Interakce mezi kapalinou a vlákenným materiálem

Rozměr: px
Začít zobrazení ze stránky:

Download "Interakce mezi kapalinou a vlákenným materiálem"

Transkript

1 3. přednáška Interakce mezi kapalinou a vlákenným materiálem

2 OPAKOVÁNÍ Soudržnost dvou spojovaných ploch, tedy vazba mezi pevným povrchem vláken a adhezivem (pojivem) je chápána jako ADHEZE. Primární i sekundární (molekulární síly) mají dosah od 0, do nm. Adhezní síly až 00nm == vyjímečnost adhezních sil spočívá kolektivní chování molekul je odlišné od silových projevů izolovaných molekul. Povrchové charakteristiky (povrchové energie) jsou spojeny nejen s pojením vlákenných vrstev při výrobě netkaných textilií.

3 OPAKOVÁNÍ Další příklady spojení povrchových charakteristik materiálů s netkanými textiliemi: Naplavování dispergace vláken v kapalině závisí na povrchových vlastnostech vláken a kapaliny Výroba mokrých kapesníčků povrchové charakteristiky vláken, struktura vlákenného materiálu a povrchové vlastnosti kapaliny ovlivňují dokonalé proniknutí celým objemem. Elektrostatické zvlákňování do kapaliny povrchové napětí vznikajících vláken a kapaliny nad kolektorem Y. Yokoyama et al. / Materials Letters 63 (009)

4 Interakce mezi kapalinou a vlákenným materiálem PODMÍNKY DOKONALÉHO SMÁČENÍ

5 Jedním ze základních parametrů, které řídí interakci mezi kapalinou a pevnou látkou je GEOMETRIE PEVNÉ LÁTKY (tvar strukturní komponenty a relativní umístění strukturní komponenty v celém systému). math.pppst.com

6 Tvarové změny přecházející do povrchových charakteristik je možné ukázat na Laplaceově tlaku (Laplace pressure), kde tlak v kapce (či bublince) je úměrný její charakteristické křivosti.

7 Stejný materiál se může ve vztahu ke smáčení chovat drasticky jinak ve formě filmu, vlákna, svazku vláken nebo vlákenného materiálu (textilie). Podmínky dokonalého smáčení: ) Rovninného povrchu ) Jednoho vlákna 3) Svazku vláken

8 OPAKOVÁNÍ Povrchová energie připadající na jednotkovou plochu je rovna povrchovému napětí W= Youngova rovnice P cos KP,

9 ) Podmínka dokonalého smáčení ROVINNÉHO POVRCHU Dokonalé smáčení: Kontaktní úhel = 0 O dokonalém smáčení rovinné pevné látky hovoříme v případě, když úhel smáčení je nulový. Z Youngovy rovnice pro tento případ plyne: 0, p kp

10 ) Podmínka dokonalého smáčení ROVINNÉHO POVRCHU Harkinsonův roztírací koeficient S p kp Zápis pomocí Harkinosonova roztíracího koeficientu S p kp 0, S 0.

11 ) Podmínka dokonalého smáčení JEDNOHO VLÁKNA Vlákno o poloměru b pokrývá vrstva kapaliny o tloušťce e a délce L. Obrázek zachycuje případ dokonalého smáčení vlákna. Suché vlákno Smočené vlákno

12 ) Podmínka dokonalého smáčení JEDNOHO VLÁKNA K dokonalému smáčení vlákna dojde tehdy, když celková povrchová energie W vnějšího povrchu filmu kapaliny a povrchu mezi vláknem a kapalinou připadajícím na délku vlákna L bude MENŠÍ než povrchová energie téže délky suchého vlákna W f W f W

13 ) Podmínka dokonalého smáčení JEDNOHO VLÁKNA ; Pro povrchové energie W a W f platí Vlákno o poloměru b pokrývá vrstva kapaliny o tloušťce e a délce L. W f bl p W bl b e L. kp e Wf W Lb p kp 0. b

14 ) Podmínka dokonalého smáčení JEDNOHO VLÁKNA Úpravou nerovnosti využívající Harkinsonova roztíracího koeficientu S získáme podmínku pro dokonalé smáčení vlákna ve tvaru: S e. b

15 Dokonalé smáčení rovného povrchu X Dokonalé smáčení jednoho vlákna S 0. S e. b Porovnáním podmínek pro dokonalé smáčení zjistíme, že jednotlivá vlákna jsou méně ochotna smáčet se kapalinou než rovinné útvary vyrobené z téhož materiálu.???

16 ??? Vynikající savost vlákenné hmoty je výsledkem KOLEKTIVNÍHO CHOVÁNÍ SOUBORŮ VLÁKEN A JEJICH SVAZKŮ. Až toto skupinové uspořádání vláken umožňuje vlákenným materiálům předčít vlastnosti rovinných povrchů ochotně vázat velká množství kapaliny.

17 3) Podmínka dokonalého smáčení SVAZKU VLÁKEN Struktura vlákenných materiálů (reprezentovaná zde počtem a poloměry blízkých a paralelně uspořádaných vláken) silně ovlivňuje jejich vlastnosti v procesu smáčení.

18 3) Podmínka dokonalého smáčení SVAZKU VLÁKEN K dokonalému smáčení svazku vláken dojde tehdy, když celková povrchová energie smočených vláken na rozhraní vlákno kapalina a povrchová energie vnějšího povrchu kapalinového tělesa W je MENŠÍ než povrchová energie suchých vláken W f a to na délce L. W f W

19 3) Podmínka dokonalého smáčení SVAZKU VLÁKEN W f W W f = nbl P W = nbl KP + EL

20

21 Svazek sedmi těsně uspořádaných paralelních vláken může být kapalinou dokonale smáčen i v případě, že rovinný útvar ze stejného materiálu není stejnou kapalinou smáčen dokonale. Pro dokonalé smáčení svazku vláken může být Harkinsonův roztírací koeficient S dokonce záporný.

22 Čím více vláken ve svazku bude a čím těsněji tato vlákna budou uspořádána tím více bude svazek ochotný ke smáčení. 9 vláken kruhového průřezu

23 Jedním ze základních parametrů, které řídí interakci mezi kapalinou a pevnou látkou je GEOMETRIE PEVNÉ LÁTKY (tvar strukturní komponenty a relativní umístění strukturní komponenty v celém systému). VLIV TVARU VLÁKNA NA SMÁČENÍ

24 KAPALINA NA POVRCHU VLÁKNA Povrch kapalinového tělesa - ol VLÁKNO NEKRUHOVÉHO PRŮŘEZU Povrch vlákna - aol W f W W f = aol P W = aol KP + ol S >((-a)/a) DOKONALÉ SMÁČENÍ nekruhového povrchu vlákna Harkinsonův roztírací koeficient záporný. Čím členitější (větší) je povrch vlákna tím větší ochota ke smáčení existuje.

25 KONTAKTNÍ ÚHEL DRSNÝCH POVRCHŮ Zdánlivý kontaktní úhel drsných povrchů * závisí na skutečném úhlu smáčení (Youngův kontaktní úhel) a míře drsnosti r cos * = r cos Povrchy kdy <90 ===drsné povrchy smáčí lépe než rovné Povrchy kdy >90 ===drsné povrchy smáčí hůře než rovné

26

27 Interakce mezi kapalinou a vlákenným materiálem Smáčení jednoho vlákna - podmínka dokonalého smáčení při započítání Laplaceova tlaku

28 Smáčení vlákna makroskopickým filmem Započítán i vliv LAPLACEOVA (KAPILÁRNÍHO) TLAKU F t b e R =e+b Síly působící podél osy vlákna F p = b P F kp = b kp F t R R. R b F = (b+e)

29 Kapalinové těleso na povrchu vlákna se nachází v rovnováze za následující podmínky rovnováhy sil F kp F F p F t Pozn.: kapalina má tendenci se rozprostírat po vlákně (=0 ) == F t působí směrem ven z kapalinového tělesa (napomáhá rozprostírání) == tlak působící ven z kapalinového tělesa má záporné znaménko.

30 POZNÁMKA kapilární tlak capillary pressure jiná definice (synonymum Laplaceův tlak) Rozdíl tlaků na konkávní a konvexní straně zakřiveného fázového rozhraní, způsobený mezifázovým napětím (Laplaceova-Youngova rovnice). Má-li povrch kapaliny tvar kulového vrchlíku (resp. Koule) o poloměru R, lze pro kapilární tlak psát p=f/s, kde F je velikost výslednice povrchových sil F p, jejíž nenulová velikost je dána právě zakřiveným povrchem kapaliny. Tato výslednice vzniká F díky zakřivení povrchu a působí na kolmý průmět povrchu kapaliny o obsahu S. S F 00/hesla/laplaceova-youngova_rovnice.html

31 POZNÁMKA kapilární tlak pro konkávní a konvexní tělesa p = ± γ R Správný zápis pro kapalinová tělesa v kruhových kapilárách A concave meniscus (A) indicated that the molecules of the liquid have a stronger attraction to the material of the container (adhesion) than to each other (cohesion). A convex meniscus (B) indicates the molecules have a stronger attraction to each other than to the material of the container. F S S F flatworldknowledge.lardbucket.org

32 POZNÁMKA kapilární tlak pro konkávní a konvexní kapalinová tělesa uvnitř kruhové kapiláry p = + γ R Konvexní tvar povrchu kapaliny Kapilární deprese Kapilární tlak směřuje dovnitř kapalinového tělesa - kladné znaménko Konvexní meniskus ukazuje, že molekuly kapaliny mají silnější přitažlivost k sobě navzájem (koheze) než k materiálu kapiláry (adheze). p = γ R Kapilární elevace Konkávní tvar povrchu kapaliny Kapilární tlak směřuje ven z kapalinového tělesa záporné znaménko Konkávní meniskus ukazuje, že molekuly kapaliny mají silnější přitažlivost k materiálu kapiláry (adheze) než k sobě navzájem (soudržnost - koheze).

33 Kapalinové těleso na povrchu vlákna se nachází v rovnováze za následující podmínky rovnováhy sil F kp F F p F t

34 t p kp F F F F b R R R b R b p kp b R R R b R b S Rovnici výše vydělíme výrazem b a vyjádříme pomocí Harkinsonova roztíracího koeficientu Vztah budeme dále upravovat za předpokladu, že kapalinové těleso je válcovité. Za tohoto předpokladu bude hodnota R nekonečně velká. 0 ) ( ) ( R b b R br b br R br b R S R =e+b b e Z této rovnice je patrné, že hodnota roztíracího koeficientu S je pro studovaný případ kapalinového tělesa vždy kladná.

35 Vyjádříme-li poloměr kapalinového tělesa R pomocí poloměru vlákna b a tloušťky kapalinového filmu e, dostaneme po řadě matematických úprav podmínku dokonalého smáčení jednoho vlákna ve tvaru e b S e b( b e) R =e+b Liší o podmínky dokonalého smáčení z minulé přednášky, protože zde se započítává i vliv Laplaceova tlaku. Fyzikální podstata odlišnosti vztahů podmínky dokonalého smáčení jednoho vlákna: Hodnoty e po započítání kapilárního tlaku mohou nabývat větších hodnot než bez započítání Laplaceova tlaku při zachování stejných podmínek pro danou situaci(hodnota b, povrchová napětí atd.). Samozřejmě uvažujeme o situaci rovnovážného stavu. STEJNÉ PODMÍNKA == při započítání kapilárních tlaků === e mohou nabývat v rovnovážných stavech větších hodnot

36 POZNÁMKA kapilární tlak pro konkávní a konvexní tělesa Rozprostírání kapalina, vzdalování vláken od sebe Srážení, nasávání kapaliny a srážení vláken k sobě

Interakce mezi kapalinou a vlákenným materiálem

Interakce mezi kapalinou a vlákenným materiálem 3. přednáška Interakce mezi kapalinou a vlákenným materiálem Jedním ze základních parametrů, které řídí interakci mezi kapalinou a pevnou látkou je GEOMETIE PEVNÉ LÁTKY (tvar strukturní komponenty a relativní

Více

Interakce mezi kapalinou a vlákenným materiálem

Interakce mezi kapalinou a vlákenným materiálem 4. přednáška Interakce mezi kapalinou a vlákenným materiálem Smáčení jednoho vlákna, dvojice a trojice vláken Smáčení vlákna makroskopickým filmem Započítán i vliv LAPLACEOVA (KAPILÁRNÍHO) TLAKU t e b

Více

Měření povrchového napětí kapalin a kontaktních úhlů

Měření povrchového napětí kapalin a kontaktních úhlů 2. Přednáška Interakce mezi kapalinou a vlákenným materiálem Měření povrchového napětí kapalin a kontaktních úhlů Eva Kuželová Košťáková KCH, FP, TUL 2019 ADHEZE KAPALIN K PEVNÝM LÁTKÁM Povrchové napětí

Více

Interakce mezi kapalinou a vlákenným materiálem

Interakce mezi kapalinou a vlákenným materiálem 4. přednáška Interakce mezi kapalinou a vlákenným materiálem Eva Kuželová Košťáková TUL, T KNT Jedním ze základních parametrů, které řídí interakci mezi kapalinou a pevnou látkou je GEOMETRIE PEVNÉ LÁTKY

Více

Vlastnosti kapalin. Povrchová vrstva kapaliny

Vlastnosti kapalin. Povrchová vrstva kapaliny Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří

Více

LOGO. Struktura a vlastnosti kapalin

LOGO. Struktura a vlastnosti kapalin Struktura a vlastnosti kapalin Povrchová vrstva kapaliny V přírodě velmi často pozorujeme, že se povrch kapaliny, např. vody, chová jako pružná blána, která unese např. hmyz Vysvětlení: Molekuly kapaliny

Více

Interakce mezi kapalinou a vlákenným materiálem

Interakce mezi kapalinou a vlákenným materiálem 7. přednáška Interakce mezi kapalinou a vlákenným materiálem Plateau-Rayleighova nestabilita - kapalinový film na vlákně Morfologické přechody Lucas Washburnův vztah dynamika průniku kapalin do kruhové

Více

Adheze - pokračování

Adheze - pokračování 2. přednáška Adheze - pokračování Doc. Ing. Eva Kuželová Košťáková, Ph.D. Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL Eva.kostakova@tul.cz Tel.: 48 535 3233 Budova B, 4. patro Podmínky

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné

Více

1. přednáška. ÚVOD k předmětu TNT

1. přednáška. ÚVOD k předmětu TNT 1. přednáška ÚVOD k předmětu TNT Doc. Ing. Eva Kuželová Košťáková, Ph.D. Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL Eva.kostakova@tul.cz Tel.: 48 535 3233 Budova B, 4. patro https://nanoed.tul.cz/course/vie

Více

Interakce mezi kapalinou a vlákenným materiálem

Interakce mezi kapalinou a vlákenným materiálem Interakce mezi kapalinou a vlákenným materiálem Smáčení dvou a tří vláken Smáčení dvou válců dvou vláken Kapalinová tělesa mezi dvěma pevnými válci (vlákny) v rovnovážném stavu při zanedbání vlivu gravitace.

Více

TEORIE NETKANÝCH TEXTILIÍ. 2. přednáška. TNT smáčení úvod. Eva Kuželová Košťáková Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL

TEORIE NETKANÝCH TEXTILIÍ. 2. přednáška. TNT smáčení úvod. Eva Kuželová Košťáková Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL 2. přednáška TNT smáčení úvod Eva Kuželová Košťáková Katedra netkaných textilií a nanovlákenných materiálů, FT, TUL OPAKOVÁNÍ z 1.přednášky Cíl předmětu Teorie netkaných textilií: Ukázat, jak struktura

Více

Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce

Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce Fázové rozhraní Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce Homogenní - kapalina/plyn - povrch;kapalina/kapalina Nehomogenní - tuhá látka/plyn - povrch;

Více

3.3 Částicová stavba látky

3.3 Částicová stavba látky 3.3 Částicová stavba látky Malé (nejmenší) částice látky očekávali nejprve filozofové (atomisté) a nazvali je atomy (z řeckého atomos = nedělitelný) starověké Řecko a Řím. Mnohem později chemici zjistili,

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

Adhezní síly v kompozitních materiálech

Adhezní síly v kompozitních materiálech Adhezní síly v kompozitních materiálech Obsah přednášky Adhezní síly, jejich původ a velikost. Adheze a smáčivost. Metoty určování adhezních sil. Adhezní síly na rozhraní Mezi fázemi v kompozitu jsou rozhraní

Více

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Adhezní síly Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Vazby na rozhraní Mezi fázemi v kompozitu jsou rozhraní mezifázové povrchy. Možné vazby na rozhraní

Více

Měření povrchového napětí

Měření povrchového napětí Měření povrchového napětí Úkol : 1. Změřte pomocí kapilární elevace povrchové napětí daných kapalin při dané teplotě. 2. Změřte pomocí kapkové metody povrchové napětí daných kapalin při dané teplotě. Pomůcky

Více

Chemie povrchů verze 2013

Chemie povrchů verze 2013 Chemie povrchů verze 2013 Definice povrchu složitá, protože v nanoměřítku (na úrovni velikosti atomů) je elektronový obal atomů difúzní většinou definován fyzikální adsorpcí nereaktivních plynů Vlastnosti

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

Speciální aplikace poznatků ze smáčení. Vzlínání do vlákenných materiálů TNT. Eva Kuželová Košťáková KCH, FP, TUL

Speciální aplikace poznatků ze smáčení. Vzlínání do vlákenných materiálů TNT. Eva Kuželová Košťáková KCH, FP, TUL Speciální aplikace poznatků ze smáčení Vzlínání do vlákenných materiálů TNT Eva Kuželová Košťáková KCH, FP, TUL -Určování (odhad) kontaktního úhlu u porézních (vlákenných) materiálů -Určování (odhad) kontaktního

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti

Více

Struktura a vlastnosti kapalin

Struktura a vlastnosti kapalin Struktura a vlastnosti kapalin (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Povrchová vrstva Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost

Více

VÍTÁM VÁS NA PŘEDNÁŠCE Z PŘEDMĚTU TCT

VÍTÁM VÁS NA PŘEDNÁŠCE Z PŘEDMĚTU TCT VÍTÁM VÁS NA PŘEDNÁŠCE Z PŘEDMĚTU TCT opakování Jeden směr křížem Cros - cros náhodně náhodně náhodně NT ze staplových vláken vlákna pojená pod tryskou Suchá technologie Mokrá technologie vlákna Metody

Více

2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7

2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7 Obsah Obsah 1 Povrchová vrstva 1 2 Jevy na rozhraní 3 2.1 Kapilární tlak........................... 4 2.2 Kapilární jevy........................... 5 3 Objemová roztažnost kapalin 7 1 Povrchová vrstva

Více

Adhezní síly v kompozitech

Adhezní síly v kompozitech Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika

Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

TEORIE NETKANÝCH TEXTILIÍ. 2. přednáška ÚVOD

TEORIE NETKANÝCH TEXTILIÍ. 2. přednáška ÚVOD 2. přednáška ÚVOD https://moodle.fp.tul.cz/nano/ Přihlásit jako host (není možné zkoušet testy) nebo se plnohodnotně přihlásit = vytvořit nový účet. https://moodle.fp.tul.cz/nano/course/view.php?id=63

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

STRUKTURA PEVNÝCH LÁTEK A KAPALIN

STRUKTURA PEVNÝCH LÁTEK A KAPALIN STRUKTURA PEVNÝCH LÁTEK A KAPALIN 18. POVRCHOVÁ VRSTVA KAPALIN, KAPILÁRNÍ ELEVACE, DEPRESE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. POVRCHOVÉ NAPĚTÍ - Povrchové napětí je efekt, při kterém

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

2.2 Snížení energie systému záměnou fázových rozhraní Rovnováha na rozhraní tří fází

2.2 Snížení energie systému záměnou fázových rozhraní Rovnováha na rozhraní tří fází 2.2 Snížení energie systému záměnou fázových rozhraní Rovnováha na rozhraní tří fází Jevy na rozhraní tří stýkajících se fází, z nichž alespoň dvě jsou tekutiny (plyn nebo kapalina), jsou označovány termínem

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

TEORIE NETKANÝCH TEXTILIÍ. Kapky Kapilární délka. Simulace pomocí Isingova modelu. 7.přednáška

TEORIE NETKANÝCH TEXTILIÍ. Kapky Kapilární délka. Simulace pomocí Isingova modelu. 7.přednáška Kapky Kapilární délka Simulace pomocí Isingova modelu 7.přednáška Kapaliny vykazují poněkud zvláštní vlastnosti. Mají schopnost porazit gravitaci a vytvořit kapilární mosty, přesouvat se po šikmých rovinách,

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Úvod. K141 HYAR Úvod 0

Úvod. K141 HYAR Úvod 0 Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Molekulové jevy Molekula Mezimolekulové síly Koheze a adheze Kapalina Povrchové napětí Povrchová energie Molekulový tlak Kapilární tlak

Molekulové jevy Molekula Mezimolekulové síly Koheze a adheze Kapalina Povrchové napětí Povrchová energie Molekulový tlak Kapilární tlak Molekulové jevy Molekula Mezimolekulové síly Dosah molekulových sil Lenardův-Jonesův potenciál Druhy mezimolekulových potenciálních energií Koheze a adheze Koheze Adheze Kapalina Struktura kapalin Vlastnosti

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Interakce mezi kapalinou a vlákenným materiálem

Interakce mezi kapalinou a vlákenným materiálem 5. přednáška Interakce mezi kapalinou a vlákenným materiálem Lucas Washburnův vztah dynamika průniku kapalin do kruhové kapiláry dh r Pe. dt 8h Kapilarita Rostliny transportují vodu z kořenů do listů,

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Netkané textilie. Materiály 2

Netkané textilie. Materiály 2 Materiály 2 1 Pojiva pro výrobu netkaných textilií Pojivo je jednou ze dvou základních složek pojených textilií. Forma pojiva a jeho vlastnosti předurčují technologii a podmínky procesu pojení způsob rozmístění

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Autor: Vladimír Švehla

Autor: Vladimír Švehla Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

Pevnost kompozitů obecné zatížení

Pevnost kompozitů obecné zatížení Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

Voigtův model kompozitu

Voigtův model kompozitu Voigtův model kompozitu Osnova přednášky Směšovací pravidlo použitelnost Princip Voigtova modelu Důsledky Voigtova modelu Specifika vláknových kompozitů Směšovací pravidlo Nejjednoduší vztah pro vlastnost

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Teorie tkaní. Modely vazného bodu. M. Bílek

Teorie tkaní. Modely vazného bodu. M. Bílek Teorie tkaní Modely vazného bodu M. Bílek 2016 Základní strukturální jednotkou tkaniny je vazný bod, tj. oblast v okolí jednoho zakřížení osnovní a útkové nitě. Proces tkaní tedy spočívá v tvorbě vazných

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Netkané textilie. Technologická část 1

Netkané textilie. Technologická část 1 Netkané textilie Technologická část 1 Netkané textilie 1 Netkané textilie 2 Příprava vlákenných vrstev Mechanické způsoby přípravy vlákenných vrstev Aerodynamická výroba vlákenné vrstvy Mechanicko-aerodynamické

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

4. Měření některých fyzikálně-chemických charakteristik fázového rozhraní Equation Section 4 R (4.1)

4. Měření některých fyzikálně-chemických charakteristik fázového rozhraní Equation Section 4 R (4.1) 4. Měření některých fyzikálně-chemických charakteristik fázového rozhraní Equation Section 4 4.1 Povrchové a mezifázové napětí Mezi nejpoužívanější metody pro stanovení povrchového a mezifázového napětí

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

Kapka kapaliny na hladině kapaliny

Kapka kapaliny na hladině kapaliny JEVY NA ROZHRANÍ TŘÍ PROSTŘEDÍ Kapka kapaliny na hladině kapaliny Na hladinu (viz obr. 11) kapaliny (1), nad níž je plynné prostředí (3), kápneme kapku jiné kapaliny (2). Vzniklé tři povrchové vrstvy (kapalina

Více

ANALÝZA KONSTRUKCÍ. 5. přednáška

ANALÝZA KONSTRUKCÍ. 5. přednáška ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:

Více

Povrchové napětí KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI

Povrchové napětí KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI KATEDRA EXPERIMETÁLÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UIVERZITY PALACKÉHO V OLOMOUCI Fyzikální praktikum z molekulové fyziky a termodynamiky Povrchové napětí Úvod Molekuly kapaliny se vzájemně přitahují kohezními

Více

Reologické modely technických materiálů při prostém tahu a tlaku

Reologické modely technických materiálů při prostém tahu a tlaku . lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu

Více

Adsorpce. molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth Fajans. výměnná iontová adsorpce, protionty v aluminosilikátech

Adsorpce. molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth Fajans. výměnná iontová adsorpce, protionty v aluminosilikátech Adsorpce 1/15 molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth Fajans výměnná iontová adsorpce, protionty v aluminosilikátech Ar na grafitu adsorpce: na povrch/rozhraní absorpce:

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš

Více

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22 Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI Jaroslav Krucký, PMB 22 SYMBOLY Řecká písmena θ: kontaktní úhel. σ: napětí. ε: zatížení. ν: Poissonův koeficient. λ: vlnová délka. γ: povrchová

Více

Fáze a fázové přechody

Fáze a fázové přechody Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více