CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
|
|
- Marie Kučerová
- před 9 lety
- Počet zobrazení:
Transkript
1 CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez 30 cm a proudění je plně turbulentní. Jedná z větví (potrubí A) je 1000 m dlouhá, zatímco druhá větev (potrubí B) má délku 3000 m. V případě, že průtok přes potrubí A je 0,4 m 3.s -1, určete průtok v potrubí B, zanedbejte při tom místní ztráty, a předpokládejte teplotu vody 15 C. Dokažte, že proudění je plně turbulentní a třecí koeficient není závislý od Reynoldsova čísla. Zadané hodnoty: D A 30cm, D B 30 cm, V A 0,4 m 3.s -1,L A 1 km, L B 3 km, t vody 15 C, ρ 1000 kg.m -3, η 1, Pa.s, ε, m Vypočtěte: V B, λ f (Re) ŘEŠENÍ: Ze znalosti objemového průtoku určíme rychlost proudění vody v potrubí A: V w S w V S V 0,4, 5,66 m. s
2 Pomocí známého vztahu z teorie mechaniky tekutin pro tlakové ztráty v potrubí kruhového průřezu vypočítáme rychlost proudění v druhém potrubí, přičemž budeme vycházet ze skutečnosti, že celková tlaková ztráta (třecí) mezi úsekem kde se potrubí rozdělují a spojují je konstantní (viz obrázek níže). p ρ e ρ g h ρ λ L D w p ρ λ L w D ρ λ L w D konst. Pro náš konkrétní případ můžeme aplikovat podmínky D A D B a λ A λ B ( λ je koeficient tření v anglické literatuře označován f) a tedy rychlost a objemový průtok v potrubí B bude následující: w w L 5, ,6 m. s L 3000 V w S w π D 4 3,6 π 0,3 4 0, 3 m. s 1 U turbulentního proudění kapaliny je koeficient tření λ závislý od Reynoldsova čísla a relativní drsnosti (ε/d ). Ale při vysokých hodnotách Re můžeme vidět (viz graf níže), že koeficient tření se při změně Re již nemění (v určitém intervalu) a tudíž není závislý na Re, co dokážeme
3 výpočtem Re v potrubí B. Výpočet Re v potrubí A není nutný, protože v kratším potrubí o stejných parametrech bude Re nabývat ještě vetší hodnoty. Re w D ν w D ρ μ 3,6 0, , ,5 Příklad č. : ε,6 10 0, D 0,3 Vodní potrubí se náhle rozšiřuje z průměru 15 cm na 0 cm. Tlak v užší části potrubí je 10 kpa a průměrná rychlost proudící vody přes v této části je 10 m.s -1. Proudění je turbulentní. Uvážením rovnice kontinuity, VZTH a Bernoulliho rovnice dokažte, že ztrátový koeficient pro náhlé rozšíření proudu je ξ 1. Vypočtěte tlak p. Zadané hodnoty: D 1 15 cm, D 0 cm, p 1 10 kpa, w 1 10 m.s -1, ρ 1000 kg.m -3 Vypočtěte: ξ, p
4 ŘEŠENÍ: Při náhlém rozšíření průřezu se odtrhne proud kapaliny od stěn a vytvoří se víry (viz. obrázek). Tuto ztrátu lze vypočítat použitím věty o změně toku hybnosti (VZTH), obyčejné Bernoulliovy rovnice beze ztrát a rovnice kontinuity. Zavedeme kontrolní plochu tak, aby rozšíření proudu na zvětšený průřez proběhlo uvnitř kontrolní plochy (čárkovaná čára). Z VZTH, která respektuje ztráty, se vypočte tlak p a z Bernoulliho rovnice, jež naopak ztráty zanedbává, se určí teoretický tlak p t. Tlaková ztráta je dána rozdílem teoretického a skutečného tlaku na výstupu z kontrolní plochy. Ze znalostí z předchozího cvičení, kde jsme probírali VZTH, můžeme napsat: ΣF ΣH ΣH ý p S + p S + + H +H p S p S m w m w p S p S ρ S w ρ S w p ρ S S w ρ S S w + p S S p ρ S S w ρ w + p
5 Využitím rovnice kontinuity dostaneme rovnici pro skutečný tlak p : m m w S S w p ρ w S S + p S S Následně určíme teoretický tlak p t z Bernoulliho rovnice: ρ + w + g y p ρ + w + g y y y p ρ + w p ρ + w p / ρ p p + ρ w ρ w m m w S S w p p + ρ w w S p S + ρ w 1 S S Jak jsme v úvodu tohoto příkladu naznačili, tlaková ztráta bude tedy rozdíl teoretického a skutečného tlaku. p p p p p + ρ w 1 S ρ w S S S + p S S
6 p ρ w 1 S S + S S S S p ρ w 1 S + S S S p ρ w 1 S ρ w 1 D 1 S D Člen 1 D 1 D v poslední rovnici nazýváme ztrátový koeficient pro náhlé rozšíření proudu a označujeme ho ξ. ξ 1 D D 1 0,15 0, 0, 1914 Tím jsme splnili první část zadání, v níž bylo naším úkolem ověřit uvedený vztah pro ztrátový koeficient. Ve druhé části zadání máme vypočítat tlak p. Využijeme již odvozený vztah pro skutečný tlak z VZTH. p ρ w S S + p S S p ,0177 0,0315 0,0177 0, , 375 Pa
7 Příklad č. 3: Vypočítejte tlakovou ztrátu v potrubí pro: a) w 0, m.s -1 b) w 5 m.s -1 Uvažujte hydraulicky hladké potrubí. Zadané hodnoty: D 0,01 m, L 10 m, η 0,001 Pa.s -1, ρ 1000 kg.m -3 Vypočtěte: p ŘEŠENÍ: a) w 0, m.s -1 V první části musíme rozlišit, zda se jedná o laminární nebo turbulentní proudění. Vypočítáme tedy Reynoldsovo číslo. Re w D υ ρ w D η , 0,01 0, < 300 laminární proudění Po třecí ztráty platí vztah: ξ λ L D Pro zjištění součinitele tření použijeme následující vztah, odvozený z Darci-Weisbachova vzorce: λ 64 Re ,03 Tlaková ztráta v potrubí pro rychlost proudění w 0, m.s -1 je pak: p λ L D ρ w 0, , Pa 0,01
8 b) w 5m.s -1 Opět nejprve určíme Reynoldsovo číslo a stanovíme, zda se jedná o laminární nebo turbulentní proudění. Re w D υ ρ w D η ,01 0, > 300 turbulentní proudění Součinitel tření zjistíme pomocí Blasiova vztahu pro hydraulicky hladké potrubí. λ 0,3164 0,3164 0,0116 Re Tlaková ztráta je pak: p λ L D ρ w 0, ,5 kpa 0,01 Příklad č. 4: Vypočítejte příkon čerpadla zahradního rozprašovače. Potrubí je hydraulicky hladké. V nádrži je sací koš. Potrubí zavlažovacího systému je ukončeno rozprašovačem. Výškový rozdíl mezi volnou hladinou a rozprašovačem je 3 m a tryska má 1 dírek o průměru,5 mm. Zadané hodnoty: L 1 1 m, L 10 m, L 3 1 m, D 30 mm, V 1, l/s, η č 0,49, η 0,001 Pa.s, ρ 1000 kg.m -3, ξ SK 0,5, ξ T 0,8, ξ KO 0,33 Vypočtěte: P PČ
9 ŘEŠENÍ: Při výpočtu budeme vycházet z Bernoulliho rovnice energie pro bod 0 a 1 označený na obrázku, s uvážením ztrátové energie a od práce čerpadla ve tvaru: + g y + p ρ e + e č w + g y + p ρ w w 0, y 0, y h p ρ e + e č w + g h + p ρ p p p e č e + w + g h Ztrátová energie v našem případě zahrnuje třecí ztráty v potrubí a místní ztráty vznikající v sacím koši, koleně a výstupní trysce. Pro tuto energii použijeme vztah vycházející z teorie mechaniky tekutin ve formě: e w ξ w ξ + λ L D + λ L D + ξ + λ L D + ξ Pro další postup potřebujeme vypočítat koeficient tření λ, který se určuje pomocí Reynoldsova čísla. V S w w V S V 1, 10, 1,7 m. s Re w D ν ρ w D η ,7 0,03 0, Ze střední rychlosti v potrubí jsme určili Reynoldsovo číslo a jeho hodnota daleko převyšuje hodnotu 300, což je horní hranice limitující laminární proudění v potrubí kruhového průřezu.
10 Proto pro výpočet koeficientu tření můžeme použít Blasiův vztah pro hydraulicky hladké potrubí ve formě: λ λ λ 0,3164 0,3164 0,01 Re Zpětně vypočítáme ztrátovou energii a rychlost na výstupu z trysky. Nakonec dopočítáme příkon čerpadla pomocí známé účinnosti. e w ξ + ξ + ξ + λ D (L + L + L ) e 1,7 0,01 0,5 + 0,33 + 0,5 + ( ) 14,5 J kg 0,03 w V S V 1 1, 10 1 (, ) 0,37 m. s e č e + w + g h 14,5 + 0,37 + 9, ,4 J kg P č e č m e č ρ V 51, , ,7 W P Č P č 301,7 615, 7W η č 0,49
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným
VíceCVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
VíceTřecí ztráty při proudění v potrubí
Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí
Vícenafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ
HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm
VíceKoncept tryskového odstředivého hydromotoru
1 Koncept tryskového odstředivého hydromotoru Ing. Ladislav Kopecký, květen 2017 Obr. 1 Návrh hydromotoru provedeme pro konkrétní typ čerpadla a to Čerpadlo SIGMA 32-CVX-100-6- 6-LC-000-9 komplet s motorem
Více1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
VíceProudění vody v potrubí. Martin Šimek
Proudění vody v potrubí Martin Šimek Zadání problému Umělá vlna pro surfing Dosavadní řešení pomocí čerpadel Sestrojení modelu pro přívod vody z řeky Vyčíslení tohoto modelu Zhodnocení výsledků Návrh systému
VíceCvičení z termomechaniky Cvičení 8.
Příklad Vzduch o tlaku,5 [MPa] a teplotě 27 [ C] vytéká Lavalovou dýzou do prostředí o tlaku 0,7 [MPa]. Nejužší průřez dýzy má průměr 0,04 [m]. Za jakou dobu vyteče 250 [kg] vzduchu a jaká bude výtoková
Více4. cvičení- vzorové příklady
Příklad 4. cvičení- vzorové příklady ypočítejte kapacitu násosky a posuďte její funkci. Násoska převádí vodu z horní nádrže, která má hladinu na kótě H A = m, přes zvýšené místo a voda vytéká na konci
VíceUniverzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů
Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011
VíceMechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
Více6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
VícePROCESY V TECHNICE BUDOV cvičení 3, 4
UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
VíceBIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
VíceProudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.
VíceCVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
VíceČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
VíceMECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
VíceTeoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
VíceProč funguje Clemův motor
- 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout
VíceOperační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu
Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT
VíceVytápění BT01 TZB II cvičení
CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Zadání U zadaného RD nadimenzujte potrubní rozvody
VíceProudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.
PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis
VícePraktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008
VíceTlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů
Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela
VíceMechanika kapalin a plynů
Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný
VíceMechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
Více7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
VícePraktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:
VíceÚnik plynu plným průřezem potrubí
Únik plynu plným průřezem potrubí Studentská vědecká konference 22. 11. 13 Autorka: Angela Mendoza Miranda Vedoucí práce: doc. Ing. Václav Koza, CSc. Roztržení, ocelové potrubí DN 300 http://sana.sy/servers/gallery/201201/20120130-154715_h.jpg
VíceOtázky pro Státní závěrečné zkoušky
Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR
VícePoznámky k cvičením z termomechaniky Cvičení 10.
Příklad 1 Topné těleso o objemu 0,5 [m 3 ], naplněné sytou párou o tlaku 0,15 [MPa], bylo odstaveno. Po nějaké době vychladlo na teplotu 30 C. Určete množství uvolněného tepla a konečný stav páry v tělese.
VíceHydraulika a hydrologie
Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy
VícePROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl
VíceSTŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání
Více38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík
38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík Laminární proudění viskozita 1 Stanovení ztráty při laminárním proudění 3 Proudění turbulentní Reynoldsovo číslo 5 Stanovení střední rychlosti
VícePočítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =
MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní
VícePříklady - rovnice kontinuity a Bernouliho rovnice
DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho
VíceZáklady fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
VíceProudění s volnou hladinou (tj. v otevřených korytech)
(tj. v otevřených korytech) TYPY OTEVŘENÝCH KORYT PŘÍRODNÍ přirozená a upravená KORYTA - přirozená: nepravidelného geometrického průřezu - upravená: zhruba pravidel. průřezu (upravené většinou jen břehy,
VíceUniverzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek
Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011
Více2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5
Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4
Více125ESB 1-B Energetické systémy budov
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov 15ESB 1-B Energetické systémy budov doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu 1 Dimenzování
Více3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech
3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech Oldřich Holeček, Lenka Schreiberová, Vladislav Nevoral I Základní vztahy a definice Při popisu proudění tekutin se vychází z rovnice
VíceCVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
VíceTECHNICKÁ ZAŘÍZENÍ BUDOV I
Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV I Cvičení pro 3. ročník bakalářského studia oboru Prostředí staveb Zpracoval: Ing. Petra Tymová, Ph.D. Nové výukové moduly vznikly za podpory projektu
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
VíceSíla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
VíceDynamika proudících plynů
Dynamika proudících plynů Při výpočtech se budeme zabývat prouděním ideálních plynů. Jejich vlastnosti již byly popsány na předchozích přednáškách/cvičeních. Při proudění ideálního plynu si zavedeme ještě
VícePROJEKT - vzduchotechnika. 4. Návrh potrubní sítě. Ing. Vladimír Zmrhal, Ph.D. Organizace:
PROJEKT - vzduchotechnika 4. Návrh potrubní sítě Autor: Organizace: E-mail: Web: Ing. Vladimír Zmrhal, Ph.D. České vysoké učení technické v Praze Fakulta strojní Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz
VíceTeorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední
VíceIlustrační animace slon a pírko
Disipativní síly Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Určeno pro základní kurz biomechaniky studentů FTVS UK, školní rok 2008/2009 Disipativní síly
VíceProudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz
Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice
VíceHydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
VíceVYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Přestup tepla nucená konvekce beze změny skupenství v trubkových systémech Hana Charvátová,
VíceHydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
VíceKrevní oběh. Helena Uhrová
Krevní oběh Helena Uhrová Z hydrodynamického hlediska uzavřený systém, složený ze: srdce motorický orgán, zdroj mechanické energie cév rozvodný systém, tvořený elastickými roztažitelnými a kontraktilními
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,
VíceV následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω
VícePROCESNÍ INŽENÝRSTVÍ cvičení 5
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 5 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceProudění ideální kapaliny
DUM Základy přírodních věd DUM III/-T3-9 Téma: Rovnice kontinuity Střední škola Rok: 0 03 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Proudění ideální kapaliny Rovnice kontinuity toku = spojitosti toku
VíceCvičení z termomechaniky Cvičení 7.
Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;
VíceVýsledný tvar obecné B rce je ve žlutém rámečku
Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné
VíceDimenzování teplovodních otopných soustav
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Dimenzování teplovodních otopných soustav Ing. Michal Kabrhel, Ph.D. Základní fyzikální vztahy Množství tepla Q (W) Hmotnostní průtok (kg/s)
VíceMECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
VícePříkon míchadla při míchání nenewtonské kapaliny
Míchání suspenzí Navrhněte míchací zařízení pro rozplavovací nádrž na vápenný hydrát. Požadovaný objem nádrže je 0,8 m 3. Největší částice mají průměr 1 mm a hustotu 2200 kg m -3. Objemová koncentrace
VíceMatematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
VíceUrčeno pro posluchače všech bakalářských studijních programů FS
rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a
VícePříklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.
VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:
VíceNávrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu
Návrh trubkového zahřívače kapalina - kapalina (protiproudové uspořádání) Postup výpočtu Studijní podklady pro předměty ZSPZ a PO III. Zpracoval: Pavel Hoffman Datum: 10/00 1. Zadané hodnoty oztok proudící
Vícečas t s 60s=1min rychlost v m/s 1m/s=60m/min
TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický
VícePrůtoky. Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem za delší čas (den, měsíc, rok)
PRŮTOKY Průtoky Průtok Q (m 3 /s, l/s) objem vody, který proteče daným průtočným V profilem za jednotku doby (s) Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem
VíceSoftware pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace
Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.
VíceTECHNICKÁ ZAŘÍZENÍ BUDOV 1
TECHNICKÁ ZAŘÍZENÍ BUDOV 1 HYDRAULIKA POTRUBÍ, ZÁSOBOVÁNÍ OBJEKTŮ VODOU, VNITŘNÍ VODOVOD, POTŘEBA VODY Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - 1 Učební texty, legislativa normy:
Více1.8.9 Bernoulliho rovnice
89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její
VíceFyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
VíceU218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze
Přenos hybnosti Příklad I/1 Ocelová deska o ploše 0,2 m 2 se pohybuje rovnoměrným přímočarým pohybem na tenkém olejovém filmu rychlostí 0,1 m/s. Tloušťka filmu 2 mm. Vypočtěte sílu F, kterou musíte působit
VíceHydraulické posouzení vzduchospalinové cesty. ustálený a neustálený stav
Hydraulické posouzení vzduchospalinové cesty ustálený a neustálený stav Přednáška č. 8 Komínový tah 1 Princip vytvoření statického tahu - mezní křivky A a B Zobrazení teoretického podtlaku a přetlaku ve
VíceMěření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
Více3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech
3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech Oldřich Holeček, Lenka Schreiberová, Vladislav Nevoral I Základní vztahy a definice Při popisu proudění tekutin se vychází z rovnice
VíceKomponenta Vzorce a popis symbol propojení Hydraulický válec jednočinný. d: A: F s: p provoz.: v: Q přítok: s: t: zjednodušeně:
Plánování a projektování hydraulických zařízení se provádí podle nejrůznějších hledisek, přičemž jsou hydraulické elementy voleny podle požadovaných funkčních procesů. Nejdůležitějším předpokladem k tomu
VíceNávrh deskového výměníku sirup chladicí voda (protiproudové uspořádání)
Návrh deskového výměníku sirup chladicí voda (protiproudové uspořádání) Postup výpočtu Studijní podklady pro předměty ZSPZ a PRO III. Zpracoval: Pavel Hoffman Datum: 9/2004 1. Zadané hodnoty Roztok ochlazovaný
VíceZáklady hydrauliky vodních toků
Základy hydrauliky vodních toků Jan Unucka, 014 Motivace pro začínajícího hydroinformatika Cesta do pravěku Síly ovlivňující proudění 1. Gravitace. Tření 3. Coriolisova síla 4. Vítr 5. Vztlak (rozdíly
Víceh ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2)
Stanovení součinitele odporu a relativní ekvivalentní délky araturního prvku Úvod: Potrubí na dopravu tekutin (kapalin, plynů) jsou vybavena araturníi prvky, kterýi se regulují průtoky (ventily, šoupata),
Více(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?)
() Která kapalina se více odlišuje od ideální kapaliny, voda nebo olej? Zdůvodněte Popište princip hydraulického lisu 3 Do nádob A, B, C (viz tabule), které mají stejný obsah S dna, je nalita voda do stejné
VíceMECHANIKA TEKUTIN TEKUTINY
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 28. 3. 2013 Název zpracovaného celku: MECHANIKA TEKUTIN TEKUTINY Tekutiny jsou společný název pro kapaliny a plyny. Společná vlastnost tekutin
Více102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
VíceKonfigurace polí se sondami
Konfigurace polí se sondami Určení objemového průtoku: Vycházíme s následujícího vzorku: Q = m x c x t Takým způsobem vypočítáme oběhové množství v zemině. Q = Množství tepla kwh m = Hmota (oběhové množství)
VíceOdstředivý tryskový motor
Odstředivý tryskový motor - 1 - Odstředivý tryskový motor (c) Ing. Ladislav Kopecký Inspirací pro tuto konstrukci hydromotoru byl legendami opředený Clemův motor a práce Viktora Schaubergera. Od konstrukcí
VíceÚvodní list. Prezentace pro interaktivní tabuli, pro projekci pomůcka pro výklad
Úvodní list Název školy Integrovaná střední škola stavební, České Budějovice, Nerudova 59 Číslo šablony/ číslo sady 32/09 Poř. číslo v sadě 18 Jméno autora Období vytvoření materiálu Název souboru Zařazení
VíceV následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový
VíceZtráty tlaku v mikrofluidních zařízeních
Ztráty tlaku v mikrofluidních zařízeních 1 Teoretický základ Mikrofluidní čipy jsou zařízení obsahující jeden nebo více kanálků sloužících k manipulaci a zpracování tutin nebo k detci chemických slož v
VíceProudění vzduchu v chladícím kanálu ventilátoru lokomotivy
Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace
VíceZpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 4/2002 a její změně 276/2004 Sb. na ak. rok 2016/2017 FS ČVUT v Praze 1. Informace o přijímacích zkouškách Studijní program:
VíceLaboratorní úloha Měření charakteristik čerpadla
Laboratorní úloha Měření charakteristik čerpadla Zpracováno dle [1] Teorie: Čerpadlo je hydraulický stroj, který mění přiváděnou energii (mechanickou) na užitečnou energii (hydraulickou). Hlavní parametry
VíceIndexy, analýza HDP, neaditivnost
Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok
VíceVytápění budov Otopné soustavy
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění budov Otopné soustavy 109 Systémy vytápění Energonositel Zdroj tepla Přenos tepla Vytápění prostoru Paliva Uhlí Zemní plyn Bioplyn
VíceZákladní části teplovodních otopných soustav
OTOPNÉ SOUSTAVY 56 Základní části teplovodních otopných soustav 58 1 Navrhování OS Vstupní informace Umístění stavby Účel objektu (obytná budova, občanská vybavenost, průmysl, sportovní stavby) Provoz
VícePříklady z hydrostatiky
Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační
Více