TEORIE NETKANÝCH TEXTILIÍ 6. přednáška Interakce mezi kapalinou a vlákenným materiálem Plateau-Rayleighova nestabilita Prof. RNDr. David Lukáš, CSc. Doc. Ing. Eva Košťáková, Ph.D.
Plateau-Rayleighova nestabilita = hlavní nepřítel všech zvlákňovacích procesů P-R nestabilita se projevuje rozpadem kapalinových těles na ekvidistantně vzdálené kapky (stejně vzdálené kapky). http://www.youtube.com/watch?v=uyrgeinpo50 http://www.youtube.com/watch?v=xi16lp28zcu http://www.youtube.com/watch?v=gmmaeyr79oi
https://www.youtube.com/watch?v=tshk3nzi2qa https://www.youtube.com/watch?v=uyrgeinpo50 https://www.youtube.com/watch?v=x3pdtk5it5o https://www.youtube.com/watch?v=bw4526vhny0 https://www.youtube.com/watch?v=tbpqvfv5n8y
Joseph Antoine Ferdinand Plateau (14. říjen 1801, Brusel 15. září 1883, Gent) belgický fyzik Nejprve studoval práva, později přešel na obory matematiky, fyziky a chemie. V roce 1827 začal vyučovat mechaniku na univerzitě v Lutychu, po třech letech přešel na univerzitu v Bruselu a roku 1835 se stal profesorem experimentální fyziky na univerzitě v Gentu. Roku 1843 úplně oslepl, přesto zůstal vědecky činným. [1] Sestrojil první stroboskopický kotouč s rozloženými fázemi pohybu, při jehož otáčení vznikal dozníváním zrakového vjemu dojem pohybu. Společně s Rakušanem Stampferem pak objevil roku 1832 stroboskop, nazývaný tehdy phenakistiscope či phantascope. [2] Krom výzkumu v oblasti optiky proslul také studiem kapilarity. Daguerrotype portrait of Belgian physicist Joseph Plateau (1801-1883)
Lord Rayleigh John William Strutt, 3. baron Rayleigh (12. listopadu 1842 30. června 1919) byl anglický fyzik. Zjistil anomálii hustoty dusíku izolovaného z atmosféry, kterou publikoval na svých přednáškách. Tato anomálie zaujala Williama Ramsaye a spolu s Rayleighem objevil argon (Nobelova cena za fyziku 1904) a další vzácné plyny. Zabýval se také akustikou, optickým a elektromagnetickým rozptylem světla, je objevitelem jednoho z vyzařovacích zákonů.
Kvalitativní pospis P-R nestability -Proud kapaliny, na počátku s konstantním poloměrem, je vertikálně tažen gravitací směrem dolů. -Délka kapalinového sloupce roste a dosahuje kritické hodnoty. -Při kritické hodnotě délky, dochází ke ztrátě válcovitého tvaru a přetváření na proud sférických kapek. -Tento jev je zapříčiněn primárně povrchovým napětím.
This liquid behavior derives from the existence of small perturbations in any physical system. All real-world flows have some non-negligible external disturbance that will increase exponentially in unstable systems. In general, this deformation of the column, called varicose perturbations, is represented as a series of periodic displacement sinusoids, For certain wavelengths, these perturbation waves will grow larger in time. Toto chování kapaliny vychází z existence malých poruch v jakémkoli fyzikálním systému. Všechny reálné procesy ve svém průběhu mají nějaké nezanedbatelné vnější porušení, které se u nestabilních systémů exponenciálně zvětšuje. Obecně, deformace sloupce nazývaná varikózní deformace, je znázorněna jako řada sinusoid periodicky posunutých. Při určité vlnové délce, tyto vlny rostou v čase.
Tento vnitřní tok způsobuje nárůst amplitudy, která nakonec iniciuje tvorbu kapiček. Kapičky se tvoří, když dojde ke skřípnutí oblasti zúžení a vyboulené oblasti se přetransformují do kulovitých kapiček. Tento proces je ovládán touhou být v minimálním energetickém stavu (specifická geometrie systému závisí na minimalizaci energie). Nižší energetický stav je výsledkem celkového snížení měrného povrchu, a to právě pokud se kapalina přetransformuje do kapiček. Viskozitní a gravitační síly jsou často zanedbávány za předpokladu nevýznamných viskózních sil (vysoké Re číslo).
Téma z teoretického hlediska velmi obtížné, neboť potřebuje poznatky z hydrodynamiky. P-R nestabilita se projevuje jak na jednoduchých kapalinách tak na polymerních roztocích. Problémy způsobuje i u technologií spunbond, meltblown, forcespinning, electrospinnin, drawing atd.
Téma z teoretického hlediska velmi obtížné, neboť potřebuje poznatky z hydrodynamiky. P-R nestabilita se projevuje jak na jednoduchých kapalinách tak na polymerních roztocích. Problémy způsobuje i u technologií spunbond, meltblown, forcespinning, electrospinnin, drawing atd.
Meltblown (KNT, FT, TUL) PCL Mn 10 000
Elektrostatické zvlákňování vodného roztoku PVA HRSEM image of small beads interconnected by thin fibers in PVAc/Ti-propoxide composite fibers produced by electrospinning. (Osnat Landau) http://matwww.technion.ac.il/rothschild/research_gallery.html
Electrospinning PVDF (KNT,FT,TUL)
Elektrostatické zvlákňování Okouzlující jednoduchost tohoto procesu spočívá v samoorganizaci polymerního roztoku či taveniny do formy nanovláken jen s pomocí elektrického pole. Z fyzikálního hlediska se elektrostatické zvlákňování podobá stromu neobvyklého tvaru. Vyrůstá z kořenů" v tenké povrchové vrstvě polymerního roztoku (sloužící jako jedna ze dvojice elektrod) a pokračuje kmenem" představovaným stabilní částí proudu polymeru. Následující bičující zóna proudu polymeru vytváří jednotlivé větve" tohoto stromu. Jeho plody, tedy nanovlákna jsou zachytávána na druhé z elektrod spojené se zdrojem vysokého napětí (Lukáš 2007). 15
Elektrostatické zvlákňování 16
Podmínky ovlivňující proces elektrostatického zvlákňování nanovláken Procesní podmínky -Uspořádání spinneru (např.menší průměr jehly = jemnější vlákna, Nanospider = více trysek = větší výkon) -Použité napětí -Vzdálenost od kolektoru -Okolní teplota -Vlhkost -Elektrické vlastnosti podpůrného nosného materiálu (např. antistatická úprava = rovnoměrnější vrstva) - Budeme se jim věnovat v následujících přednáškách
Proměnné elektrostatického zvlákňování Materiálové podmínky -Typ polymeru -Jeho molekulová hmotnost a distribuce molekulových hmotností -Rozpouštědlo a koncentrace (pro roztoky) -Teplota (pro taveniny) -Aditiva -Elektrická vodivost roztoku či taveniny -Povrchové napětí -Viskozita -. Jednotlivé proměnné se vzájemně ovlivňují jejich efekt nelze úplně oddělit! 18
Proměnné elektrostatického zvlákňování Doshi a Reneker klasifikovali parametry, které řídí tento proces, na: vlastnosti roztoků, kontrolované (řízené) proměnné a parametry prostředí. Doshi, J., and Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrostat. 35, 151, 1995. VLASTNOSTI ROZTOKŮ NEBO TAVENIN MATERIÁLOVÉ PODMÍNKY VISKOZITA, ELEKTRICKÁ VODIVOST, POVRCHOVÉ NAPĚTÍ, ADITIVA 19
VLASTNOSTI ROZTOKŮ - VISKOZITA VISKOZITA KONCENTRACE Koncentrace ovlivňuje zejména viskozitu, ale i povrchové napětí a elektrickou vodivost. Růst koncentrace polymerního roztoku bude při zachování stálých podmínek zvlákňování působit růst průměru elektrostaticky zvlákněných nanovláken až do určité meze. S růstem koncentrace roste viskozita postupně (od určité hodnoty viskozita narůstá významně). 20
VLASTNOSTI ROZTOKŮ - VISKOZITA http://www.sciencedirect.com/science/article/pii/s0266353803001787 21
VLASTNOSTI ROZTOKŮ - VISKOZITA Vysoká viskozita (velká molekulové hmotnost) + sůl + relativně nízké napětí PVP +ATM ve vodě 3-8kV Stick electrospinning Needle-electrospinning Huang, et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63 (2003), 2223-2253 22
10 wt% PVB in etanol 5 wt% PVB in etanol 2,5 wt% PVB in etanol 23
VLASTNOSTI ROZTOKŮ VISKOZITA x POVRCHOVÉ NAPĚTÍ Dependence of solution surface tension (squares) and solution viscosity (diamonds) as a function of concentration for PEO/water solutions. Deitzel, J.M., Kleinmeyer, J., Harris, D., and Tan, N.C.B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261, 2001. 24
Korálky (perličky) Korálky na šňůrcách Šňůrky - vlákna Střední hodnota průměru vláken (nm) Vztah mezi koncentrací polymeru v roztoku, viskozitou roztoku a průměrem elektrostaticky zvlákněných polyakrylonitrilových vláken.
VLASTNOSTI ROZTOKŮ - VISKOZITA Electrospinning Electrospraying fibers beads 26
Elektrostatické zvlákňování extrémně zředěných roztoků k tzv. perličkovému efektu NEBO DOKONE AŽ k elektrostatickému rozprašování Viskoelastické síly v trysce jsou příliš malé k udržení vlákenné struktury. Plateau - Rayleighova nestabilita V extrému = elektrospraying (např. voda) http://phd.marginean.net/regimes.html Rayleighova nestabilita rozpad kapalinových těles
Elektrostatické rozprašování neboli elektrospraying je metoda odvozená z procesu elektrického zvlákňování. Umožňuje výrobu velmi jemných částic z polymerního roztoku. Výrobní zařízení je stejné jako u elektrospinningu a může mít několik variant. Electrospraying NEEDLE - JEHLOVÝ electrospinning electrospraying
Electrospraying elektrostatické rozprašování F e elektrodynamická síla úměrná elektrickému poli F g gravitační síla F Q síla z prostorového náboje jakékoli dříve emitované kapky F setrvačná síla F h - síla přetvářecí Stokesova F s - síla od povrchového napětí
electrospraying
Různé možnosti enkapsulace pomocí elektrostatického rozprašování electrospraying
VLASTNOSTI ROZTOKŮ - VISKOZITA ZMĚNA MOLEKULOVÉ HMOTNOSTI POLYMERU Photographs showing the typical structure in the electrospun polymer (PVA) for various molecular weights. a 9000 10,000 g/mol; b 13,000 23,000 g/mol; and c 31,000 50,000 g/mol (solution concentration: 25 wt. %). Reprinted from Ref. [6], copyright 2004, with permission from Elsevier Z. Li and C. Wang, One-Dimensional nanostructures, SpringerBriefs in Materials, DOI: 10.1007/978-3-642-36427-3_2, Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58 (3 4):493 497. 32
VLASTNOSTI ROZTOKŮ POVRCHOVÉ NAPĚTÍ etanol dichloromethane dimethylformamid TEM images of the PVP nanofibers electrospun from ethanol (a), MC (b), and DMF (c),respectively. The concentration of PVP is fixed at 4 wt. %. Reproduced from Ref. [5] by permission of John Wiley & Sons Ltd Při stejné koncentraci PVP ale různých rozpouštědlech == snižující se povrchové napětí vede k odstraňování defektů a vytváření rovnoměrné vlákenné struktury. Basically, surface tension determines the upper and lower boundaries of the electrospinning window if all other conditions are fixed Z. Li and C. Wang, One-Dimensional nanostructures, SpringerBriefs in Materials, DOI: 10.1007/978-3-642-36427-3_2, Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, Wei Y (2004) Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci, Part B: Polym Phys 42(20):3721 3726. doi:10.1002/polb.20222 33
VLASTNOSTI ROZTOKŮ Rekapitulace Viskozita: Elektrická vodivost: Povrchové napětí: 34
Tvorba perliček (beads) PERLIČKOVÝ EFEKT Rekapitulace vlivu viskozity (koncentrace) roztoku na proces elektrostatického zvlákňování Huang, et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63 (2003), 2223-2253
Tvorba perliček (beads) PERLIČKOVÝ EFEKT Perličky jsou tvořeny z polymerních roztoků o nízkých koncentrací. = Zvýšení viskozity může vést k odstranění tohoto problému ovšem ne vždy!
Tvorba perliček (beads) PERLIČKOVÝ EFEKT Zvýšení elektrického napětí vede k odstranění perliček!