Identifikace mikroorganismů pomocí sekvence jejich genu pro 16S rrna

Podobné dokumenty
Obsah Protein Gel Electrophoresis Kitu a jeho skladování

Polymorfismus délky restrikčních fragmentů

Izolace genomové DNA ze savčích buněk, stanovení koncentrace DNA pomocí absorpční spektrofotometrie

SDS polyakrylamidová gelová elektroforéza (SDS PAGE)

DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová

Sure-MeDIP I. with magnetic beads and MNase.

SDS-PAGE elektroforéza

CVD-T StripAssay. Kat. číslo testů 2-8 C

ELEKTROFORETICKÉ METODY

Polymorfismus délky restrikčních fragmentů (RFLP)

TESTOVÁNÍ GMO Praktikum fyziologie rostlin

ELEKTROFORETICKÁ SEPARACE NUKLEOVÝCH KYSELIN

MODERNÍ BIOFYZIKÁLNÍ METODY:

Elektroforéza v přítomnosti SDS SDS PAGE

PROTEINOVÁ DENATURUJÍCÍ ELEKTROFORÉZA (SDS PAGE)

MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha

Vizualizace DNA ETHIDIUM BROMID. fluorescenční barva interkalační činidlo. do gelu do pufru barvení po elfu SYBR GREEN

Stanovení cholesterolu ve vaječném žloutku a mléce kapilární elektroforézou

Elektroforéza Sekvenování

Kras XL StripAssay. Kat. číslo testů 2-8 C

Izolace nukleových kyselin

PROTOKOL WESTERN BLOT

Protokoly Transformace plasmidu do elektrokompetentních buněk BL21 Pracovní postup:

Základní praktická cvičení z molekulární biologie

Obr. 1. Struktura glukosaminu.

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

Výzkumný ústav rostlinné výroby Praha Ruzyně. Metodika byla vypracována jako výstup výzkumného záměru MZe č Autor: Ing.

Seminář izolačních technologií

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY

Laboratorní úlohy z molekulární biologie

Western blotting. 10% APS 20,28 µl 40,56 µl 81,12 µl 20,28 µl 40,56 µl 81,12 µl

MagPurix Blood DNA Extraction Kit 200

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY

Objednací číslo Určení Ig-třída Substrát Formát EI M Chlamydia pneumoniae IgM Ag-potažené mikrotitrační jamky

Protilátky proti Helicobacter pylori (IgG) Návod na použití ELISA testu

Izolace RNA. doc. RNDr. Jan Vondráček, PhD..

2. Stanovení 5-hydroxymethylfurfuralu v medu pomocí kapilární elektroforézy

Tkáňový homogenizátor MagNA Lyser od společnosti Roche

Braf V600E StripAssay

Elektromigrační metody

DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP

Teorie: Trávení: proces rozkladu molekul na menší molekuly za pomoci enzymů trávícího traktu

Aplikace elektromigračních technik Laboratorní úlohy

CYCLER CHECK. Test pro validaci teplotní uniformity cyklérů. Připraveno k použití, prealiquotováno. REF 7104 (10 testů) REF (4 testy)

α-globin StripAssay Kat. číslo testů 2-8 C

MagPurix Forensic DNA Extraction Kit

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

Chromoprobe Multiprobe - T System

MOLEKULÁRNÍ BIOLOGIE I PŘÍPRAVA TKÁNĚ K IZOLACI DNA

Reakce kyselin a zásad

Gelová elektroforéza - úvod, demonstrační sada pro učitele Kat. číslo

Sada Látky kolem nás Kat. číslo

Podklady pro cvičení: USEŇ A PERGAMEN. Určení živočišného původu kolagenového materiálu. Úkol č. 1

1. VÝROBA OBALOVÉ FOLIE Z BRAMBOR

METODY STUDIA PROTEINŮ

13/sv. 8 (85/503/EHS) Tato směrnice je určena členským státům.

Sure-MeDIP II. with agarose beads and Mse I.

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU

13/sv. 6 CS (80/891/EHS)

Sada pro získání DNA ze zeleniny/ovoce Kat. číslo

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU

BUNĚČNÁ STĚNA - struktura a role v rostlinné buňce

cdna synthesis kit First-Strand cdna Synthesis System Verze 1.2

Chromoprobe Multiprobe - CLL

Zlepšení podmínek pro výuku na gymnáziu. III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT. Anotace

Monitorování hladiny metalothioneinu a thiolových sloučenin u biologických organismů vystavených působení kovových prvků a sloučenin

Výzkumný ústav rostlinné výroby, v.v.i., Praha 6 - Ruzyně, 2011 ISBN

Sraz studentů v 8:00 před laboratoří A5/108, s sebou plášť a přezutí PRINCIP. Polyakrylamidová gelová elektroforéza v přítomnosti SDS (SDS-PAGE)

HYDROXYDERIVÁTY - ALKOHOLY

ÚLOHA C Klonování PCR produktu do plasmidu

PRÁCE S ROZTOKY A JEJICH KONCENTRACE

5. BEZPEČNOSTNÍ OPATŘENÍ PŘI POUŽITÍ A MANIPULACI

Elektromigrační metody

Základy obsluhy plazmatických reaktorů, seznámení s laboratorní technikou

Metody molekulární biologie v rostlinné ekologii a systematice

Turnusové praktikum z biochemie

MagPurix Viral/Pathogen Nucleic Acids Extraction Kit B

USING OF AUTOMATED DNA SEQUENCING FOR PORCINE CANDIDATE GENES POLYMORFISMS DETECTION

N Laboratoř hydrobiologie a mikrobiologie

Metody práce s proteinovými komplexy

EGFR XL StripAssay. Kat. číslo testů 2-8 C

NÍZKOTEPLOTNÍ VLASTNOSTI PALIV A MAZIV ÚVOD

NRAS StripAssay. Kat. číslo testů 2-8 C

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU HYDROXYPROLINU SPEKTROFOTOMETRICKY

IZOLACE DNA (KIT DNeasy Plant Mini)

MANUÁL LABORATORNÍCH PRACÍ Z CHEMIE

Návod k použití HISTO TYPE SSP Kits

Praktický kurz Pokročilé biofyzikální přístupy v genomice a proteomice května 2010

Souprava na extrakci nukleových kyselin. Uživatelská příručka

fenanthrolinem Příprava

2) Připravte si 3 sady po šesti zkumavkách. Do všech zkumavek pipetujte 0.2 ml roztoku BAPNA o různé koncentraci podle tabulky.

PO STOPÁCH BAKTERIÍ V/KOLEM NÁS

MOLEKULÁRNÍ BIOLOGIE I PŘÍPRAVA TKÁNĚ K IZOLACI DNA

Braf 600/601 StripAssay

2. PROTEINOVÉ TECHNIKY

DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIUDÁLNÍ CHOROBY MRD EGFR

Metody molekulární biologie v rostlinné ekologii a systematice

MagPurix Viral Nucleic Acid Extraction Kit

CHORUS CARDIOLIPIN-G

Transkript:

Praktická úloha Identifikace mikroorganismů pomocí sekvence jejich genu pro 16S rrna Pro spolehlivou identifikaci mikroorganismů pomocí genetických metod se velmi často využívá stanovení nukleotidové sekvence jejich genu kódujícího 16S podjednotku ribosomální RNA. 16S rrna (viz obr. níže) je 1542 nukleotidů dlouhá RNA, která tvoří složku menší 30S podjednotky ribosomu prokaryot. Obsahuje oblasti, které jsou mezi všemi mikroorganismy velmi konzervované, stejně tak jako oblasti, které jsou variabilní a charakteristické pro každý bakteriální druh. Znalost sekvence 16S rrna se používá také k vytváření fylogenetických stromů znázorňujících možnou příbuznost studovaných mikroorganismů. Obr.: Struktura bakteriální 16S rrna, převzato z http://rna.ucsc.edu/rnacenter/xrna/xrna_gallery.html Pro stanovení sekvence genu pro 16S rrna je nutné mít chromosomální DNA isolovanou z čisté bakteriální kultury (tvořené jedním bakteriálním kmenem). Poté je nutné

pomocí polymerasové řetězové reakce (PCR) amplifikovat buď celý, nebo vybraný úsek 16S rrna genu. Takto získaná DNA je poté použita jako templát pro sekvenační reakci. Provedení: Pracujte v ochranných rukavicích! Při pipetování používejte vždy novou špičku chráníte tak své vzorky a používané roztoky před kontaminací. Použité plastové pomůcky vyhazujte do určených odpadních nádob. Izolace chromosomální DNA z bakteriálních buněk Metody pro izolaci DNA z mikroorganismů, tkání a pletiv se liší především podle charakteru buněčných stěn, velikosti izolované DNA a její požadované kvality (čistota, intaktnost). Tradiční metody zahrnují následující kroky: desintegrace a lýze buněk (rozrušení buněčných stěn a biologických membrán mechanicky, enzymovou hydrolýzou, alkalickou hydrolýzou, detergenty, osmotickým šokem nebo jejich kombinací). Po odstranění kontaminujících proteinů, polysacharidů a RNA (precipitací, enzymaticky proteasami a RNasami, gradientovou centrifugací nebo iontoměničovou chromatografií) je DNA separována precipitací (ethanolem), iontoměničovou chromatografií, případně elektroforeticky. V našem případě budeme izolovat chromosomální DNA z neznámé bakteriální kultury obsahující jeden kmen Gram-negativní bakterie. Izolace chromosomální DNA bude provedena pomocí komerční soupravy (kitu), fungující na principu chromatografie, viz obr. níže. Obr.: převzato z: http://upload.wikimedia.org/wikipedia/commons/5/53/qiagen_mini_spin_column.svg Protokol: Bakteriální kulturou bylo zaočkováno živné médium a buňky byly kultivovány při 37 o C přes noc. 1,5 ml této kultury bylo odebráno do mikrozkumavky a centrifugováno 2 min při 16 000 g. Bylo odstraněno živné médium supernatant a na dně mikrozkumavky zbyla viditelná peleta bakteriálních buněk, která bude použita pro izolaci DNA.

1. Pečlivě resuspendujte bakteriální peletu ve 180 µl lyzačního roztoku T (dochází k lýzi buněk). 2. Přidejte 20 µl RNasy pro degradaci kontaminující RNA, promíchejte a inkubujte při laboratorní teplotě cca 2 minuty. 3. Přidejte 20 µl roztoku proteinasy K ke vzorku. Dobře promíchejte a inkubujte 25 minut při 55 o C. (Pomocí proteinasy K dochází také k odstranění proteinů navázaných na bakteriálním chromosomu). 4. Přidejte 200 µl lyzačního roztoku C a cca 15 vteřin vortexujte. Poté směs inkubujte 10 minut při 55 o C. 5. Připravte si kolonku pro iontoměničovou chromatografii (pomocí níž budete z roztoku DNA izolovat) tak, že do ní pipetujte 500 µl pufru CPS1. Centrifugujte 1 minutu při 12 000 g. Odstraňte proteklý pufr. 6. Přidejte 200 µl čistého ethanolu k bakteriálnímu lyzátu a dobře promíchejte vortexováním po dobu 10 vteřin (dochází k precipitaci DNA). Poté celý roztok lyzátu naneste na kolonku a centrifugujte 1 minutu při 6 500 g (DNA z roztoku se zachytí na kolonce). Odstraňte proteklý roztok a kolonku s navázanou DNA umístěte do nové mikrozkumavky. 7. Pipetujte do kolonky 500 µl oplachovacího pufru W1. Centrifugujte 1 minutu při 6 500 g. Odstraňte proteklý roztok a kolonku s navázanou opláchnutou DNA umístěte do nové mikrozkumavky. 8. Přidejte do kolonky 500 µl oplachovacího pufru W2 (obsahujícího ethanol). Centrifugujte 3 minuty při 16 000 g. Odstraňte proteklý roztok a ještě jednou kolonku centrifugujte 1 minutu při max. g centrifugy. Kolonku poté umístěte do nové mikrozkumavky. 9. Předehřejte si v mikrozkumavce čistou destilovanou vodu a poté jí 50 mikrolitrů jemně a opatrně pipetujte na střed horní vrstvy kolonky. Nechte inkubovat při laboratorní teplotě 3 minuty (rozpouští se DNA zachycená na kolonce). 10. Kolonku centrifugujte 1 minutu při 6500 g a následně 30 sec při 12 000 g. Mikrozkumavku s eluovanou DNA popište a stanovte pomocí spektrofotometru Nanodrop její koncentraci. Tuto DNA dále použijete jako templát pro polymerasovou řetězovou reakci, viz níže. Polymerasová řetězová reakce PCR, pro amplifikaci genu pro 16S rrna V případě že jsme úspěšně izolovali chromosomální bakteriální DNA, tak bude možné amplifikovat gen pro 16S rrna. Použijeme komerční kit pro PCR.

Protokol: Pracujte v rukavicích, abyste předešli kontaminaci izolované bakteriální DNA cizorodou DNA. 1. Vezměte si mikrozkumavku pro PCR a pipetujte do ní všechny složky PCR reakce dle rozpisu v tabulce níže, v pořadí: čistá destilovaná voda pro PCR, PCR pufr, templát isolovaná bakteriální DNA, roztok MgCl 2, směs nukleotidů, oba primery (F a R) a nakonec enzym termostabilní DNA polymerasa. Celkový reakční objem musí být 50 µl. Vše dobře promíchejte a vložte do teplotního cykleru. 2. Zapněte příslušný program cykleru, viz níže. Tabulka: složka množství (finální koncentrace) 5x PCR pufr 10 µl roztok MgCl 2 4 µl dntp mix 1 µl (0,2 mm každý NTD) primer F 1 µl (1µM) primer R 1 µl (1µM) templátová DNA 50 ng polymerasa 0.5 µl voda pro PCR do celk. objemu 50 µl Program PCR reakce: Počáteční denturace 94 o C, 4 min. 10 cyklů: denaturace 94 o C, 30 sec přisednutí primeru 62 o C, 30 sec polymerace DNA 72 o C, 2 min 20 cyklů: denaturace 94 o C, 30 sec přisednutí primeru 53 o C, 30 sec polymerace DNA 72 o C, 2 min Finální polymerace 72 o C, 5 min. Analýza produktů PCR pomocí elektroforesy v agarosovém pufru Princip: Elektroforesa v agarosovém gelu se používá k identifikaci, separaci a purifikaci molekul DNA a v některých případech i proteinů. Tyto molekuly jsou v gelu děleny podle jejich náboje (migrace k anodě nebo katodě, přičemž velikost náboje určuje rychlost migrace) a velikosti (gel vlastně působí jako síto). DNA je díky fosfátovým skupinám nabita záporně a ve stejnosměrném elektrickém poli se při ph 8 bude pohybovat ke kladné elektrodě. Vzhledem k tomu, že jsou fosfátové skupiny spojující jednotlivé nukleosidy distribuovány rovnoměrně, mají molekuly DNA konstantní hodnotu povrchového náboje na jednotku délky a budou se v gelu dělit podle jejich velikosti delší molekuly se budou proplétat gelovou matricí obtížněji než molekuly menší. Rychlost migrace dvouřetězcové DNA agarosovým gelem je nepřímo úměrná logaritmu jejich délky (počtu párů bází; bp).

Komerční agarosa je lineární polysacharid v podstatě tvořený z asi 800 galaktosových jednotek. Zgelovatěním agarosy vzniká v závislosti na její koncentraci trojrozměrná síť s póry o velikosti 50 až > 200 nm. Velikost pórů samozřejmě určuje použitelný frakcionační rozsah gelu pro lineární molekuly dvouřetězcové DNA. Tak v gelu s 0,5 % agarosy lze účinně rozdělit fragmenty velikosti 700 až 25 0000 bp, v 1% gelu fragmenty o 250 až 12 000 bp, v 3% gelu fragmenty dlouhé 100 až 3 000 bp a ve speciálních 6% gelech i fragmenty o 10 až 100 bp. Elektroforesu v agarosovém gelu zde použijeme pro identifikaci produktů PCR na základě jejich velikosti. V našem případě použijeme s ohledem na předpokládané délky amplikonů 1% agarosový gel. Jednotlivé fragmenty putují v gelu jako zóny (proužky). Velikost fragmentu lze určit po elektroforese na základě porovnání polohy proužku DNA na gelu s migrací směsi fragmentů známých délek DNA v gelu (tzv. marker DNA ladder). DNA je však třeba nejprve vizualizovat, k čemuž se nejčastěji používá fluorescenčních barviv. Nejběžnějším je ethidiumbromid (EtBr), který viditelně fluoreskuje po ozáření ultrafialovým světlem o vlnové délce okolo 300 nm. Materiál a chemikálie: vzorky po PCR ve vzorkovém pufru elektroforetická aparatura a zdroj stejnosměrného proudu UV transluminátor s dokumentačním zařízením ochranné rukavice elektroforetický pufr (10 koncentrovaný TBE pufr o složení na 1 litr: 54 g Tris, 27,5 g kyseliny borité, 20 ml 0,5M EDTA a ph upraveným pomocí HCl na hodnotu 8, 0) destilovaná voda agarosa pro molekulární biologii ethidiumbromid - EtBr (10 mg/ml ve vodě) DNA marker ve vzorkovém pufru (1 g DNA/5 l) Protokol (agarosový gel bude již předem připravený): Připravíme 1 TBE pufr naředěním 10 koncentrovaného zásobního roztoku destilovanou vodou v množství dostatečném pro přípravu gelu a použití jako elektrolyt při elektroforese. (EDTA přítomná v pufru vyvazuje ionty Mg 2+ z molekuly DNA, což přispívá k uniformitě náboje a brání případnému štěpení DNA nukleasami). Podle velikosti očekávaných fragmentů DNA připravíme v Erlenmeyerově baňce suspenzi obsahující 1 % hmotn. agarosy v TBE pufru. Agarosovou suspenzi přivedeme do krátkého varu (5-10s) v mikrovlnné troubě nebo povařením na plynovém kahanu. Poté roztok agarosy ponecháme ochladit na cca 60 ºC (udržíte v holé ruce) a přidáme takové množství EtBr pro vizualizaci DNA, aby jeho výsledná koncentrace byla 0,5 g/ml (POZOR: EtBr je toxický karcinogen!). Gel nalijeme do vaničky, ponoříme do něj hřeben a necháme ztuhnout při pokojové teplotě. 1. Nalijte do elektroforetické aparatury dostatečné množství TBE pufru.

2. Do krajních jamek naneste mikropipetou 7 l markeru a do dalších jamek vhodný objem (5 10 l) vzorku ve vzorkovém pufru. Pořadí nanášení markeru a vzorků zapište. 3. Uzavřete aparaturu, připojte ji ke zdroji stejnosměrného proudu (DNA putuje ke kladné elektrodě) a nastavte napětí na hodnotu cca 60-90 V. Sledujte průběh elektroforesy podle migrace barviv přítomných ve vzorkovém pufru. V použitém vzorkovém pufru mohou být obvykle tři barviva: xylene cyanol, bromfenolová modř a OrangeG, které migrují přibližně stejně rychle jako fragmenty DNA o délce asi 4000 bp, 300 bp a 50 bp, v uvedeném pořadí. 4. Po skončení elektroforesy vypněte zdroj napětí a gel přeneste bezpečně (stále obsahuje EtBr) na plochu transiluminátoru a vizualizujte DNA v UV světle. Pořiďte elektronický (pomocí CCD kamery) záznam gelu a ten vyhodnoťte. 5. Použitý gel a elektrodový pufr předejte lektorovi k dekontaminaci. Stanovení nukleotidové sekvence PCR produktu amplifikovaného genu pro 16S rrna V agarosovém gelu byste měli vidět jeden proužek, odpovídající přibližně velikosti DNA 1500 bp, což je velikost genu pro 16S rrna. Pokud tomu tak není, neproběhla správně izolace chromosomální bakteriální DNA nebo PCR reakce a není možné pokračovat dále. Pokud jsme pomocí elektroforézy ověřili úspěšnou amplifikaci genu pro 16S rrna, je možné stanovit sekvenci 16S rdna, získané pomocí PCR metody. Metodu přečištění DNA po PCR a sekvenační metodu nebudeme z časových důvodů provádět, bude popsána pouze ústně. (DNA by byla přečištěna od solí, zbylých enzymů, nukleotidů a primerů pomocí komerčního kitu, založeného na iontoměničové chromatografii). Přečištěný PCR produkt by byl sekvenován pomocí Sangerovy sekvenační dideoxy-metody. Dále budete identifikovat neznámý mikroorganismus podle nukleotidové sekvence genu pro jeho 16S rrna. Protokol: 1. Nukleotidovou sekvenci, získanou po sekvenaci DNA, porovnejte se známými sekvencemi v databázích a určete, o jaký mikroorganismus se jednalo. 2. Pracujte s databází BLAST a BLAST 2 na www.ncbi.nlm.nih.gov. 3. Porovnejte Vaší nukleotidovou sekvenci i se sekvencí studentů z vedlejší skupiny. Vyhodnoťte, které úseky genu pro 16S rrna jsou konzervativní a které jsou variabilní. 4. Výsledky zpracujte a zapište.

Praktická úloha Srovnání proteinových profilů izolovaných ze svalové tkáně různých druhů ryb Tato úloha slouží k pochopení metody fingerprintu - otisku proteinů. Každý biologický druh má charakteristické zastoupení proteinů ve svých tkáních. Úkolem této úlohy bude pozorovat a případně rozlišit proteinové spektrum (profil), u několika rybích druhů, které si nejsou evolučně blízké. Konkrétně se zaměříme na proteiny rybí svalové tkáně. Rybí svalová tkáň obsahuje mnoho proteinů, jejichž výskyt je podobný u všech ryb, například aktin a myosin, a dále řadu proteinů, jejichž zastoupení se liší. V tabulce jsou uvedeny proteiny, které můžeme najít v rybí svalové tkáni. protein MW (kda) funkce titin 3000 centruje myosin v sarkoméře dystrofin 400 ukotvení k plasm. membráně filamin 270 prokřížení aktinových vláken spektrin 265 připojení filament k plasmatické membráně myosin 210 posun vláken aktinu (těžký řetězec) M1/M2 190 degradační produkt myosinu M3 150 degradační produkt myosin C protein 140 degradační produkt myosin nebulin 107 regulace skládání aktinu α-aktinin 100 sbaluje vlákna aktinu gelsolin 90 fragmentuje vlákna aktinu fimbrin 68 sbaluje vlákna aktinu aktin 42 tvoří vlákna tropomyosin 35 zesiluje vlákna aktinu troponin T 30 regulace svalové kontrakce myosin 24, 17, 15 posun aktinových vláken (lehké řetězce) troponin I 19 regulace svalové kontrakce troponin C 17 regulace svalové kontrakce thymosin 5 zadržuje monomery aktinu Rybí svalová tkáň byla vybrána proto, že neobsahuje mnoho tuku a proteiny se z ní snadno extrahují. Neobsahuje ani ostatní látky, které by mohly extrakci negativně ovlivnit, jako např. celulosu nebo chitin.

Následující obrázek (převzato z http://www.cpet.ufl.edu/wp-content/uploads/2012/10/compar-prot- Protein-Profiler-manual.pdf) ukazuje evoluční strom živočišné říše. Čím dále evolučně vzdálené jednotlivé ryby jsou, tím by se měl jejich proteinový profil více odlišovat. Analýza proteinů získaných z rybí tkáně bude prováděna pomocí elektroforesy denaturovaných proteinů v polyakrylamidovém gelu tzv. SDS-PAGE.

Proteiny extrahované ze svalové tkáně do extrakčního pufru se denaturují a díky SDS (dodecylsulfát sodný) získají záporný náboj. Po nanesení na gel poté v průběhu elektroforesy putují podle svých molekulových hmotností. Výsledný gel by poté měl vypadat asi takto (převzato z http://www.cpet.ufl.edu/wpcontent/uploads/2012/10/compar-prot-protein-profiler-manual.pdf): Protokol: 1. Připravte si stejný počet mikrozkumavek, jako je počet rybích vzorků. Jednotlivé zkumavky označte číslem skupiny a popište jménem ryby. Budeme pracovat s rybí svalovinou kapra, tresky, lososa a jako vzorek neznámé ryby vezmeme rybí tyčinky Surimi. 2. Z vody a koncentrátu připravte 250 μl vzorkového pufru (PLB) do každé označené mikrozkumavky. Pozor koncentrát vzorkového pufru je 5x koncentrovaný, musíte přepočítat tak, aby byl finálně 1x! 3. Připravte si přibližně 0,25x0,25x0,25 cm velký kousek ryby. Snažte se, ať neobsahuje kosti nebo kůži. U tyčinek Surimi vezměte zhruba dvojnásobné množství materiálu. Tento kousek vhoďte do mikrozkumavky se vzorkovým pufrem. 4. Několikrát proklepejte prstem obsah mikrozkumavky, aby se z rybí tkáně mohly uvolnit proteiny, nebo lépe vzorek protřepte pomocí vortexu. Inkubujte za občasného protřepávání 5 minut při laboratorní teplotě. 5. Zahřejte vzorky 5 min při 95 o C, aby se proteiny kompletně zdenaturovaly.

6. Mikrozkumavky vložte do centrifugy a vzorky těsně před jejich nanesením na SDS- PAGE odstřeďte pomocí centrifugy 5 minut na maximum g. 7. Sestavte aparaturu pro elektroforesu dle návodu. Obdržíte předem připravený 12% polyakrylamidový gel s vloženým hřebenem. Tento gel byl připraven dle tabulky a postupu viz níže, Materiál a metody. 8. Označte svoje sklo, nalijte příslušný elektroforetický pufr, naneste vzorky včetně markeru molekulových hmotností. Připojte ke zdroji a proveďte elektroforesu při napětí cca 90-150 V. 9. Vyjměte gel, opláchněte ho ve vodě, aby se odstranilo SDS. 10. Vložte gel do barvicího roztoku na cca 30 min. Poté gel vyjměte a odbarvujte v odbarvovacím roztoku do odbarvení pozadí. Barvicí a odbarvovací roztok obsahují methanol a barvičky dobře se vážící na proteiny (viz detaily Materiál a metody), pracujte tedy v rukavicích. 11. Vyhodnoťte získané výsledky. Lze rozpoznat, ze které ryby byly rybí tyčinky Surimi připraveny? Materiál a metody: Proteinová elektroforesa v polyakrylamidovém gelu SDS-PAGE Polyakrylamidový gel se připraví ze směsi akrylamidu a N,N -methylen-bis-akrylamidu (v hmotnostním poměru 29:1). Pro polymeraci gelu je nutné přidat polymerační činidlo (iniciátor polymerace) persíran amonný a TEMED (N,N -tetramethylethylendiamin). Koncentrace gelu závisí na velikosti proteinů, které chceme separovat, nejčastěji používaná je 12% (účinná separace proteinů 20-60 kda) nebo 15% (10-40 kda). Každý protein má výsledný náboj, který je součtem parciálních nábojů daných jeho aminokyselinovým složením. Proto je výhodné proteiny separovat v denaturujícím gelu obsahujícím SDS (dodecylsíran sodný). SDS je detergent, který obalí proteinové částice za vzniku micely se záporným nábojem, která pak putuje podle své velikosti - molekulové hmotnosti separovaného proteinu. Polyakrylamidový gel se skládá navíc ze dvou gelů, zaostřovacího, ve kterém dochází k zaostření separovaných proteinů do úzké zóny a vlastního dělicího (rozdělovacího) gelu, kde dochází k separaci proteinů dle jejich molekulových hmotností. Příprava 12% polyakrylamidového gelu: 12% dělicí gel zaostřovací gel H 2 O 2,55 ml 2,5 ml AA 30% 3 ml 0,6 ml 1,5 M Tris.Cl ph 8,8 1,875 ml

0,5 M Tris.Cl ph 6,8 0,45 ml SDS 10% 75 μl 36 μl APS 10% 37,5 μl 36 μl TEMED 3,75 μl 3,6 μl 1. Příprava rozdělovacího gelu: Do plastikové zkumavky napipetujeme 2,55 ml destilované vody a přidáme 3 ml zásobního roztoku akrylamidu (30% vodný roztok směsi akrylamidu a bis-akrylamidu v poměru 29:1). Přidáme 1,875 ml 1,5M roztoku Tris.HCl, ph 8,8. Přidáme 75 μl 10%SDS, 37,5 μl APS (10% persíran amonný) a 3,75 μl TEMED. Vše promícháme tak, aby nedocházelo k provzdušnění směsi, kyslík brání polymeraci akrylamidu. Pracujeme rychle, směs začíná po přídavku iniciátoru polymerace polymerovat. 2. Vzniklý roztok nalijeme mezi skla elektroforetické aparatury, převrstvíme ho butanolem a necháme 30 min polymerovat při laboratorní teplotě. 3. Příprava zaostřovacího gelu: Do plastikové zkumavky napipetujeme 2,5 ml destilované vody a přidáme 0,6 ml zásobního roztoku akrylamidu (viz výše). Přidáme 0,45 ml 0,5M roztoku Tris.HCl, ph 6,8. Přidáme 36 μl 10%SDS, 36 μl APS (10% persíran amonný) a 3,6 μl TEMED. Opět jemně, ale dobře promícháme. Po odsušení butanolu z rozdělovacího gelu nalijeme zaostřovací gel, do nějž vložíme hřeben. Necháme polymerovat 30 min. Příprava 5x koncentrovaného vzorkového pufru (PLB): Do zkumavky napipetujeme 5 ml 1,5M Tris.HCl, ph 6,8. Přidáme 10 ml glycerolu (aby vzorek klesl do jamky), 5 ml 20% SDS, 0,1 g bromfenolové modři (pro snazší nanášení a určení čela elektroforesy) a 1,554 g dithiothreitolu (rozrušení S-S můstků). Dobře vše promícháme. Tris-glycinový pufr pro SDS-PAGE elektroforesu: Přidáme 1 g SDS, 3 g Tris a 14,4 g glycinu do 1 litru vody. Pomocí HCl upravíme ph na 8.3. Vizualizace proteinů v polyakrylamidovém gelu: Obvykle dostatečná metoda vizualizace rozdělených proteinů je jejich barvení pomocí barvy Coomassie Brilliant Blue. 1. Vyjmeme gel z elektroforesy, opatrně odstraníme zaostřovací gel. 2. Rozdělovací gel ponoříme na 30 min do barvicího roztoku (2,5 g Coomassie Brilliant Blue R-250, 450 ml methanolu, 100 ml kys. octové, voda, do 1 litru celkově). 3. Gel odbarvíme v odbarvovacím roztoku (450 ml methanolu, 100 ml octové kyseliny, voda, do 1 litru celkem).