Vytěžování znalostí z dat
|
|
- Vladimír Matějka
- před 6 lety
- Počet zobrazení:
Transkript
1 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 1/50 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 10: SOM BI-VZD, 09/2011 MI-POA Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
2 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 2/50 SOM SOM = SelfOrganizingMaps, Prof. TeuvoKohonen, Finsko, TU Helsinki, 1981, od té doby se eviduje několik tisíc vědeckých literárních odkazů. Původní aplikace: fonetický psací stroj.
3 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 3/50 SOM Kompetiční učení Jedinci (elementy, neurony) spolu soutěží Příklad bezdomovci a kontejnery Pamatuji si, kde byla dobrá kořist Vyhraje ten, kdo přijde dřív Musím být poblíž, aby mě někdo nepředběhl Když se dozvím o novém kontejneru, a mám šanci ho vybrat, musím se přesunout blíže k němu Kdo se to nenaučí, umře hlady Vede na teritoriální uspořádání, reflektující rozmístění kontejnerů a jejich využívanost
4 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 4/50 Přírodou inspirované Kompetiční učení Nepotřebuji žádného arbitra, který by jedincům stále říkal, kam mají jít učení bez učitele Jedinci se učí z příkladů Systém se v průběhu času organizuje sám samoorganizuje A teď to aplikujeme na shlukovou analýzu
5 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 5/50 Shluková analýza a kompetice Prozradí nám něco pozice bezdomovců o rozmístění kontejnerů? Co to je shluk? Množina bodů, které jsou si blízko a mají daleko k ostatním. Co to znamená daleko? Viz metriky Bezdomovec reprezentant shluku kontejnerů
6 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 6/50 SOM Shluky, reprezentanti Obrázek si můžeme představit jako teritoria čtyř bezdomovců -veteránů Každý bezdomovec je reprezentant shluku kontejnerů Sever Západ Východ Jak simulovat pohyb bezdomovců? K-means? Jih
7 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 7/50 SOM K-means
8 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 8/50 SOM Jiný pohled na K-means Středy (reprezentanti) soutěží o data Používá strategii vítěz bere vše (Winner Takes All) Všechno jídlo zkonzumuje bezdomovec, který ke kontejneru dorazí první Chyba se počítá jako E= Nebo také = 1, Kde funkce 1 WTA je 1, pokud je i-tý střed nejblíže j-tému vzoru, 0 jinak Tato chyba se také jmenuje kvantizační
9 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 9/50 SOM Co to je vektorová kvantizace? Cílem kvantizacevektorů (VectorQuantization) je aproximovat hustotu pravděpodobnosti p(x) rozložení reálných vstupních vektorů x є R n pomocí konečného počtu reprezentantů w i є R n. Tedy přesně to, o co se snažíme.
10 SOM Problém se komplikuje Co se stane, když bezdomovec nestihne kontejner vybrat celý? Zbytek dostanou nejbližší Neplatí vítěz bere vše! Okolí = definuje vzdálenost, ze které se ještě vyplatí přijít. 1 st Velmi malé okolí -vítěz bere vše Velmi velké okolí - komunismus 2 nd 3 rd Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 10/50
11 SOM Neuronový plyn (perestrojka ) Název berte z rezervou, nepracuje se s neurony, ale spíše s agenty (středy). Pseudokód: Náhodně inicializuj středy, zvol velké okolí Předlož vektor x j Pro všechny středy Spočítej pořadí vzdáleností od vektoru Uprav vzdálenosti (x j - µ i ) v závislosti na pořadí a velikosti okolí - (exp) Přemísti středy opakuj (s menším okolím) Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 11/50
12 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 12/50 SOM Neuronový plyn
13 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 13/50 Problémse stále komplikuje Co se stane, když se vítězný bezdomovec rozdělí jen s kamarády? Okolí již neudává vzdálenost v původním prostoru dat, ale v prostoru kamarádství. Velmi malé okolí - individualisté Velmi velké okolí - hippies 2 nd 1 st 3 rd
14 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 14/50 SOM Samoorganizujícíse mapa (SOM) Kamarádství pro jednoduchost znázorněno mřížkou
15 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 15/50 Existence okolí! SOM Jak se liší od k-means? g(x) x Používá se: 1. při učení, 2. někdy k určování vítěze.
16 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 16/50 SOM inspirace Ne bezdomovci, ale mozek. Řídící centra souvisejících orgánů spolu sousedí.
17 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 17/50 SOM architektura 1/3 Reprezentant Typicky: 2D pole reprezentantů (také se jim nepřesně říká neurony)
18 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 18/50 SOM architektura 2/3 2D- uspořádání (do mřížky) je nejtypičtější. Neurony lze ale uspořádat lineárně (1D-dost často), nebo prostorově (3D- velmi výjimečně). Uspořádání slouží k tomu, aby měl neuron definované sousedy ve svém okolí. Kohonenovo doporučení: obdélníková SOM!
19 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 19/50 SOM SOM architektura 3/3 Každý neuron má vektor vah w, vektory se porovnávají se vstupním vektorem x, vybírá ten se nejpodobnější BMU Neuron, který nejlépe odpovídá (BMU) je reprezentant vektoru přiloženého na vstup
20 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 20/50 Timo Honkela (Description of Kohonen's Self-Organizing Map)
21 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 21/50 SOM SOM neuron 1/2 Vyhodnocuje podobnost předloženého vstupní-ho vektoru od (ve vahách w i ) zapamatovaného, reprezentanta, referenčního vektoru. Podobnost = např. Eukleidovská vzdálenost: =arg SOM neuron je tedy reprezentantem shluku.
22 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 22/50 Učení Kohonenovy sítě 1/3 Nezapomeňte: učicí algoritmus uspořádává neurony v mřížce tak, aby reprezentovaly předložená vstupní data. Otázka k přemýšlení: co se děje s vahami neuronů v průběhu času?
23 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 23/50 SOM Učení Kohonenovy sítě 2/3 1. Inicializace, 2. předložení vzoru, 3. výpočet vzdálenosti, 4. výběr nejpodobnějšího neuronu, 5. přizpůsobení vah, +1 = + ( ) ( ) 6. goto2. Rozumíte vzorci? Váhy jakých neuronů se přizpůsobují?
24 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 24/50 SOM Příklad 0.52 X = W 1 = W 2 = 0.81 W 3 = d d d ( x1 w11 ) + ( x2 w21) = = ( ) + ( ) = ( x1 w12 ) + ( x2 w22 ) = = ( ) + ( ) = ( x1 w13 ) + ( x2 w23) = = ( ) + ( ) = Vyhrál třetí neuron je nejblíže
25 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 25/50 SOM Příklad Přiblížím ho ke vzoru [ ] ( + 1) = ( ) + η( ) ( ) ( ) w t w t t x t w t ij ij i ij w13 = η (t) ( x1 w13 ) = 0.1( ) = 0.01 w23 = η (t)( x2 w23) = 0.1( ) = 0.01 W3 ( p + 1) = W3 ( p) + W3 ( p) = = Upravil jsem váhy pouze BMU vítěznému neuronu Zde tedy vítěz bere vše!
26 SOM Takhle to vypadá, když updatuji také okolní neurony Slide by Johan Everts Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 26/50
27 SOM Učení Kohonenovy sítě 3/3 Velkou roli při učení hraje okolí: topologické uspořádání, vzdálenost sousedů. Okolí se v čase mění: jeho průměr s časem klesá (až k nulovému). změna se realizuje sdruženým učicímparametrem η(t). Takhle to vypadá, když updatuji také okolní neurony Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 27/50
28 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 28/50 SOM Příklad okolí: Gaussovské η ij * ( t) = α( t) r * j. exp 2 2 σ r i ( t) 2, Člen α(t) představuje učicí krok, druhý člen pak tvar okolí (v tomto případě Gaussova křivka s proměnným tvarem v čase).
29 SOM Příklad okolí: Gaussovské Distance related learning Slide by Johan Everts Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 29/50
30 SOM Visualizace: klasická SOM Problém jak zobrazit pozici neuronů (reprezentantů) Dimenze vah = dimenze vstupního vektoru Potřebuji zobrazit ve 2D, jak? U-matice, analýza hlavní komponenty (PCA), Sammonova nelineární projekce. Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 30/50
31 SOM U-matice (Unified distance) Matice vzdáleností mezi váhovými vektory jednotlivých neuronů, typicky se vizualizuje, vzdáleností vyjádřeny barvou světlá barva = malá vzdálenost. Zobrazuje strukturu vzdáleností v prostoru dat. Poloha BMU odráží topologii dat. Barva neuronu je vzdálenost je váhového vektoru od všech ostatních váhových vektorů Tmavé váhové vektory jsou vzdáleny od ostatních datových vektorů ve vstupním prostoru. Světlé váhové vektory jsou obklopeny cizími vektory ve vstupním prostoru. Kopce oddělují clustery (údolí). Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 31/50
32 SOM Příklad U-matice Data: Neurony Vzdálenosti mezi sousedními neurony Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 32/50
33 SOM P-matrix (Pareto density estimation) Zobrazuje počet datových vektorů ze vstupního prostoru, které patří do koule kolem jeho váhového vektoru (s poloměrem nastaveným podle Paretova pravidla). Odráží hustotu dat. Neurony s velkou hodnotou jsou umístěny do hustých oblastí vstupního prostoru. Neurony s malou hodnotou jsou osamělé ve vstupním prostoru. údolí oddělují clustery ( náhorní plošiny ). Doplňuje informace získané z U-matice. Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 33/50
34 SOM Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 34/50 U*-Matrix Kombinace U-Matice a P-Matice Je to U-matice, korigovaná hodnotami v P-matici. Vzdálenosti mezi sousedními neurony (neurony aa bv mřížce) jsou vypočítány z U-matice a jsou váženy hustotou vektorů kolem neuronu a.
35 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 35/50 SOM Nevýhody UMAT, PMAT, Zobrazují jen vzdálenosti mezi sousedy Při novém naučení sítě na stejných datech můžou vypadat jinak (můžou být např otočeny o 90 stupňů) Nejsou intuitivně interpretovatelné, pokud nevíte co přesně je barvou kódováno. Jak ale zobrazit n-rozměrná data ve 2D, abychom pokud možno zachovali originální vzdálenosti?
36 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 36/50 SOM PCA nebo LDA Nové souřadnice vzniknou jako lineární kombinace původních dimenzí Algoritmus se jmenuje Analýza hlavní komponenty (Principal Component Analysis) špatná dobrá
37 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 37/50 SOM Sammonova projekce Mějme N vektorů v L-dimenzionálním prostoru, které označme x i,i=1,...,n.knimnechťpatříndvoudimenzionálníchvektorů označených y i, i = 1,..., N. Označme dále vzdálenost mezi vektory x i a x j v L-dimenzionálním prostoru D ij a vzdálenost odpovídajících si vektorů y i a y j symbolem d ij. Potom Sammonova projekce mapuje vstupní prostor na výstupní na základě minimalizace této chybové funkce: E sam = N 1 N i< j Dij i< j ( d D ) ij ij D ij 2..
38 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 38/50 SOM Sammonova projekce Iterativně minimalizuje distorzi vzdáleností mezi daty v původním prostoru a v novém prostoru Jaká je složitost výpočtu s počtem dimenzí a počtem dat? Co se stane, když chceme promítnout nový bod? x 1 y 2 x 3 d( i, j) x 2 E = N 1 N i= 1 j= i+ 1 N 1 1 d( i, j) N i= 1 j= i+ 1 ( * d( i, j) d ( i, j) ) d( i, j) 2 d * ( i, y 1 j)
39 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 39/50 SOM Aplikace SOMU Aplikace SOMU
40 SOM Aplikace SOMU Websom Podobnost stránek Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 40/50
41 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 41/50 ReefSOM SOM Aplikace SOMU
42 SOM Aplikace SOMU Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 42/50
43 SOM Aplikace SOMU Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 43/50 SOM vlastnosti VQ vektorovákvantizace, vícevektorůse mapujedo jednohoneuronu(jehováhovéhovektoru), jakpřesně? -> kvantizační chyba. Komprese dimenze vstupního prostoru. Zachování topologie dat sousední(ve vstupním prostoru) vektoryse mapujído sousedních(v mřížce) neuronů, jak kvalitně? -> topografická chyba. SOM má energetickoufunkci, kterouminimalizuje-> zkreslení.
44 SOM Aplikace SOMU Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 44/50 Zkreslení SOM Průměrnávzdálenostmezikaždýmdatovýmvektorema jeho BMU. Určujepřesnostmapování(vektorovékvantizace) už známe c i je váhovývektorneuronu m j je vektordat h bij je funkceokolí
45 SOM Aplikace SOMU Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 45/50 Topografická chybasom Počet vstupních vektorů, pro které vítězný neuron a druhý vítězný neuron nejsou sousedi v mřížce. u(ci) je 1, když sousedi nejsou, jinak 0 V procentech počet vzorků, u nichž nebyla zachována topologie.
46 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 46/50 SOM Aplikace SOMU Software: Zajímavý a hlavně použitelný SW SOM_PAK: český návod na ovládání Matlab SOM toolbox SOMPAK addon Zooming SOM TKM, RSOM
47 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 47/50 Gaussovská směs Gaussovskásměs Mnoharozměrná gaussovskáhustota pravděpodobnosti 1D gaussovská funkce g ( x b) 2c ( x) = ae Vícedimenzionální směs 2 2 M a C? normalizace - pravděpodobnost vážený průměr K gaussovek
48 Gaussovská směs Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 48/50 Směs gausovských rozdělení M k a C k počítáme např. pomocí EM algoritmu Každá gaussovkajeden shluk předpokládá normální rozdělení dat ve shluku
49 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 49/50 Aplikační oblasti shlukové analýzy Aplikační oblasti shlukové analýzy Hledání podobností v datech Určování významnosti proměnných Detekce odlehlých instancí Redukce dat
50 Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 10 50/50 Demo Demo Shlukování studentů FIT
Přednáška 12: Shlukování
České vysoké učení technické v Praze Fakulta informačních technologií Katedra teoretické informatiky Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-ADM Algoritmy data miningu (2010/2011)
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
Miroslav Čepek
Vytěžování Dat Přednáška 5 Self Organizing Map Miroslav Čepek Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 21.10.2014 Miroslav Čepek
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/32 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Algoritmy a struktury neuropočítačů ASN P3
Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností
Samoučící se neuronová síť - SOM, Kohonenovy mapy
Samoučící se neuronová síť - SOM, Kohonenovy mapy Antonín Vojáček, 14 Květen, 2006-10:33 Měření a regulace Samoorganizující neuronové sítě s učením bez učitele jsou stále více využívány pro rozlišení,
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Matematika pro geometrickou morfometrii
Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška
LDA, logistická regrese
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování znalostí z dat
Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 10 1/21 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 4 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
Předzpracování dat. Pavel Kordík. Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague
Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Cvičení 1: Visualizace MI-PDD, 09/2011 MI-POA Evropský sociální fond
Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy
Algoritmy a struktury neuropočítačů ASN - P2 Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Topologie neuronových sítí (struktura, geometrie, architektura)
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 3 1/29 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Vytěžování znalostí z dat
Pavel Kordík (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 11 1/31 Vytěžování znalostí z dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 1 1/18 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
AVDAT Mnohorozměrné metody, metody klasifikace
AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných
Fakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody
Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte
Katedra kybernetiky, FEL, ČVUT v Praze.
Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.
Metody analýzy dat I. Míry a metriky - pokračování
Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:
Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely
Učení bez učitele Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Klastrování Kohonenovy mapy LVQ (Učení vektorové kvantizace) Zbývá: Hybridní modely (kombinace učení bez učitele
Klasifikace a rozpoznávání. Extrakce příznaků
Klasifikace a rozpoznávání Extrakce příznaků Extrakce příznaků - parametrizace Poté co jsme ze snímače obdržely data která jsou relevantní pro naši klasifikační úlohu, je potřeba je přizpůsobit potřebám
logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 1 1/29 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Neuronové sítě Ladislav Horký Karel Břinda
Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace
Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Self Organizing Map. Michael Anděl. Praha & EU: Investujeme do vaší budoucnosti. 1 / 10 Slef Organizing Map
Vytěžování dat 6: Self Organizing Map Michael Anděl Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fakulta elektrotechnická, ČVUT 1 / 10 Slef Organizing Map SOM Toolbox V dnešním cvičení
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
ZÁPOČTOVÁ PRÁCE Informace a neurčitost. SOMPak
UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ INFORMATIKY ZÁPOČTOVÁ PRÁCE Informace a neurčitost SOMPak Říjen 2005 Pavel Kubát Informatika V. ročník Abstrakt The objective of this work is describe
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
odlehlých hodnot pomocí algoritmu k-means
Chybějící a odlehlé hodnoty; odstranění odlehlých hodnot pomocí algoritmu k-means Návod ke druhému cvičení Matěj Holec, holecmat@fel.cvut.cz ZS 2011/2012 Úvod Cílem cvičení je připomenout důležitost předzpracování
Cvičná bakalářská zkouška, 1. varianta
jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární
Vícerozměrné statistické metody
Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
4. Učení bez učitele. Shlukování. K-means, EM. Hierarchické shlukování. Kompetitivní učení. Kohonenovy mapy.
GoBack 4. Učení bez učitele. Shlukování., EM. Hierarchické.. Kohonenovy mapy. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 29 Aplikace umělé inteligence 1 / 53 Obsah P. Pošík c 29 Aplikace umělé
1. Soutěživé sítě. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Jednoduchá soutěživá síť MAXNET
Obsah 1. Soutěživé sítě... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Jednoduchá soutěživá síť MAXNET... 2 1.3.1 Organizační dynamika... 2 1.3.2 Adaptační dynamika... 4 1.3.3 Aktivní dynamika...
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza
AVDAT Mnohorozměrné metody, metody klasifikace Shluková analýza Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Shluková analýza Cílem shlukové analýzy je nalézt v datech podmnožiny
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Algoritmy pro shlukování prostorových dat
Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44
Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vícerozměrné statistické metody
Vícerozměrné statistické metody Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Vícerozměrné statistické rozdělení
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Instance based learning
Učení založené na instancích Instance based learning Charakteristika IBL (nejbližších sousedů) Tyto metody nepředpokládají určitý model nejsou strukturované a typicky nejsou příliš užitečné pro porozumění
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
SRE 03 - Statistické rozpoznávání
SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování
3. Vícevrstvé dopředné sítě
3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Zpracování digitalizovaného obrazu (ZDO) - Popisy III
Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Teorie náhodných matic aneb tak trochu jiná statistika
Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava
Předzpracování dat. Pavel Kordík. Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague
Pavel Kordík(ČVUT FIT) Předzpracování dat MI-PDD, 2012, Cvičení 3 1/23 Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Klasifikace a rozpoznávání
Klasifikace a rozpoznávání Prezentace přednášek M. Španěl, 2009 Ústav počítačové grafiky a multimédií Téma přednášky Unsupervised techniky Obsah: Literatura Úvod do shlukování Metriky, základní přístupy,
Základy vytěžování dat
Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Hledání optimální polohy stanic a zastávek na tratích regionálního významu
Hledání optimální polohy stanic a zastávek na tratích regionálního významu Václav Novotný 31. 10. 2018 Anotace 1. Dopravní obsluha území tratěmi regionálního významu 2. Cíle výzkumu a algoritmus práce
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1
Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní
LOKALIZACE ZDROJŮ AE NEURONOVÝMI SÍTĚMI NEZÁVISLE NA ZMĚNÁCH MATERIÁLU A MĚŘÍTKA
LOKALIZACE ZDROJŮ AE EUROOVÝMI SÍTĚMI EZÁVISLE A ZMĚÁCH MATERIÁLU A MĚŘÍTKA AE SOURCE LOCATIO BY EURAL ETWORKS IDEPEDET O MATERIAL AD SCALE CHAGES Milan CHLADA, Zdeněk PŘEVOROVSKÝ Ústav termomechaniky
Robust 2014, 19. - 24. ledna 2014, Jetřichovice
K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University
Algoritmy výpočetní geometrie
Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Statistické modely tvaru a vzhledu
Kapitola 1 Statistické modely tvaru a vzhledu V této kapitole nastíním problematiku statistických modelů tvaru, jejich využití a metod potřebných pro jejich výpočet a použití. Existují dvě hlavní metody;
Dopravní plánování a modelování (11 DOPM )
Department of Applied Mathematics Faculty of Transportation Sciences Czech Technical University in Prague Dopravní plánování a modelování (11 DOPM ) Lekce 7: FSM: Trip assignment Prof. Ing. Ondřej Přibyl,
n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská
Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 6 1/18 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
Navrženy v 60. letech jako experimentální optimalizační metoda. Velice rychlá s dobrou podporou teorie
Evoluční strategie Navrženy v 60. letech jako experimentální optimalizační metoda Založena na reálných číslech Velice rychlá s dobrou podporou teorie Jako první zavedla self-adaptation (úpravu sebe sama)
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe