Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek
|
|
- Vladimíra Navrátilová
- před 9 lety
- Počet zobrazení:
Transkript
1 Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: Brno 2011
2 Obsah 1 Cíl měření... 3 a) Stanovit tepelný výkon výměníku tepla...3 b) Určit hodnotu součinitele prostupu tepla ve výměníku:...3 c) Porovnat výsledky na základě obou postupů a zdůvodnit případné odchylky Schéma a popis užitého zařízení... 3 Základní rozměry:...5 Měření teploty pomocí termočlánků: Postup měření Tabulka naměřených hodnot Výpočet... 6 a) Na základě naměřených veličin...6 b) Teoretické určení součinitele prostupu tepla k p Tabulka hodnot, závěr a) Tabulky hodnot b) Závěr c) Použitá literatura a programy:
3 1 Cíl měření a) Stanovit tepelný výkon výměníku tepla b) Určit hodnotu součinitele prostupu tepla ve výměníku: - k z tepelného výkonu výměníku tepla; - k p teoretickým výpočtem konvekce (přestupu tepla) c) Porovnat výsledky na základě obou postupů a zdůvodnit případné odchylky 2 Schéma a popis užitého zařízení Měření se provádí na výměníku tepla, ve kterém se ochlazuje stlačený vzduch vystupující z kompresoru vodou přiváděnou z vodovodní sítě. Výměník tepla je kotlového typu, sestavený ze 48 přesazených trubek, které jsou rozmístěny v sedmi řadách. Výměník tepla je protiproudý a sedm přepážek ve výměníku usměrňuje vícechodý průtok vzduchu. Vzduch je stlačován v jednostupňovém dvouválcovém pístovém kompresoru typu 2 JVK Na vstupu do výměníku tepla se měří teplota teplého vzduchu. na výstupu z výměníku se měří teplota ochlazeného vzduchu. Teploty a se měří termočlánky NiCr-Ni. Ochlazený vzduch je veden do tlakové nádoby (větrníku), kde se měří jeho přetlak deformačním manometrem. Který odpovídá i přetlaku vzduchu ve výměníku tepla. Chladící tekutina je voda, která vstupuje to výměníku při teplotě a vystupuje při teplotě. Obě tyto teploty se měří rtuťovými teploměry umístěnými přímo v potrubí. Z větrníku vystupuje vzduch přes regulační ventil do okolní atmosféry. Ve výstupním potrubí je umístěna centrická clona, pomocí které se měří hmotnostní průtok vzduchu výměníkem tepla. Teplota vzduchu před clonou se měří rtuťovým teploměrem a přetlak vzduchu před clonou rtuťovým manometrem. Tlakový rozdíl na cloně se měří vodním U-manometrem. 3
4 4
5 Základní rozměry: Průměr clony d c [mm] 30 Průměr potrubí před clonou D c [mm] 52 Vnější průměr trubek ve výměníku d [mm] 18 Délka trubek ve výměníku tepla l [mm] 810 Střední průtočná plocha vzduchu ve výměníku S stř [m 2 ] 0,0135 Počet trubek ve výměníku i [-] 48 Měření teploty pomocí termočlánků: Teploty vzduchu a jsou na vstupu a na výstupu výměníku tepla měřeny pomocí termočlánků NiCr-Ni, které jsou umístěny přímo v tlakovém potrubí. Teplota se určuje z rozdílů elektromotorického napětí, které vzniká mezi svorkami normálového termočlánku umístěného v nádobě (termosce) s tajícím ledem (0 C) a termočlánkem umístěným v místě měření. Rozdíl napětí se měří digitálním voltmetrem MT 100. Jednotlivé termočlánky jsou připojeny k voltmetru přes polohový přepínač. Poloha 1 představuje měření teploty vzduchu na vstupu a poloha 2 měření teploty vzduchu na výstupu výměníku. 5
6 3 Postup měření Měření se provádí při různých režimech kompresoru (podle počtu posluchačů). Nastavením regulačního ventilu se mění průtok vzduchu výměníkem tepla, který také determinuje velikost výtlačného tlaku kompresoru. Se změnou kompresního laku se také mění kompresní teplota tj. teplota vzduchu na vstupu do výměníku tepla, která ovlivňuje celkovou výměnu tepla. K určení středního teplotního rozdílu se u výměníků tepla měří při každém režimu chodu měřícího zařízení teploty obou médií na vstupu a výstupu stlačeného vzduchu ( a ) a chladící vody. Měřením na cloně se určí hmotnostní tok vzduchu z tlakového spádu na cloně a stavu vzduchu (přetlak a teplota ) před clonou. Při každém chodu kompresoru se měří dané veličiny dvakrát a výpočet se provádí se středními hodnotami. Naměřené hodnoty společně s barometrickými veličinami se zapisují do tatulky naměřených hodnot. 4 Tabulka naměřených hodnot Číslo měření Barometrické veličiny Měřené veličiny na výměníku tepla Měřené veličiny na cloně p b t b ϕ t 1 ' t 2 ' t 1 t 2 p urč ' p c ' Δp t c Pa C % C C C C Pa Pa Pa C , ,5 107,5 26,4 17,6 29, , , ,80 37, , ,5 109,3 26,6 17,5 29, , , ,80 37,0 Průměr 98604, ,5 108,4 26,5 17,55 29, , , ,80 37,0 Pro převod jednotek jsme použili následující vztahy: 5 Výpočet a) Na základě naměřených veličin Výpočet součinitele prostupu tepla k ve výměníku na základě naměřených veličin vychází z tepelného výkonu výměníku, který se dá určit jako tepelný tok odváděný z ochlazovaného vzduchu z počáteční teploty až na konečnou teplotu : (1) kde c p [J.kg -1.K -1 ] je měrná tepelná kapacita vzduchu při konstantním tlaku. 6
7 Hmotnostní průtok se určí měřením na centrické cloně podle normy ČSN ISO Průtok vzduchu rovným potrubím vystupujícím z větrníku se vypočítá ze vztahu: kde β je poměr průměrů clon d c a potrubí D c : (2) (3) Součinitel expanze vzduchu je dán empirickým vzorcem: (4) kde a Ze vztahu (4) potom plyne: Hustota vzduchu před clonou se určí ze stavové rovnice ideálního plynu: (5) Součinitel průtoku C c je dán pro clonu s koutovými odběry Stolzovou rovnicí: (6) kde Re D je Reynoldsovo číslo vztažené k průměru D c. Protože hodnota Reynoldsova čísla v rovnici (6) není známá, odhadneme její počáteční velikost (nebo se položí rovna nekonečnu) a výpočet hmotnostního průtoku vzduchu se řeší iteračně rovnicemi (2) a (6) v několika krocích. Opravená hodnota Reynoldsova čísla v každém následujícím kroku se určuje vztahem: (7) kde [kg.m -1.s -1 ] je dynamická viskozita vzduchu před clonou 7
8 Za počáteční hodnotu Re zvolíme 10 7 a provedeme 1 až 3 iterační kroky tak, aby se poslední dva vypočítané hmotnostní průtoky nelišily o více než 0,5%. Iterace: i Re i C ci m vi [kg.s -1 ] odchylka [%] , , , , , , , , , , , , , , Nyní z rovnice (1) určíme tepelný výkon výměníku : Hledaný součinitel prostupu tepla k se dá určit z tepelného výkonu výměníku tepla prostřednictvím rovnice: (8) kde teplosměnná plocha S v představuje vnější povrch všech trubek ve výměníku a střední logaritmický teplotní rozdíl ve výměníku je: Po dosazení do rovnice (8) získáme hledaný součinitel prostupu tepla k: 8
9 b) Teoretické určení součinitele prostupu tepla kp Teoretické určení součinitele prostupu tepla vychází z výpočtu prostupu tepla mezi teplým vzduchem a chladící vodou oddělenými tenkou válcovou stěnou. α p je součinitel konvekce mezi ochlazovaným vzduchem a vnějším povrchem trubek ve výměníku tepla. Součinitel konvekce α p vzduchu proudícího svazkem trubek lze urči pomocí kriteriální rovnice: přičemž hodnoty konstant C a m se určí na základě konstrukčních rozměrů výměníku. Pomocí tabulek ve skriptech 2009/I jsme za pomocí a určili konstanty C a m pro náš přesazený systém trubek. Pro náš případ tedy platí kriteriální rovnice: Charakteristický rozměr teplosměnného povrchu je vnější povrch trubek d. Určovací teplotou je střední teplota vzduchu stanovená z výrazu: Charakter proudění vzduchu kolem svazku trubek popisuje Reynoldsovo číslo obecně definované jako kde střední průtočnou rychlost vzduchu ve výměníku tepla lze určit z rovnice spojitosti S stř je střední průtočná plocha výměníku na straně vzduchu. 9 (9) (10)
10 μ [10-6 kg.m -1 s -1 ] Hustota vzduchu ρ urč charakterizující stav vzduchu ve výměníku tepla se určí z rovnice stavu ideálního plynu: kde (11) Dosazením do vztahu (11) získáme ρ urč : Dosazením ρ urč do vztahu pro výpočet střední průtočné rychlosti (10) získáme: Hodnotu kinematické viskozity vzduchu lze určit ze vztahu: kde dynamickou viskozitu μ odečteme z tabulek v závislosti na teplotě: (12) Pro přesný odečet μ si do grafu vyneseme část hodnot T a μ z tabulek, následně body proložíme spojnicí trendu (přibližně lineární). Poté si necháme zobrazit rovnici lineární spojnice trendu, do které dosadíme změřenou teplotu. T [K] μ [10-6 kg.m -1 s -1 ] , , , , , , , , , , y = 0,0445x + 4, T [K]
11 Pro přibližně platí: Nyní určíme kinematickou viskozitu vzduchu ze vztahu (12): Z rovnice (9) poté získáme charakter proudění vzduchu kolem svazku trubek Z kriteriální rovnice potom dostaneme: Zvolená kriteriální rovnice platí pro svazek trubek, který má více než 10 řad. Pokud je těchto řad trubek ve svazku méně, je potřeba použít korekci pro určení skutečného Nusseltova čísla: Opět za pomocí tabulky ve skriptech 2009/I určíme opravný faktor Výsledné Nusseltovo číslo tedy učíme jako Hledaná hodnota součinitele konvekce je poté určena pomocí skutečného Nusseltova čísla pomocí vztahu: kde λ je součinitel vedení tepla vzduchu a odečítá se v závislosti na určovací teplotě T urč. (13) 11
12 λ [W.m -2.K -1 ] Součinitel λ určíme stejným způsobem jako dynamickou viskozitu μ pomocí rovnice spojnice trendu. T [K] λ [W.m -1.K -1 ] 250 0, , , , , , , , , ,0407 0,045 0,040 0,035 0,030 0,025 0,020 y = 7E-05x + 0, T [K] Pro platí: Dosazením do vztahu (13) určíme hodnotu součinitele konvekce: 12
13 6 Tabulka hodnot, závěr a) Tabulky hodnot Výpočet z měřených hodnot ρ c ε C c Re D m v Q S v Δt stř k kg.m kg.s -1 W m 2 C W.m -2.K -1 1,1388 0,9888 0, , ,27 2, ,10 48,8773 Výpočet konvekce z podobnosti t urč ρ urč w ν Re Nu sk k p C kg.m -3 m.s -1 m 2 s W.m -2.K -1 40,87 5,5555 0,5576 3,4149E ,52 61,7862 b) Závěr Po provedení měření a následných výpočtech jsme dospěli k hodnotě součinitele prostupu tepla k a hodnotě součinitele prostupu tepla k p získaného výpočtem konvekce na základě podobnosti. Vzájemná odchylka činila 20,9%. Danou odchylku si vysvětlujeme tím, že zatímco hodnota k vychází z praktického měření, hodnota k p je určena na základě mnoha zjednodušení, které mají v našem případě podstatný vliv. Prostupem tepla rozumíme kombinaci konvekce a vedení tepla. Vztah pro výpočet součinitele tepla je přesně určen pomocí vztahu:, kde α 1 je součinitel konvekce vody a α 2 je součinitel konvekce vzduchu. První zjednodušení plyne z faktu, že α 1 >> α 2, tedy a ve výpočtu zanedbáváme hodnotu tepelné vodivosti λ.. Další zjednodušení vyplývá ze zanedbání tloušťky stěny h a Vztah je tedy velmi přibližný, přičemž součinitel prostupu tepla k nabývá menších hodnot než součinitel konvekce α. Samozřejmě do celkové chyby je také potřeba zohlednit chyby při měření. c) Použitá literatura a programy: Horák, Vladimír. Termomechanika: Laboratorní cvičení. Brno: VA Brno, s. Vrba, Jaroslav. Termodynamika: Přednášky. Brno: VAAZ Brno, s. MS EXCEL, MS Word 13
Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů
Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011
Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398
Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:
Návrh deskového výměníku sirup chladicí voda (protiproudové uspořádání)
Návrh deskového výměníku sirup chladicí voda (protiproudové uspořádání) Postup výpočtu Studijní podklady pro předměty ZSPZ a PRO III. Zpracoval: Pavel Hoffman Datum: 9/2004 1. Zadané hodnoty Roztok ochlazovaný
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ
ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav
MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU
MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno
Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu
Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu Studijní podklady pro předměty ZSPZ a PO III. Zpracoval: Pavel Hoffman Datum: 10/00 1. Zadané hodnoty oztok proudící
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory
102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
CVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Přestup tepla nucená konvekce beze změny skupenství v trubkových systémech Hana Charvátová,
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu,
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, případně suchost a měrnou entalpii páry. Příklad 2: Entalpická
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
Identifikátor materiálu: ICT 2 58
Identifikátor materiálu: ICT 58 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh interaktivity
d p o r o v t e p l o m ě r, t e r m o č l á n k
d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující
17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla
1/14 17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla Příklad: 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9,
PROCESY V TECHNICE BUDOV 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Kondenzace brýdové páry ze sušení biomasy
Kondenzace brýdové páry ze sušení biomasy Jan HAVLÍK 1,*, Tomáš DLOUHÝ 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607 Praha 6, Česká republika * Email:
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3
Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:
Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
12 Prostup tepla povrchem s žebry
2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem
PROCESY V TECHNICE BUDOV cvičení 3, 4
UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
1 Tlaková ztráta při toku plynu výplní
I Základní vztahy a definice 1 Tlaková ztráta při toku plynu výplní Proudění plynu (nebo kapaliny) nehybnou vrstvou částic má řadu aplikací v chemické technoloii. Částice tvořící vrstvu mohou být kuličky,
Teorie přenosu tepla Deskové výměníky tepla
Teorie přenosu tepla Deskové výměníky tepla Teorie přenosu tepla Následující stránky vám pomohou lépe porozumnět tomu, jak fungují výměníky tepla. Jasně a jednoduše popíšeme základní principy přenosu tepla.
Dynamická viskozita oleje (Pa.s) Souřadný systém (proč)?
Viskozimetr kužel-deska S pomocí rotačního viskozimetru s uspořádáním kužel-deska, viz obrázek, byla měřena dynamická viskozita oleje. Při použití kužele o průměru 40 mm, který se otáčel úhlovou rychlostí
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
Příklad 1: Bilance turbíny. Řešení:
Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za
Návrh výměníku pro využití odpadního tepla z termického čištění plynů
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh výměníku pro využití odpadního tepla z termického čištění plynů Frodlová Miroslava Elektrotechnika 09.08.2010 Práce je zaměřena na problematiku využití
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
125ESB 1-B Energetické systémy budov
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov 15ESB 1-B Energetické systémy budov doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu 1 Dimenzování
Otázky pro Státní závěrečné zkoušky
Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR
Hydraulické posouzení vzduchospalinové cesty. ustálený a neustálený stav
Hydraulické posouzení vzduchospalinové cesty ustálený a neustálený stav Přednáška č. 8 Komínový tah 1 Princip vytvoření statického tahu - mezní křivky A a B Zobrazení teoretického podtlaku a přetlaku ve
MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4
MĚŘENÍ Laboratorní cvičení z měření Měření oteplovací charakteristiky, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_
teplosměnná plocha Obr. 11-1 Schéma souproudu
11 Sdílení tepla Lenka Schreiberová, Oldřich Holeček I Základní vztahy a definice Sdílením tepla rozumíme převod energie z místa s vyšší teplotou na místo s nižší teplotou vlivem rozdílu teplot. Zařízení
Komponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně:
Plánování a projektování hydraulických zařízení se provádí podle nejrůznějších hledisek, přičemž jsou hydraulické elementy voleny podle požadovaných funkčních procesů. Nejdůležitějším předpokladem k tomu
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy
Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy Jan HAVLÍK 1,*, Tomáš Dlouhý 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607
Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky
Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
Třecí ztráty při proudění v potrubí
Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí
Základní pojmy a jednotky
Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar
Termomechanika cvičení
KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace
SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM
TZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014
NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT
PROCESNÍ INŽENÝRSTVÍ cvičení 5
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 5 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
þÿ PY e s t u p t e p l a
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a b e z p e n o s t n í i n~ e n ý r s t v í / S a f e t y E n gþÿx i n eae dr ia n g b es zep re i ens o s t n í i n~ e n ý r s t v í. 2 0 1 0, r o. 5 /
Měření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
Střední průmyslová škola elektrotechnická a informačních technologií Brno
Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
Elektronické praktikum EPR1
Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008
Univerzita obrany. Měření charakteristiky čerpadla K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů
Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření charakteristiky čerpadla Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 15.5.2011
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE UZAVŘENÝ OBĚH PLYNOVÉ TURBÍNY GAS TURBINE
STUDENTSKÁ SOUTĚŢNÍ PRÁCE
VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA ENERETIKY STUDENTSKÁ SOUTĚŢNÍ PRÁCE Návrh řešení chlazení plynu z teploty 000 ºC na teplotu 600 ºC Autor: Bc. Zdeněk Schee OSTRAVA 20 ANOTACE STUDENTSKÉ
1/ Vlhký vzduch
1/5 16. Vlhký vzduch Příklad: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10, 16.11, 16.12, 16.13, 16.14, 16.15, 16.16, 16.17, 16.18, 16.19, 16.20, 16.21, 16.22, 16.23 Příklad 16.1 Teplota
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak
Základní části teplovodních otopných soustav
OTOPNÉ SOUSTAVY 56 Základní části teplovodních otopných soustav 58 1 Navrhování OS Vstupní informace Umístění stavby Účel objektu (obytná budova, občanská vybavenost, průmysl, sportovní stavby) Provoz
Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.
oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00
Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ
Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ Tento článek je věnován odborné stáži, která vznikla v rámci projektu MSEK Partnerství v oblasti energetiky. 1. ÚVOD Projekt MSEK Partnerství v oblasti energetiky
Ermeto Originál Trubky/Trubkové ohyby
Ermeto Originál Trubky/Trubkové ohyby Údaje k trubkám EO 1. Druhy ocelí, mechanické vlastnosti, způsob provedení Ocelové trubky EO Druhy ocelí Pevnost v tahu Mez kluzu Tažnost Rm ReH A5 (podélně) Způsob
Tepelně vlhkostní posouzení
Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí
Vytápění BT01 TZB II cvičení
CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Zadání U zadaného RD nadimenzujte potrubní rozvody
nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ
HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm
2. Základní teorie regulace / Regulace ve vytápění
Regulace v technice prostředí (staveb) (2161087 + 2161109) 2. Základní teorie regulace / Regulace ve vytápění 9. 3. 2016 a 16. 3. 2016 Ing. Jindřich Boháč Regulace v technice prostředí Ing. Jindřich Boháč
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
Měření spotřeby tepla
Měření spotřeby tepla Úkol: Změřte jaké množství tepla je spotřebováno a přeneseno na laboratorním přípravku v daném čase. Použijte tři způsoby měření spotřeby tepla měřením množství spotřebované elektrické
1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu
1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.
KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. (DIMENZOVÁNÍ VĚTRACÍHO ZAŘÍZENÍ BAZÉNU) Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze
VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA Radomír Adamovský Pavel Neuberger Technická fakulta České zemědělské univerzity v Praze H = 1,0 2,0 m; D = 0,5 2,0 m; S = 0,1
NÁVRH DVOUTLAKÉHO HORIZONTÁLNÍHO KOTLE NA ODPADNÍ TEPLO PROPOSAL TWO-PRESSURES HORIZONTAL WASTE HEAT BOILER
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE NÁVRH DVOUTLAKÉHO HORIZONTÁLNÍHO KOTLE NA
Potrubí a armatury. Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu
Potrubí a armatury Potrubí -slouží k dopravě kapalin, plynů, sypkých hmot i kusového materiálu Výhody : snadná regulovatelnost dopravovaného množství Možnost vzájemného míšení několik látek dohromady Snadné
Míchání. P 0,t = Po ρ f 3 d 5 (2)
Míchání Úvod: Mícháním se urychluje dosažení koncentrační a teplotní homogenity, které podstatně ovlivňují průběh tepelných a difuzních operací, reakcí v reaktorech a bezpečnost chemických provozů, která
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
TECHNICKÝ LIST. Deskový výměník DV285, izolovaný. * bez izolace / s izolací trvale / s izolací krátkodobě. - / 5 / 6 m²
- 1/5 - Základní charakteristika Použití Popis Pracovní kapalina slouží k efektivnímu předevání tepla mezi různými kapalinami, vyhovuje pro použití se solárními systémy skladá se z tenkostěných prolisováných
Ing. Jan Sedlář Matematický model chladicího zařízení s odtáváním výparníku ODBORNÁ KONFERENCE SCHKT 26. LEDNA 2016, HOTEL STEP, PRAHA
Ing. Jan Sedlář Matematický model chladicího zařízení s odtáváním výparníku ODBORNÁ KONFERENCE SCHKT 26. LEDNA 216, HOTEL STEP, PRAHA UCEEB ČVUT Fakulta strojní Ústav energetiky Výuka Vývoj tepelných čerpadel
VÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
Měření magnetické indukce elektromagnetu
Měření magnetické indukce elektromagnetu Online: http://www.sclpx.eu/lab3r.php?exp=1 V tomto experimentu jsme využili digitální kuchyňské váhy, pomocí kterých jsme určovali sílu, kterou elektromagnet působí
Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007
Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní
STANOVENÍ PROPUSTNOSTI OBALOVÝCH MATERIÁLŮ PRO VODNÍ PÁRU
STANOVENÍ PROPUSTNOSTI OBALOVÝCH MATERIÁLŮ PRO VODNÍ PÁRU Úvod Obecná teorie propustnosti polymerních obalových materiálů je zmíněna v návodu pro stanovení propustnosti pro kyslík. Na tomto místě je třeba
Kontrola parametrů ventilátoru
1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních zařízení
Dimenzování teplovodních otopných soustav
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Dimenzování teplovodních otopných soustav Ing. Michal Kabrhel, Ph.D. Základní fyzikální vztahy Množství tepla Q (W) Hmotnostní průtok (kg/s)
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:
Reflexní parotěsná fólie SUNFLEX Roof-In Plus v praktické zkoušce
Reflexní parotěsná SUNFLEX Roof-In Plus v praktické zkoušce Měření povrchových teplot předstěny s reflexní fólií a rozbor výsledků Tepelné vlastnosti SUNFLEX Roof-In Plus s tepelně reflexní vrstvou otestovala
POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (54) Vícechodý trubkový výmdnik tepla
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L K A О» ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ /293823 Ц п ) (Hl) (22) Přihlášeno 26 06 79 (21) (PV 4362-79) (51) Jnt Cl? P 26 D 7/10 IMADPRO VYNÁLEZY A OBJEVY
NÁZEV ZAŘÍZENÍ: EXPERIMENTÁLNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH
NÁZEV ZAŘÍZENÍ: EXPERIMENTÁLNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ (ATMOSFÉRICKÝ STAND) ROK VZNIKU: 203 UMÍSTĚNÍ: VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ, FAKULTA STROJNÍHO INŽENÝRSTVÍ, TECHNICKÁ
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU Co to je Molliérův diagram? - grafický nástroj pro zpracování izobarických změn stavů vlhkého vzduchu - diagram je sestaven pro konstantní
EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth
KOTLE A ENERGETICKÁ ZAŘÍZENÍ 2011 BRNO 14.3. až 26.3. 2011 Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw Stanislav Veselý, Alexander Tóth EKOL, spol. s r.o., Brno Kogenerační jednotka se
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Kalibrace teploměru, skupenské teplo Datum měření: 17. 12. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Kalibrace rtuťového
PROCESNÍ INŽENÝRSTVÍ cvičení 2
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AULTA APLIOVANÉ INORMATIY PROCESNÍ INŽENÝRSTVÍ cvičení iltrace část 1 Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
Kontrola pístového kompresoru
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních zařízení
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)