Rozmnožování buněk Vertikální přenos GI. KBI / GENE Mgr. Zbyněk Houdek



Podobné dokumenty
Karyokineze. Amitóza. Mitóza. Meióza. Dělení jádra. Předchází dělení buňky Dochází k rozdělení genetické informace u mateřské buňky.

Inovace studia molekulární. a buněčné biologie

Mitóza, meióza a buněčný cyklus. Milan Dundr

Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU

44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů

8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů

Cvičeníč. 4: Chromozómy, karyotyp a mitóza. Mgr. Zbyněk Houdek

MITÓZA V BUŇKÁCH KOŘÍNKU CIBULE

DUM č. 2 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 1 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

Základy buněčné biologie


Rozdíly mezi prokaryotní a eukaryotní buňkou. methanobacterium, halococcus,...

Eukaryotická buňka. Stavba. - hlavní rozdíly:

- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )

Mitóza a buněčný cyklus

Digitální učební materiál

ROZMNOŽOVÁNÍ BUŇKY příručka pro učitele

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Buňky, tkáně, orgány, soustavy

Stavba dřeva. Základy cytologie. přednáška

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

Biologie 11, 2014/2015, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE

Číslo a název projektu Číslo a název šablony

Povinná literatura. Otová B., Mihalová, R.: Základy biologie a genetiky člověka; Karolinum 2015

Reprodukce buněk Meióza Smrt buněk

Biologie 12, 2017/2018, Ivo Papoušek, Ivan Literák BUNĚČNÝ CYKLUS A JEHO REGULACE

Pohlavní rozmnožování. Gametogeneze u rostlin a živočichů.

Buněčný cyklus. Replikace DNA a dělení buňky

Endocytóza o regulovaný transport látek v buňce

Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.

Buňka buňka je základní stavební a funkční jednotka živých organismů

A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům

Projekt realizovaný na SPŠ Nové Město nad Metují

Z Buchanan et al. 2000

BUNĚČNÝ CYKLUS. OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky. Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí

BUNĚČNÝ CYKLUS SOMATICKÝCH BUNĚK A JEHO REGULACE

BUŇEČNÝ CYKLUS A JEHO KONTROLA

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje.

GENETIKA. dědičnost x proměnlivost

1.Biologie buňky. 1.1.Chemické složení buňky

MEIÓZA. 1. Které fáze z meiotické profáze I jsou znázorněny na obrázcích?

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Souhrnný test - genetika

- pro učitele - na procvičení a upevnění probírané látky - prezentace

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Sada I 13 preparátů Kat. číslo

Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost

Slovníček genetických pojmů

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie

REPRODUKCE A ONTOGENEZE Od spermie s vajíčkem až po zralého jedince. Co bylo dřív? Slepice nebo vejce?

Univerzita Karlova v Praze. Vyšetřovací metody v lidské cytogenetice

Inovace studia molekulární a buněčné biologie

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

GENETICKÁ INFORMACE - U buněčných organismů je genetická informace uložena na CHROMOZOMECH v buněčném jádře - Chromozom je tvořen stočeným vláknem chr

Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.

Gametogeneze, mitóza a meióza. Prof. MUDr. Pavel Trávník, DrSc.

Buňka. Kristýna Obhlídalová 7.A

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Hana Turoňová Název materiálu:

Výukový materiál zpracován v rámci projektu EU peníze školám

Buňka. Markéta Vojtová VOŠZ a SZŠ Hradec Králové

MITÓZA V BUŇKÁCH KOŘENOVÉ ŠPIČKY CIBULE ( ALLIUM CEPA L.)

Chromosomy a karyotyp člověka

Buňka V. Jádro. Buněčný cyklus a buněčné dělení (mitosa). Ústav histologie a embryologie 1. LF UK

B9, 2015/2016, I. Literák, V. Oravcová CYTOSKELETÁLNÍ PRINCIP BUŇKY

REPRODUKCE BUNĚK BUNĚČNÝ CYKLUS MITÓZA

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

- v interfázi dále viditelné - jadérko, jaderný skelet, jaderný obal

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

prokaryotní Znaky prokaryoty

VAKUOLA. membránou ohraničený váček membrána se nazývá tonoplast. běžná u rostlin, zvířata specializované funkce či její nepřítomnost

CYTOLOGIE 3. týden. Jádro a jeho komponenty Buněčný cyklus, mitosa, meiosa. Ústav histologie a embryologie

Chromozomová teorie dědičnosti. KBI / GENE Mgr. Zbyněk Houdek

Současná formulace: Buňka je minimální jednotka, která vykazuje všechny znaky živých soustav

STRUKTURA A FUNKCE ORGANISMU

Přijímací zkoušky BGI Mgr. 2016/2017. Počet otázek: 30 Hodnocení každé otázky: 1 bod Čas řešení: 60 minut. Varianta B

Rozmnožování a vývoj živočichů

Digitální učební materiál

Přednášející: (abecedně)

Prokaryota x Eukaryota. Vibrio cholerae

FERTILIZACE A EMBRYOGENEZE

LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 4. BUNĚČNÉ JÁDRO A BUNĚČNÉ KULTURY

Spermatogeneze saranče stěhovavé (Locusta migratoria)

Inovace studia molekulární a buněčné biologie

Buněčný cyklus a buněčná smrt

Biologie I. 7. přednáška. Základy genetiky

Gametogenese a fertilizace. Vývoj 142

Buňka cytologie. Buňka. Autor: Katka Téma: buňka stavba Ročník: 1.

Vliv věku rodičů při početí na zdraví dítěte

Téma: MORFOLOGIE ŢIVOČIŠNÝCH BUNĚK

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy Genetiky

Degenerace genetického kódu

EMBRYOLOGIE Učebnice pro studenty lékařství a oborů všeobecná sestra a porodní asistentka

Digitální učební materiál

Transkript:

Rozmnožování buněk Vertikální přenos GI KBI / GENE Mgr. Zbyněk Houdek

Buněčný cyklus Buňky vznikají z bb. a jedinou možnou cestou, jak vytvořit více bb. je jejich dělením. Vertikální přenos GI: B. (mateřská) se rozmnožuje uspořádaným sledem akcí, ve kterých zdvojí svůj obsah a pak se rozdělí na 2 bb. (dceřiné). Tento děj se nazývá buněčný cyklus a rozmnožují se jím všechny b. živé org. U jednobuněčných org. (např. bakterie, kvasinky) vzniká b. dělením celý nový org., ale pro vznik mnohob. org. je třeba mnoho b. dělení. Horizontální přenos dědičné informace (mezi jedinci téže generace), což je typické například pro bakterie.

Podstata buněčného cyklu Zkopírování genetické informace b. replikace DNA. Nejjednodušší a nejrychlejší je b. dělení u bakterií, protože obsahují 1 chromozom (20 min.). Cyklická molekula DNA je přichycena k plazmatické membráně i při její replikaci a následně se nový chromozom oddělí od původního. Mateřská b. následně zdvojnásobí svou velikost a rozdělí se na 2 nové dceřinné bb. binární dělení. B. stěna a plazmatická mem. se postupně vchlipují a rozdělí 1 b. na 2 bb. Tak mohou vznikat kolonie bakterií, které jsou geneticky shodné (klony) = příčné dělení.

Buněčné dělení eukaryotních bb. Je mnohem složitější, protože GI b. je rozdělena do mnoha chromozomů a má pravé jádro. Dělení jádra (karyokineze) = mitóza. Obsahují cytoplazmatické organely a cytoskeletální filamenty, které musí být zdvojeny a rovnoměrně rozděleny mezi 2 dceřinné bb. Tento proces se nazývá cytoplazmatické dělení = cytokineze. Meióza specializované b. dělení, kdy z diploidní b. haploidní gamety (vajíčka, spermie).

Buněčný cyklus Např. kvasinka se v ideálních podmínkách rozdělí za 90-120 min., savčí b. za 24 hod. Fáze b. cyklu: G 1, S, G 2 a M. M fáze (mitóza+cytokineze 5-10 % cyklu) dělení jádra a b. rychlý průběh. Interfáze období mezi dvěma M-fázemi (G 1 - S-G 2 ). G 1 fáze (gap - 30-40 % cyklu) b. roste, syntéza RNA, bílkovin a tvorba organel (hlavní kontrolní bod b.c.), růst b. S fáze (50% cyklu) = syntéza replikace DNA. G 2 fáze růst b., tvorba sloučenin a organel ve dvojnásobném množství přípravná fáze (2. kontrolní bod b.c.).

M-fáze Postupná kondenzace chromozomů, které byly zreplikovány během S-fáze (2 kopie ch. zůstávají spojeny = sesterské chromatidy). Na konci G 2 -fáze začínají být chromozómy viditelné pod mikroskopem dlouhá vlákna. Přesné rozdělení chromozomů u živočichů se uskutečňuje mitotickým aparátem centrioly (centrozom) a dělící (mitotické) vřeténko (i rostliny). Centrioly (centrozom) stálá párová struktura b. uložená při povrchu jaderného obalu a je tvořena krátkými mikrotubuly. Dělící vřeténko (soustava mikrotubulů) vytváří se na začátku mitózy útvar kolem c. útvar aster. Zaniká po jejím ukončení. Cytokineze u živočichů je dokončena pomocí kontraktilního prstence konec mitózy v rovníkové poloze prstenec aktinu a myozinu stahuje cytoplazmatickou mem. a rozdělí b.

Dělení organel během mitózy Dochází nejen k rozdělení ch., ale i organel. Nejdůležitější organely jsou mitochondrie a chloroplasty nejprve růst vlastní dělení rozdělení do nových bb. Podobně je to i s membránovými organelami nová b. potřebuje aspoň část této původní organely, aby si vytvořila novou (GC, ER se rozpadají na fragmenty, které jsou rozděleny do nových bb.).

Mitóza Rozdělení replikovaných chromozomů a dokončení dělení jádra na 2 dceřinná. Chromozómy jsou dobře pozorovatelné pod mikroskopem z geneticky aktivní interfázní formy (nepozorovatelné) na geneticky neaktivní (pozorovatelné). 4 fáze mitózy: profáze, metafáze, anafáze a telofáze. Sesterské chromatidy se rozdělí a stávají se dceřinnými ch. v nových bb.

Profáze Rozdělení centriol (centrozomů) a jejich umístění proti sobě na pólech b.= póly vřeténka. Z mikrotubulů se vytváří dělící vřeténko (spotřeba ATP polymerují a depolymerují = dynamická nestabilita polární mikrotubuly). Jaderná membrána se rozpadá (fosforylace a rozpad j. laminy) a zaniká jadérko. Kondezace chromozomů viditelné zkrácení a mnohonásobná spiralizace a jejich navázání na mitotické vřeténko (kinetochorové mikrotubuly) pomocí proteinových komplexů kinetochor na speciální sekvenci DNA každé sesterské chromatidy centromeře.

Metafáze Chromozomy jsou rozprostřeny v centrální rovníkové rovině b. = metafázová destička. Jsou zde udržovány silami protichůdných mikrotubulů a vazbami mezi chromatidami. Ch. jsou nejlépe pozorovatelné (počet, morfologie). Na konci metafáze a začátku anafáze dochází k rozdělení centromer ch. Roztlak meristému kořínků Allium cepa

Anafáze Úplné rozdělení sesterských chromatid působením proteolytických e. a vznik dceřinných chromatid = chromozomů, které jsou taženy zkracujícími se vlákny dělícího vřeténka (depolymerace) k opačným pólům b. Počet ch. u každého pólu b. je shodný s počtem ch. mateřské b., ale jsou jednovlákné. Anafázi dělíme na anafázi A a B (polární mikrotubuly oddalují b. póly od sebe). Kořínky bobu obecného Roztlak meristému kořínků Allium cepa

Telofáze Roztlak meristému kořínků Allium cepa Zaniká dělící vřeténko, dceřinné ch. jsou v polární poloze a dekondenzují do tvaru tenkých vláken. Dochází k syntéze jaderných membrán kolem obou jader (fůze váčků jaderné mem., jaderné póry a jaderné laminy-defosforylace) a vzniku jadérek. Zahájení stejnoměrného rozmístění organel a cytokineze (rostliny a houby-vznik přepážky, živočichové-zaškrcení b.).

Cytokineze Mimo vzniku 2 nových jader se dělí i ostatní složky b. membrány, cytoskelet, organely a další látky (proteiny). To vše zahrnuje proces rozdělení cytoplazmy, který začíná v anafázi a pokračuje dále i po telofázi. Rovina rozdělení a časový průběh cytokineze závisí na mitotickém vřeténku.

Cytokineze živočišné b. Vytvoření přechodné struktury mikrotubulů kontraktilní prstenec. Kontraktilní prstenec aktin a myozin vlákna jsou navázána na vnitřní stranu cytoplazm. mem. a pohybují se proti sobě rýha. Nejprve se vytvoří dělící rýha na cytoplazm. mem. b. v rovníkové rovině b. stejně velké 2 b. Asymetrické dělení nestejné 2 b. diferenciace bb.

Cytokineze rostlinných bb. Odlišný mechanismus pevná b. stěna uvnitř b. vzniká nová stěna, která je obklopená cytoplazm. mem. Začíná se vytvářet mezi novými jádry během telofáze a je řízena útvarem fragmoplast zbytek polárních mikrotubulů mitotického vřeténka. Nová b. stěna se tvoří pomocí váčků GC naplněných polysacharidy a glykoproteiny diskovitý útvar s mem. + celulózové mikrofibrily = cytoplazm. mem. + buněčná stěna.

Pohlavní rozmnožování Nepohlavní rozmnožování bakterie, jednobuněčné org. jednoduché buněčné dělení. Vzniklé potomstvo je geneticky shodné s rodičovským org. Při pohlavním rozmnožování dochází k mísení genomů 2 jedinců a vzniklé potomstvo se liší od rodičů i mezi sebou navzájem výhoda většina rostlin i živočichů.

Proč vzniklo pohlavní rozmnožování? Mísení genů rodičů má své výhody i nevýhody, ale předpokládá se, že pomáhá org. přežít v nepředvídatelně se měnícím prostředí = velké množství různých potomků, velká pravděpodobnost přežití aspoň 1 potomka. Probíhá u diploidních org. (2 sady ch.- 1 po otci, 2. po matce) somatické bb. Zárodečné bb. gamety (1 sada ch., ale 2 druhy gamet). Živočichové velká nepohyblivá vajíčka a malé pohyblivé spermie. Tyto gamety vznikají z diploidních bb. speciálním b. dělením meióza.

Princip pohlavního rozmnožování Při pohlavním rozmnožování eukaryotních org. se střídají diploidní a haploidní generace bb.: 2n 1n. z diploidní specializované b. (2n=2 sady ch.- paternální homolog a maternál. h. duplikace ch.) - redukční dělení = meióza 1. homologní rekombinace hybridní ch. z obou rodičovských ch.

Meióza Následují vždy 2 po sobě dělení heterotypické (redukční d. rozdílné od mitózy) a homeotypické (ekvační d. shodné s mitózou). Pouze jednovaječná dvojčata z 1 zygoty jsou shodná. Jinak jsou sourozenci vždy různí 2 druhy náhodných genetických reorganizací: Náhodné rozdělení ch. do jednotlivých bb. během meiózy 2 n gamet (n= počet ch.). Homologní rekombinace zvýšení počtu různých gamet.

Heterotypické (redukční) dělení Rozdílná profáze, která je složitější než u mitózy a rozděluje se na: Leptotene spiralizace chromatinových vláken a diferenciace ch. Zygotene přikládání homologních ch. k sobě a jejich spojení (synapse zvláštní spojovací bílkovina) vznik párů homologních ch.-bivalenty. Pachytene pokračující spiralizací vzniklá tetrádastadium 4 chromatid-proplétání nesesterských chromatid (překřížení-chiazmata zlomy výměna části chromatid=crossing-over). Diplotene rozpuštění synaptického komplexu a postupné oddalování homologních ch. z bivalentu (ukončení crossing-overu). Diakineze volnému rozchodu brání chiazmata, která se vlivem odpudivých sil přesouvají ke koncům-terminalizace chiazmat. Rozpouští se j. mem. a formuje se vřeténko. Meióza: roztlak testes sarančat (Orthoptera)

Další rozdíly V heterotypické metafázi se vlákna dělícího vřeténka napojují na páry homolog. ch. v bivalentech. Synaptonemální komplex proteinová str. ze 3 paralelních vláken 2 laterální a 1 centrální element. Crossing-over překřížení (chiazma), zlomy a výměna částí sesterských chromatid. V anafázi se pak rozcházejí k pólům dělícího vřeténka jednotlivé dvouchromatidové ch. chromozomová disjunkce. V telofázi se u pólů b. seskupí chromozomy 1 z každého páru homologních ch. a mohou se nová jádra nebo následuje 2. meiotické d.

Homeotypické (ekvační) dělení Je prakticky shodné s mitózou, a probíhá s ch. složenými 2 chromatid. Následuje bezprostředně po dělení heterotypickém. Období mezi oběma děleními nazýváme interkineze. Celkově při meiotickém dělení dochází k 1 replikaci a následují 2 b. dělení vznikají 4 haploidní bb. (tetráda), které mají ch. s 1 chromatidou 4 gamety (1n). Roztěr prašník Lilium sp. Nondisjunkce: některé haploidní bb. postrádají určitý ch. a jiné mají tento ch. navíc abnormální gamety abnormální embryo (Downův syndrom trisomie 21. ch).