY Standardní tvar MM Základní věta LP Princip simplexové metody Výchozí řešení SM Zlepšení řešení

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Pokročilé neparametrické metody. Klára Kubošová

Pokročilé neparametrické metody. Klára Kubošová Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení

Více

Miroslav Čepek

Miroslav Čepek Vytěžování Dat Přednáška 4 Shluková analýza Miroslav Čepek Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 14.10.2014 Miroslav Čepek

Více

Self Organizing Map. Michael Anděl. Praha & EU: Investujeme do vaší budoucnosti. 1 / 10 Slef Organizing Map

Self Organizing Map. Michael Anděl. Praha & EU: Investujeme do vaší budoucnosti. 1 / 10 Slef Organizing Map Vytěžování dat 6: Self Organizing Map Michael Anděl Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fakulta elektrotechnická, ČVUT 1 / 10 Slef Organizing Map SOM Toolbox V dnešním cvičení

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

3. Metody analýzy časových řad v klimatologii

3. Metody analýzy časových řad v klimatologii 3. Metody analýzy časových řad v klimatologii 3.1 Periodicita a cykličnost Klima je vyjádřeno různými prvky (např. teplota vzduchu, srážky, indexy), kolísajícími v prostoru a čase: {a, b, c, } = f (x,

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

Hledání optimální polohy stanic a zastávek na tratích regionálního významu

Hledání optimální polohy stanic a zastávek na tratích regionálního významu Hledání optimální polohy stanic a zastávek na tratích regionálního významu Václav Novotný 31. 10. 2018 Anotace 1. Dopravní obsluha území tratěmi regionálního významu 2. Cíle výzkumu a algoritmus práce

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT

MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT 8. licenční studium Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT Příklady: ) Najděte vlastní (charakteristická) čísla a vlastní

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více