Ověření materiálových vlastností přídavných svařovacích materiálů při svařování ocelových konstrukcí

Podobné dokumenty
DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

Technické požadavky normy EN 1090 na výrobu konstrukcí z ocelí s vyšší mezi kluzu

Zkušební protokol č. 18/12133/12

VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM

(ocelových výztuží) ČSN EN ISO Technické pravidlo CWS ANB TP C 027/I/07. doc. Ing. Ivo Hlavatý, Ph.D.

SVÚM a.s. Zkušební laboratoř vlastností materiálů Tovární 2053, Čelákovice

durostat 400/450 Za tepla válcované tabule plechu Datový list srpen 2013 Odolné proti opotřebení díky přímému kalení

TECHNOLOGIE SVAŘOVÁNÍ MIKROLEGOVANÝCH OCELÍ DOMEX 700MC SVOČ FST

Strana 5, kap. 10, zařazen nový článek (navazující bude přečíslován)

ZMĚNA ČESKÉHO OBRANNÉHO STANDARDU 1. Označení a název opravovaného ČOS , 2. Vydání SVAŘOVÁNÍ. OBALENÉ ELEKTRODY PRO RUČNÍ OBLOUKOVÉ SVAŘOVÁNÍ

Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa

Výrobní způsob Výrobní postup Dodávaný stav Způsob Symbol Výchozí materiál Skružování Svařování pod. (Za tepla) válcovaný Skružování za

Podle ČSN EN Svařované duté profily tvářené za studena z konstrukčních nelegovaných a jemnozrnných ocelí technické dodací předpisy

Výrobky válcované za tepla z konstrukčních ocelí Část 2: Technické dodací podmínky pro nelegované konstrukční oceli

OPTIMALIZACE SVAŘOVACÍCH PARAMETRŮ PŘI ODPOROVÉM BODOVÉM SVAŘOVÁNÍ KOMBINOVANÝCH MATERIÁLŮ

Systém značení evropských norem pro svařování přídavnými materiály

Mn max. P max. Mezní úchylky pro rozbor hotového výrobku % hmot. Označení oceli Pevnostní vlastnosti Zkouška rázem v ohybu

Doplňkové zkoušky svářečů

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

Kvalifikace postupu svařování konstrukčních ocelí se zvýšenou mezí kluzu

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Heterogenní spoje v energetice, zejména se zaměřením na svařování martenzitických ocelí s rozdílným obsahem Cr

Zkoušky postupu svařování z pohledu výrobce. Ing. Jiří Frýba Excon Steel Hradec Králové

Výrobky válcované za tepla z jemnozrnných konstrukčních ocelí normalizačně žíhané nebo normalizačně válcované Technické dodací podmínky

Ing. Michal Lattner Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.

Tolerance tvaru, přímosti a hmotnosti. Charakteristika Kruhové duté profily Čtvercové a obdélníkové profily Eliptické duté profily.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ II.

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

Výrobky válcované za tepla z jemnozrnných svařitelných konstrukčních ocelí termomechanicky válcované. Technické dodací podmínky

Okruh otázek s odpověďmi pro vstupní test.

Mn P max. S max 0,025 0,020 0,30. Obsah těchto prvků nemusí být uváděn, pokud nejsou záměrně přidávány do tavby. Prvek Mezní hodnota rozboru tavby

Materiálové laboratoře Chomutov s.r.o. Zkušební laboratoř MTL Luční 4624, Chomutov

ČSN EN Zkoušky svářečů Tavné svařování Část 1: Oceli

6/ Klasifikace podle ČSN EN ISO A

DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM

Postupy. Druh oceli Chemické složení tavby hmotnostní % a) Značka Číselné označení. Mn P max. S max 0,40-1,20 0,60-1,40

B 550B ,10

Materiálové laboratoře Chomutov s.r.o. Zkušební laboratoř MTL Luční 4624, Chomutov

Weld G3Si1. SFA/AWS A 5.18: ER 70S-6 EN ISO 14341A: G3Si1

Novinky v normách a směrnicích

Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012

OPRAVA ČESKÉHO OBRANNÉHO STANDARDU

VLIV OCHRANNÝCH PLYNŮ NA VLASTNOSTI SVAROVÉHO SPOJE PŘI SVAŘOVÁNÍ NELEGOVANÝCH KONSTRUKČNÍCH OCELÍ METODOU MAG

VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ

DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM

OPRAVA ČESKÉHO OBRANNÉHO STANDARDU

Příloha je nedílnou součástí osvědčení o akreditaci č.: 753/2015 ze dne:

Česká svářečská společnost ANB Czech Welding Society ANB (Autorised National Body for Welding Personnel and Company Certification) IČO:

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman

Teplota austenitizace o C

PARAMETRY, KTERÉ OVLIVŇUJÍ NÁKLADY NA SVAŘOVÁNÍ

NAUKA O MATERIÁLU PŘÍDAVNÉ MATERIÁLY I. Ing. Iveta Mičíková

MPO - FT-TA5/076. Fajkus M., Rozlívka L. INSTITUT OCELOVÝCH KONSTRUKCÍ, s. r. o. Základní materiálové normy oceli pro konstrukce

VÝZNAM A NENAHRADITELNOST VIZUÁLNÍ KONTROLY PŘI KVALIFIKACI PROCESU SVAŘOVÁNÍ

Technologie I. Část svařování. Kontakt : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ _ Z K O U Š K Y M A T E R I Á L U _ P W P

Elektrostruskové svařování

E-B 420. SFA/AWS A 5.4: E EN 1600: (E Z 19 9 Nb B 2 2*)

Výztužné oceli a jejich spolupůsobení s betonem

o teplota C o medium C P215NL N

Oceli k zušlechťování Část 2: Technické a dodací podmínky pro nelegované oceli

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Hodnocení vlastností folií z polyethylenu (PE)

STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24

Identifikace zkušebního postupu/metody PP (ČSN ISO 9556, ČSN ISO 4935) PP (ČSN EN , ČSN )

Norma: ČSN EN Bezešvé ocelové trubky pro tlakové nádoby a zařízení Technické dodací podmínky. z nelegovaných ocelí se zaručenými vlastnostmi

OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:

PROTOKOL číslo: / 2014

TEORIE SLÉVÁNÍ. Autoři přednášky: prof. Ing. Iva NOVÁ, CSc. Ing. Jiří MACHUTA, Ph.D. Pracoviště: TUL FS, Katedra strojírenské technologie

Požadavky na kvalifikaci postupu svařování vybraných VPO podle ASME předpisů

Vamberk 2013 Konference Svařování konstrukčních ocelí S355 v jakosti N, +N, M přídavnými materiály ESAB

Obr. 1. Řezy rovnovážnými fázovými diagramy a) základního materiálu P92, b) přídavného materiálu

durostat 400/450/500 Tabule plechu válcované za tepla Datový list květen 2017 Otěruvzdorné plechy z ocelového pásu válcovaného za tepla

Zkoušky vlastností technických materiálů

Podniková norma Desky z PP-B osmiúhelníky

Aweld E71T-1. Aweld 5356 (AlMg5) Hořáky

E-B 420. SFA/AWS A 5.4: E EN 1600: (E Z 19 9 Nb 2 2*)

Výpočet skořepiny tlakové nádoby.


OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:

S VAŘOVÁNÍ BETONÁŘSKÉ VÝZTUŽE HOSPODÁRNÉ Ř E Š E N Í

HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115

Svařitelnost korozivzdorných ocelí

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

LASEROVÉ SVAŘOVÁNÍ OTĚRUVZDORNÝCH PLECHŮ Z OCELI HARDOX 450

Zvýšení produktivity přirozenou cestou

Změny v normách pro zkoušky svářečů a páječů

OK SFA/AWS A 5.5: E 8018-G EN ISO 2560-A: E 46 5 Z B 32

Identifikace zkušebního postupu/metody

PROCES SVAŘOVÁNÍ. SK 01 PROCES SVAŘOVÁNÍ Změna 0. Výtisk číslo : 1. Vydáno: Účinnost od: Kontrolou pověřen: Jaroslav Vlk

ČOS vydání Oprava 2 ČESKÝ OBRANNÝ STANDARD SVAŘOVÁNÍ. OBLOUKOVÉ SVAŘOVÁNÍ VYSOKOPEVNOSTNÍCH OCELÍ VE VÝROBĚ KONSTRUKCÍ VOJENSKÉ TECHNIKY

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5

NEKONVENČNÍ VLASTNOSTI OCELI 15NiCuMoNb5 (WB 36) UNCONVENTIONAL PROPERTIES OF 15NiCuMoNb (WB 36) GRADE STEEL. Ladislav Kander Karel Matocha

Záznam z průmyslové stáže ve firmě Český svářečský ústav s.r.o.

Sendvičové panely smykový test výplňového materiálu čtyřbodovým ohybem

Strana: 1/7 Nahrazuje: MK 008 ze dne Vypracoval: p.hoffmann Vydání: 2 Výtisk č. 1 Schválil dne: Klípa F.

Transkript:

Ověření materiálových vlastností přídavných svařovacích materiálů při svařování ocelových konstrukcí Lukáš Petričko, Ing. SvarExpert s.r.o., Kištofova 1443/27, 716 00 Ostrava Radvanice E-mail: petricko@svarexpert.cz. Mob.: +420 774 292 203 Viliam Leždík, doc. Ing., PhD. Sekce údržby a měření, SPP-distribuce, a.s., Závodská cesta 26, 010 22 Žilina E-mail: viliam.lezdik@spp-distribucia.sk Tel.: +421 907 724 866 Welding materials - Quality requirements for the production of welding materials and related processes Abstrakt: Článek je zaměřený na požadavky jakosti pro výrobu přídavných materiálu. Vychází z výrobkové normy EN 13479 a poukazuje na proces spojení s výrobou vzorku, jejich úpravou před zkoušením dle normy a následné zkoušení dle daných norem. Závěrem článku jsou prezentovány výsledky a vyhodnocení daného přídavného materiálu. Abstract: The article focuses on quality requirements for the production of additional materials. It is based on product standard EN 13479 and indicates the process of connection with the production of the sample, its modification before testing according to the standard and then testing according to the given standards. The end of the article presents the results and evaluation of the additional material. ÚVOD Svařování je proces, který slouží k vytvoření trvalého nerozebíratelného spoje dvou a více součástí. Obecně jde o vytvoření takových termodynamických podmínek, při kterých je umožněn vznik meziatomových vazeb. Tato nerozebíratelná spojení obdobného složení, jako má základní materiál, vznikají působením tepla, respektive tlaku a za případného použití přídavného materiálu. Svařování za působení tepla, jinak také tavné svařování, při kterém dochází ke spojení lokálním, místním natavením svárových ploch základního materiálu, aniž by se použilo tlaku nebo rázů. Obvykle za použití přídavných materiálu stejného nebo podobného chemického složení. Ověření vlastností přídavného materiálu je nejvhodnější přímo ve výrobě, kde pro tyto účely slouží schvalovací zkouška WPQR. Výběr přídavných materiálů pro Svařování, (MIG/MAG 135) ocelových konstrukcí Výběr přídavných materiálů na svařování skupiny materiálů 1.1 až 2.1 se řídí podle principů podobnosti se svařovaným materiálem, co se týče jeho chemického složení a mechanických vlastností.

Podle normy EN 1993-1-8 by specifikovaná meze kluzu, pevnost v tahu, prodloužení při porušení a vrubová houževnatost přídavného materiálu měli být ekvivalentní, nebo lepší jako zodpovídající charakteristiky základního materiálu. Ve všeobecnosti je bezpečné používat elektrody, které mají požadované vlastnosti lepší jako ocel použité pevnostní třídy. Druh přídavného materiálu musí být v souladu se způsobem svařování. Při výběru přídavného materiálu je potřebné si uvědomit ještě jeden důležitý fakt, a to, že hodnota meze kluzu a meze pevnosti čistého svarového kovu bývá velmi blízko sebe a tento malý rozdíl nemusí korespondovat s mechanickými vlastnostmi základního materiálu. Při volbě přídavného materiálu se stejnou specifickou mezí kluzu jako má základní materiál bývá poté hodnota meze pevnosti svarového kovu výrazně nižší jako základního materiálu, co vede k neshodám při kvalifikačních zkouškách nebo, co je ještě horší, k porušení v samotném provozu. Poznámka: V příkladu je použitý základní materiál S355J2+N, teda minimální specifikovaná meze kluzu je 355 MPa. Aby přídavný materiál po vytavení do svarového kovu měl stejnou, resp. vyšší pevnost jako základní materiál, musíme zvolit až řadu G 42 (podle EN ISO 14341), teda svařovací drát s minimální mezí kluzu 420 MPa. V tab. 1 jsou uvedené základní charakteristiky použitých přídavných materiálů z příkladu. Tab.1 Charakteristika použitých přídavných materiálů Svařovací drát Použití Mechanické vlastnosti svarového kovu Chemické složení svařovacího drátu Hodnoty deklarované výrobcem [hmot. %] KOWAX Speed Road G3Si1 Ø1.0 Klasifikace podle EN ISO 14341-A: G 42 4 M21 3Si1 Poměděný drát vhodný na svařování konstrukčních ocelí v ochraně plynu CO2 nebo v ochraně směsi plynů. ReL/Rp = 441 MPa (pro M21) Re = 486 MPa (pro C) Rm = 538 MPa (pro M21) Rm = 570 MPa (pro C) A = 35 % (pro M21) A = 29 % (pro C) KV = 75 J / T = -40 C (pro M21) KV = 71 J / T = -30 C (pro C) C = 0,08 Si = 0,89 Mn = 1,45 P = 0,019 S = 0,013 Al = 0,01 Ni = 0,014 Cr = 0,013 Mo = 0,014 V = 0,02 Cu = Ti+Zr = 0,13 Poznámka: EN ISO 14341-A (Drátové elektrody a svarový kov na obloukové svařování tavící se elektrodou v ochranném plyně nelegovaných a jemnozrnných ocelí) Označení bude: EN ISO 14341-A G 42 4 C1/M1 3Si1 kde: EN ISO 14341-A číslo mezinárodní normy, přičemž klasifikace A je založená na velikosti meze kluzu a minimální nárazové práce KV = 47 J při dané zkušební teplotě čistého svarového kovu (přednostně používaný systém v naší běžné praxi)). Tab. 1 G symbol pro označení svarového kovu pro obloukové svařování s elektrodou v ochranné atmosféře, 42 Označení pro pevnostní charakteristiku svarového kovu ReL min. / Rp0,2 min. = 420 [MPa], Rm = 500 až 640 [MPa], Amin = 20 4 symbol pro označení nárazové práce svarového kovu Teplota pro minimální nárazovou práci 47 J = -40 [oc] C1/M1 symbol pro označení ochranného plynu podle EN ISO 14175 v ochraně plynu CO2 nebo v ochraně směsi plynů 3Si1 symbol pro označení chemického složení drátu v maximálním obsahu prvků udávaný v hmotnostních procentách, pro C = 0,06-0,14, Si =0,5-0,8, Mn=0,9-1,3, P=0,025, S=0,025, Ni=0,15, Mo=0,15, Al=0,02, Ti+Zr=0,15, Cr=0,15, Cu=0,35 Ověření hodnot z atestu vlastními zkouškami, přičemž postup byl zvolen dle harmonizované normy EN 13479 pro svařovací materiály (všeobecná výrobková norma). Bylo vyhotoveno celkem 6 vzorků, provedení BW (tupý spoj). Zkoumaným přídavným materiálem, na kterém byli uskutečněné mechanické zkoušky, je KOWAX Speed Road G3Si1 1.0. Klasifikace G3Si1 dle EN ISO 14341- A. Průměr 1.0.

VÝSLEDKY ZKOUŠENÍ SVÁROVÉHO KOVU Pro zkoušku tahem byly použity 3 vzorky svárového kovu. Pro danou zkoušku byl použitý zatěžovací stroj EU 40, číslo 990.56/6. Rozsah 0-400 kn. Teplota okolí 21 C. Akreditovaná zkouška č. protokolu o zkoušce 3-1/2016. Označení vzorku D 0 S 0 L 0 L U d U S U R p0,2 F m R m A Z u RM [mm] [mm 2 ] [mm] [mm] [mm] [mm 2 ] [MPa] [kn] [MPa] [MPa] 1 10,03 79,01 50 63,3 5,41 22,99 482 45,0 569 27 71 1 2 9,99 78,38 50 65,2 5,38 22,73 440 42,0 536 30 71 1 3 10,03 79,01 50 64,3 5,78 26,24 467 44,3 560 29 67 1 Tab.2 výsledky zjištěných hodnot zkoušky tahem Legenda: d průměr vzorku, S plocha průřezu, Rp0.2 = napětí na domluvené mezi kluzu, Fm sila na mezi pevnosti, Rm napětí na mezi pevnosti, URm nejistota měření, Lo počáteční délka zkušební tyče, Lu délka zkušební tyče po ukončení zkoušky, A tažnost, Z kontrakce. Zkouška vrubové houževnatosti svárového kovu byla vykonaná dle metodických pokynů zkušební organizace v souladu s normou EN ISO 148-1 (10 x 10 x V2) a EN ISO 9016. Bylo použité zkušební kyvadlové kladivo o rozsahu 300 J číslo 423/79. Maximální energie kyvadlového kladiva je 300 J. Počet vzorků 55. Rozsah teplot od 70 C do 100 C. Akreditovaná zkouška č. protokolu o výsledku zkoušky 3-2/2016. Na obr. č. 1 je zobrazený grafický průběh závislosti absorbované energie na změně teploty. Označení vzorku a 0 b 0 h S 0 KV -2 KCV -2 u KCV-2 T [mm] [mm] [mm] [cm 2 ] [J] [J/cm 2 ] [J/cm 2 ] [ C] 1 10,18 10,19 8,12 0,83 119,0 144 2-40,9 2 10,19 10,18 8,18 0,83 71,0 85 2-39,8 3 10,17 10,18 8,14 0,83 109,0 132 2-39,1 4 10,17 10,19 8,10 0,83 102,0 124 2-41,0 5 10,17 10,16 8,12 0,82 80,0 97 2-40,2 Tab.3 naměřené hodnoty KCV při teplotě - 40 C Legenda: a0, b0 rozměry průřezu, h výška zkušební tyče v místě vrubu, So plocha průřezu v místě vrubu, KV-2 nárazová práce, KCV-2 vrubová houževnatost, ukcv-2 kombinovaná standardní nejistota.

Obr.č.1 Grafický průběh závislosti absorbované energie na změně teploty Zkouška chemického složení svárového kovu byla vykonaná dle Akreditované zkoušky č. protokolu o výsledku zkoušky 4353/2016 tab.č.4. Ověření chemického složení proběhlo také pomocí spektrálního složení viď obr. č.2. Označení předmětu zkoušení Metoda AES Norma ASTM E 415-14 Parametr C Mn Si P S Al Cu Ni Cr As Ti V Nb Mo Co Sn B Ca Jednotka Výsledek zkoušky 0,137 0,654 0,241 0,013 0,009 0,033 0,042 0,026 0,061 0,001 < 0,003 0,003 0,0003 0,0007 U ±0,006 ±0,013 ±0,011 ± ± ± ±0,003 ± ±0,004 ±0,001 ±0,001 ±0,001 - Výsledek zkoušky 0,074 U ±0,004 ±0,018 ±0,024 ± ± ± ± ± ± ±0,001 ±0,001 ±0,001 - ZM 1,239 0,698 0,012 0,009 0,017 0,017 0,014 0,005 ± ± ±0,001 ±0,0001 ±0,0003 < 0,003 0,008 0,005 0,0012 <0,0002 NAVAR ± ± ±0,001 ±0,0002 - Tab.4 Zkouška chemického složení svárového kovu Obr.č.2 Ověření chemického složení proběhlo také pomocí spektrálního složení Hodnoty, které jsou definované normou EN ISO 14341-A po porovnání a ověření v akreditovaných laboratořích možno konstatovat, že hodnoty ReL min. / Rp0,2 min. = 420 [MPa], Rm = 500 až 640 [MPa], Amin = 20, bili v požadovaných rozpětích požadovaných normou, stejně jako hodnoty nárazové práce svarového kovu 47 J = -40 [ C]. Hodnoty, pro maximální obsah prvků udávaný v hmotnostních procentech, pro některé prvky byli požadovaného rozsahu.

C = 0,06-0,14, Si =0,5-0,8, Mn=0,9-1,3, P=0,025, S=0,025, Ni=0,15, Mo=0,15, Al=0,02, Ti+Zr=0,15, Cr=0,15, Cu=0,35 požadované normou C = 0,08, Si =0,89, Mn=1,45, P=0,019, S=0,013, Ni=0,14, Mo=0,14, Al=0,02, Ti+Zr=0,13, Cr=0,13, Cu=0,02 hodnoty z atestu C = 0,074, Si =0,69, Mn=1,23, P=0,012, S=0,09, Ni=0,17, Mo=0,03, Al=0,02, Ti+Zr=-, Cr=0,014, Cu=0,017 hodnoty z laboratoře Ověření vlastností svarového spoje při svařovaní zkušebních vzorků pro WPQR s použitím přídavného materiálu podle EN ISO 14341-A: G 42 4 M21 3Si1 Pro příklady schvalovacího procesu byly zkušební vzorky připravené z ocele S355J2+N (zařazené do skupiny 1.2. Chemické složení a mechanické vlastnosti těchto materiálů jsou uvedené v tab.5. S355J2+N podle EN 10027-1 Hodnoty podle dokumentu kontroly Číslo ocele podle EN 10027-2: 1.0577 Zařazení podle TNI CEN ISO/TR 15608: podskupina 1.2 ReH = min. 355 MPa ( 16mm), Rm = 490-630 MPa A5 = 22 % KVmin 27 J / -20 C Cmax. = 0,2 [% hmot.] Si max. = 0,55 Mn max. = 1,6 P max. = 0,035 S max. = 0,035 Inspekční certifikát podle EN 10204/3.1 Výrobková norma EN 10025-2 Tabule plechu 2000x12000 mm, tloušťka t = 15 mm ReH = 439 MPa C = 0,14 % [hmot.] Cr = 0,07 % Rm = 556 MPa Si = 0,21 % Mo = <0,006 % A = 31 % Mn = 1,22 % Cu = 0,04 % KV-20 C = 148 J P = 0,012 % Ni = 0,26 % S = % Alcelk. = 0,028 % Ti, V = <0,005 Nb = 0,024 N = 0,008 CE = 0,39 Poznámka: Chemické složení je uvedené podle tavby Tab.5 Vybrané hodnoty mechanických vlastností a chemického složení materiálu zkušebních vzorků Geometrie svarových spojů a svařovací parametry Svarové hrany plechů byly upravené podle typu spoje a tloušťky stěny. Při geometrii je možné využít doporučení podle EN ISO 9692 (Svařování a příbuzné procesy. Doporučení na přípravu spojů), část 1 pro metody 111, 13 a loučové technologie. Ukusování hran plechů a celková geometrie spoje s kladením jednotlivých housenic pro všechny zkušební vzorky je uvedená v tab. 6. Pro výpočet teploty předehřevu základního materiálu z příkladu se použila metoda A (podle EN 1011-2) pro všechny zkušební vzorky a podmínky svařování podle tab. 6 na úrovni 0 C, předehřev teda není nutný. Zvolený tvar, rozměry a způsob kladení vrstev pro svary podle schválené WPQR jsou uvedené na obr. č.3 přičemž jsou tam zobrazené také makrostruktury PF, PC t = 15 mm; b = 2-3 mm; u = 2 mm, α = 60 Poloha svařování PF, PC č. 01, 02, 03 Obr.č.2 Zvolený tvar, rozměry a způsob kladení vrstev pro svary podle WPQR Jelikož parametry svařování - závisí ve velké míře od polohy svařování, uvádíme jenom rozsah tepelného příkonu, který se pohyboval v rozsahu 0,33 až 1,20 [kj.mm-1]. Pro srovnání mechanických vlastností svarového spoje jsou pro nás v tomto případě důležité: zkouška tahem, zkouška lámavosti, zkouška rázem v ohybu, a zkouška tvrdosti. V Tab. 6 Výsledky destruktivních zkoušek pro tupý spoj, jsou uvedené výsledky destruktivních zkoušek pro tupý svarový spoj (Z-03). Jelikož tupý spoj měl

tloušťku t = 15 mm, pro zkoušku lámavosti byl podle EN ISO 15614-1 volený bočný ohyb (zkušební tyče s označením SBB). Tab.6 Výsledky destruktivních zkoušek pro tupý spoj Metoda zkoušení Zkušební těleso / rozměry průřezu Měřená a spočítaná veličina (jednotka) Zkouška tahem v příčném směru (2 zkušební tyče) ts x b 15x25 mm Síla při přetrhnutí Fm [N] Pevnost v tahu Rm [MPa] Zkouška lámavosti v příčném směru (4 zkušební tyče SBB) Zkouška rázem v ohybu (3 zkušební tělesa VWT 0/1 a 3 zkušební tělesa VHT 1/1) ts x b 10x15 mm l = 68 mm d = 40 mm h x w x ho 10x10x8 mm Naměřené hodnoty Rm = 521 a 535 MPa K lomu došlo v ZM Limit hodnocení Výsledek zkoušky 470-630 (S355J2+N) vyhovuje MPa Přítomnost trhlin a jiných chyb po zkoušce lámavosti v oblasti kořene, resp. lícní strany svaru bez výskytu trhlin větších jako 3 mm trhliny a jiné chyby do 3 mm vyhovuje Spotřebovaná energie na přeražení tělíska KV [J] KVZK / -20 C = 134, 114, 119 J KVstrZK = 122 J, KVminZK = 114 J 0,7KVstrZK = 85 J KVTOO / -20 C = 47, 39, 47 J KVstrTOO = 44 J, KVminTOO = 39 J 0,7KVstrTOO = 31 J KVmin /-20 C = 27 J (S355J2+N) a současně KVmin 0,7KVstr vyhovuje Poznámky k Tab. 6: Výsledky destruktivních zkoušek pro tupý spoj ts tloušťka zkušební tyče, b šířka zkušební tyče SBB tyč na zkoušku lámavosti tupého svaru z boční strany, l vzdálenost mezi válečky, d průměr trne, VWT vzorek na zkoušku rázem v ohybu V: vrub, W: vrub ve svarovém kovu, T: vrub kolmo na povrch, VHT vzorek na zkoušku rázem v ohybu V: vrub, H: vrub v teplo ovlivněné oblasti, T: vrub kolmo na povrch, h výška zkušebního tělesa, ho - výška vzorky pod vrubem, w šířka zkušebního tělesa, ZK svarový kov, TOO teplem ovlivněná oblast Poznámka 1: Při zkoušce tahem v příčném směru nesmí být pevnost tahu zkušební tyče menší jako odpovídající specifikovaná minimální pevnost pro základní materiál, jestli není pro zkoušení uvedeno jinak (čl. 7.4.2 EN ISO 15614-1). Poznámka 2: Při zkoušce lámavosti nemůže byť identifikovaná osamocená chyba > 3 mm. Chyby objevující se na rozích zkušební tyče v průběhu zkoušení se nezohledňují (čl. 7.4.3 EN ISO 15614-1). Poznámka 3: Střední hodnota tří zkušebních tyčí při zkoušce rázem v ohybu musí splňovat stanovené požadavky. Na každé umístění vrubu může být jednotlivá hodnota nižší jako minimální střední hodnota za předpokladu, že není nižší jako 70 % dané hodnoty (čl. 7.4.5 EN ISO 15614-1). Poznámka 4: Jestli při zkoušce tahem na křížových spojích dojde k rozlomení v základním materiálu, musí být dosažená jeho minimální specifikovaná pevnost. Při lomu ve svarovém kovu musí být zjištěné lomové napětí při zohlednění skutečných průřezů svarů. Zjištění střední lomové napětí v průřezu svaru musí být rovné, nebo větší jako 0,8 specifikované pevnosti použitého základního materiálu (čl. 7.4.1.2 c) EN 1090-2). Poznámka 5: Při zkoušce tvrdosti jsou limitní hodnoty uvedené v Tabulce 2 normy EN ISO 15614-1 (čl. 7.4.6) Mechanické vlastnosti spoje byli ověřené destruktivními zkouškami v rozsahu podle typu spoje. V Tab.7 Výsledky zkoušky tvrdosti HV10 pro všechny zkušební svarové spoje, jsou uvedené výsledky zkoušky tvrdosti, přičemž jsou použité průměrné hodnoty pro každou metalurgickou oblast z lícní aj kořenové strany všech tří vzorků z příkladu. Poznámka k předešlému textu: Podle EN ISO 15614-1 se požaduje zkouška tvrdosti HV10. V tomto případě musí být vzdálenost jednotlivých vtisků od sebe min. 1 mm. Při menších tloušťkách svarových spojů se toto pravidlo nedá uplatnit. Vhodné je snížit zatížení (HV5, HV1) a tím zmenšit velikost vtisku, teda i minimální odstup dvou vtisků. Takto snížené zatížení podle aplikačních norem již spadá do zkoušky mikrotvrdosti a je nutné tuto skutečnost uvést v protokolu. Tab. 7 Výsledky zkoušky tvrdosti HV10 pro všechny zkušební svarové spoje Zkušební vzorek ---- Oblast svarového spoje / Průměrná hodnota ze tří měření HV 10 ZM 1 TOO ZK TOO 2 ZM 2 209 270 239 249 199 Materiál Skupina Tepelné zpracování Limit HV 10 S355J2+N 1.2 Ne 380 Vysvětlivky: ZM 1, ZM 2 základní materiál, TOO 1, TOO 2 teplem ovlivněná oblast, ZK svarový kov V případě splnění podmínek normy EN ISO 15614-1 (podmínek svařování zkušebních vzorků, rozsahu zkoušení a vyhovujících výsledků z jednotlivých zkoušek) je možné schválený postup aplikovat pro svarové spoje v rozsahu uvedeném dle normy EN 15614-1.

ZÁVĚR A VYHODNOCENÍ VÝSLEDKŮ Daný článek měl poukázat na náročnost požadavků jakosti na přídavné materiály. Výběr přídavných materiálů je důležitá součást svařování. U dané skupiny materiálu 1.2 se řídí dle podobnosti se svařovaným materiálem v oblasti chemického složení a mechanických vlastností. Ověření vlastností pomocí srovnávacích zkoušek prokázali, že hodnoty jsou v požadovaných limitech ve smyslu normy EN ISO 14341-A. Také je potřeba si uvědomit, že u kvalifikace zkoušek třeba pro WPQR, není až takou samozřejmostí dosáhnout požadované výsledky především u zkoušky rázem v ohybu a hodnotách tvrdosti, které jsou ve velké míře ovlivněné parametry svařování, polohou svařování a tepelným režimem. LITERATÚRA [1] LEŽDÍK, V. MIČIAN, M. PATEK, M. (2016): Schvaľovanie postupov zvárania kovových materiálov a plastov, 205 s., Inštitút kvality a vzdelávania, s.r.o., Žilina VŠ učebnica [2] Koukal, J. Schwarz, D. Hajdík, J. (2009) Materiály a jejich svařitelnost. Český svářecký ústav s.r.o. Ostrava, 1. Vyd. 2009, Ostrava, 241s. ISBN978-80-248-2025-5 [3] Kolektív autorov (1999) Materiály a jejich svařitelnost. Nakladatelství ZEROSS, Ostrava, 1999. 295s. IBN 80-85771-63-2. [4] EN ISO 14341-A Svařovací materiály. Drátové elektrody a vytavené svárové kovy na obloukové svařování tavící se elektrodou v ochranném plyne nelegovaných a jemnozrnných ocelí.