Fluorescenční a konfokální mikroskopie



Podobné dokumenty
Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka

FLUORESCENČNÍ MIKROSKOP

Fluorescenční mikroskopie

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková

Fluorescenční mikroskopie

Zoologická mikrotechnika - FLUORESCENČNÍ MIKROSKOPIE

Fluorescence (luminiscence)

Fluorescenční mikroskopie

F l u o r e s c e n c e

Fluorescenční mikroskopie. -fluorescenční mikroskopie -konfokální mikroskopie

M I K R O S K O P I E

MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek.

Využití a princip fluorescenční mikroskopie

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )

Princip rastrovacího konfokálního mikroskopu

Bi4170 Bi417 Optické kon Optic trastn ké kon trastn a zobrazova a zob razova metody metody

Barevné principy absorpce a fluorescence

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

-fluorescenční mikroskopie. -konfokální mikroskopie -multifotonová konfokální mikroskopie

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Optika pro mikroskopii materiálů I

Barevné principy absorpce a fluorescence

Bioimaging rostlinných buněk, CV.2

Fluorescenční rezonanční přenos energie

Principy a instrumentace

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti

Techniky mikroskopie povrchů

6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

Stručný úvod do spektroskopie

MOLEKULÁRNÍ METODY V EKOLOGII MIKROORGANIZMŮ

FRET FRET. FRET: schéma. Základní vztahy. Základní vztahy. Fluorescence Resonance Energy Transfer

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Typy světelných mikroskopů

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Fluorescenční mikroskopie. principy a použití

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

1. Teorie mikroskopových metod

IMUNOFLUORESCENCE. Mgr. Petr Bejdák Ústav klinické imunologie a alergologie Fakultní nemocnice u sv. Anny a Lékařská fakulta MU

Obsah přednášky Metody používané v cytologii Metody založené na barvení buněk

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

Optické spektroskopie 1 LS 2014/15

Pokročilé biofyzikální metody v experimentální biologii

Fluorescenční vyšetření rostlinných surovin. 10. cvičení

Technická specifikace předmětu veřejné zakázky

Moderní metody rozpoznávání a zpracování obrazových informací 15

Bioscience Imaging Centre

M I K R O S K O P I E

Emise vyvolaná působením fotonů nebo částic

M I K R O S K O P I E

Využití a princip fluorescenční mikroskopie

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu

Vybrané spektroskopické metody

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

Rozdělení přístroje zobrazovací

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Mikroskopy. Světelný Konfokální Fluorescenční Elektronový

Elektronová mikroskopie SEM, TEM, AFM

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza

Zdroje optického záření

5.3.5 Ohyb světla na překážkách

ABSORPČNÍ A LUMINISCENČNÍ SPEKTROMETRIE V UV/Vis OBLASTI SPEKTRA

Úvod do spektrálních metod pro analýzu léčiv

Dokumentace projektu. Fotoluminiscence. Autorky: Kateřina Limburská, Tereza Fleková Vedoucí projektu: Zdeněk Polák

IMUNOCYTOCHEMICKÁ METODA JEJÍ PRINCIP A VYUŽITÍ V LABORATOŘI

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Fluorescenční mikroskopie

1.1 Zobrazovací metody v optické mikroskopii

DODATEČNÉ INFORMACE dle 49 zákona č. 137/2006 Sb., o veřejných zakázkách

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka

Spektrální charakteristiky

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

STUDIUM DOBY ŽIVOTA A SPEKTRÁLNÍCH ZMĚN FLUORESCENCE NANOČÁSTIC V BUNĚČNÉ BIOLOGII

Základy spektroskopie a její využití v astronomii

DPZ - IIa Radiometrické základy

ení s chemickými látkami. l rní optiky

METODY STUDIA PROTEINŮ

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Fyzikální podstata DPZ

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém

Proč elektronový mikroskop?

13. Spektroskopie základní pojmy

Fyzika II. Marek Procházka Vlnová optika II

CÍLE CHEMICKÉ ANALÝZY

HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth edition, Blackie Academic & Professional 1996 Colin F. Poole and Salwa K.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

Technické parametry příloha č. 2 k veřejné zakázce s názvem: Mikroskopy pro Centrum modelových organismů

VEŘEJNÁ ZAKÁZKA S NÁZVEM: Mikroskopy

Transkript:

Fluorescenční a konfokální mikroskopie Hana Sehadová, Biologické centrum AVČR, České Budějovice, 2011 Co je to fluorescence? některé látky (fluorofory) po ozáření (excitaci) světlem jsou schopny absorbovat světlo určité vlnové délky a následně vyzařovat (emitovat) světlo o delší vlnové délce λ emit > λ excit (= Stokeovo pravidlo) molekula absorbuje světlo o vysoké energii (v tomto případě modré) energie molekuly se zvýší (= excitovaná molekula) část energie je pohlcena molekulou (vlnovka) molekula vyzařuje světlo o nižší energii (v tomto případě zelené) Fotovybělování (Photobleaching) fluorofory jsou intensivním světlem rozkládány a trvale ztrácejí schopnost fluorescence omezit jejich expozici (nevratné strukturní změny vedou až k úplnému vyblednutí) Co se děje s molekulami fluoroforu? světlo (= fotony) nese určitou energii, kterou předávavá elektronům v molekulách světlo kratší vlnové délky = více energie délka vlny je kratší a fotony kmitají rychleji dochází k excitaci elektronů přesouvají se do vyšší energetické hladiny tj. pohybují se kolem jádra molekuly ve větší vzdálenosti (orbitalu) elektron obsahuje energii navíc, která má tendenci se uvolnit, když je elektron přitažen jádrem molekuly opět na nižší energetickou hladinu (orbital) energie se uvolní v podobě fotonu, který je vyzářen (= fluorescence)

při přeměně energie dochází ke ztrátám část energie se uvolní do prostředí v podobě tepla (tepelných pohybů molekul), vyzářený foton tudiž nese menší množství energie Luminiscence = jev, kdy látka vysílá do prostoru světlo Fotoluminiscence k luminiscenci dochází po ozáření Fluorescence je přechod mezi tzv. povolenými stavy atomu a tudíž jí nic nebrání ve vypouštění fotonů již za pár nanosekund. Vyzařování emisního světla trvá krátkou dobu a po zhasnutí excitačního záření téměř okamžitě emise zhasíná (asi za 100 pikosekund). Fosforescence proti tomu je přechod tzv. zakázaný. Žádný zákaz však nezadrží fotony věčně, a tak i při fosforescenci se fotony vyzáří, ale trvá to občas až několik minut: tj. k emisi může docházet i dlouhou dobu po zhasnutí excitačního záření. Bioluminiscence liší se způsobem jakým se molekula dostane do excitovaného stavu chemická reakce (přirodní forma chemiluminiscence) enzym luciferáza katalyzuje oxidaci luciferinu a tato chemická reakce vede k emisi světla

Využití fluorescence Nejširší užití v buněčné biologii a molekulární genetice: specifické označení molekul ve tkáni (bílkovin, lipidů, sacharidů) zviditelnění některých buněčných struktur (jádra, cytoskelet) nalezení určitých sekvencí nukleotidů v DNA či RNA aj. Fluorofory Autofluorescence (= primární fluorescence) přírodní např. chlorofyl (při ozáření UV světlem emituje světlo červené) - celulóza - keratin aj. Příklady autofluorescence Fluorescenční barvení (= sekundární) užívá se ke zviditelnění molekul a buněk, které nemají autofluorescenci fluorofory se samy vážou na buněčné struktury (= přímá) např. DAPI na DNA kovalentní spojení fluoroforu s látkou, která se specificky váže na určitou buněčnou strukturu či se akumulují v charakteristické lokalizaci např.toxiny jako je faloidin (jed muchomůrky zelené), který se specificky váže na polymerovaný aktin, lysotrackery (v pozdních endozómech a lysozómech), mitotrackery (v mitochondrií), ER tracker (v endoplazmatickém retikulu) značení protilátek fluorofory monoklonální či polyklonální připojení fluoroforu ke genetické informaci kódující konkrétní bílkovinu, jejíž osud v buňce nás zajímá (upravený gen vneseme zpět do buňky, protein je syntetizován spolu se svítící značkou, tudíž můžeme sledovat jeho lokalizaci a dynamiku v buňce) např. GFP barva (tj. vlnová délka) pohlceného (excitovaného) i vyzářeného (emitovaného) světla závisí na vlastnostech fluoroforu

existuje široká paleta fluoroforů pokrývá celé spektrum viditelného světla (s přesahy do ultrafialové a infračervené oblasti) Příklady některých fluorescenčních barviv DAPI interkaluje do struktury DNA a RNA (modře) GFP zelený fluorescenční protein FITC fluorescein isothiokyanát (oblíbený fluorofor, snadno kovalentně modifikující např. protilátky) Absorpční a emisní spektra se překrývají Fluorescein vyzařuje zelené světlo, když je osvícen modrým Cy3, Cy5 a Alexa 568 fluorofory vyvinuté specielně pro fluorescenční mikroskopii, vysoce fotostabilní a s vysokou účinností fluorescence Chemická specifikace fluorescenčních barviv velké molekuly, obsahující velké množství elektronů, které lze snadno a koordinovaně excitovat a které se také rychle vracejí zpět do nižší energetické hladiny nejčastěji se jedná o aromatické sloučeniny a heterocykly s elektrony konjugovanými v plochých "mracích" nad a pod rovinou ploché molekuly

Zelený fluorescenční protein (GFP) objev GFP přinesl obrovský posun ve fluorescenční mikroskopii živých buněk protein mořské medúzy Aequorea victoria při vystavení modrému světlu fluoreskuje zeleně využívá se jako reportérový gen pro vizualizaci exprese proteinů (genovými manipulacemi je vnesen za promotor příslušného genu a vnesen do organismu, což umožňuje značkování proteinu pro on line sledování in vivo traffickingu či testování lokalizace) velikost 238 aminokyselin (29.6 kda) terciální struktura GFP charakteristické soudečkovité uspořádání vytvořené antiparalelními β listy 11 beta vláken se sbaluje do velmi kompaktního betabarelu. Uvnitř tohoto soudku se nachází vlastní chromofor, který je tak chráněn před vnějším prostředím. chromofor vzniká cyklizací a následnou oxidací postranních zbytků aminokyselin Ser65, Tyr66 a Gly67 cílenou mutagenezí vzniklo několik odstínů odvozených od GFP (např. YFP, CFP, BFP + nepřibuzný RFP) do jedné buňky lze vnést několik genových konstruktů kódujících několik různě barevně označených proteinů a simultánně sledovat jejich osud v buňce využity i geny jiných druhů např. Korálů Terciální struktura GFP V souvislosti s objevením a využitím GFP udělena Nobelova cena za chemii 2008 O. Shimomura objev proteinu u medúzy M. Chalfie detekce genu, genové manipulace, využití proteinu jako markeru ( značkovače ) v genetických výzkumech San Diego beach scene nakreslena živými bacteriemi exprimujícími 8 různých barev fluorescenčního proteinu R.Y. Tsien vylepšení proteinu a rozšíření škály (drobnými úpravami vytvořil celou barevnou škálu značkovacích fluorescenčních proteinů) Jan Černý: Zelený fluorescenční protein, Vesmír 4/2009

Fluorescenční mikroskop Princip podobný klasickému světelnému mikroskopu doplněný o silný zdroj světla a dva typy filtrů Excitační filtr mezi zdrojem světla a vzorkem umožňuje excitovat jednotlivé fluorofory světlem o vybraných vlnových délkách Bariérový (emisní) filtr mezi vzorkem a okulárem do okuláru proniká pouze pozitivní emitovaný signál na černém pozadí (excitující záření je odfiltrováno) vyšší citlivost možno použít více než jeden typ barviček v jednom vrozku (nejčastěji 2 3) změna excitačního světla umožní vždy zviditelnit jinou část tkáně Typy fluorescenčních mikroskopů trans fluorescenční (Transmition light fluorescent microscope) osvětlení vzorku z druhé strany než je objektiv světlo prochází excitačním filtrem a na preparát dopadá ze spodu, tzv. zástinový kondenzor odraží světlo tak, ze dopadá na preparát zboku a excitační světlo tak prochází mimo objektiv do objektivu se dostane pouze emitovaná fluorescence epi fluorescenční (Reflected light fluorescent microscope) osvětlení vzorku přes objektiv emisní světlo se vrací zpět do objektivu nutno použít tzv. dichroické zrcadlo, které odráží excitační světlo do objektivu a propouští emisní světlo do okuláru častěji užívané

Schema epifluorescenčního mikroskopu osvětlení = rtuťová výbojka (UV + viditelné světlo) excitaton filter dichroické zrcadlo (= dichromatické) odráží světlo kratší než určitá vlnová délka a propouští světlo delší než je tato délka pomahá excitačnímu a emisnímu filtru odstranit nežádoucí světlo tmavé pozadí objektive + vzorek emisní filter detektor + software pro obrazovou analýzu umožňuje zpracovávat obrazový výstup kvantitativním i kvalitativním způsobem Vhodná kombinace dichroického zrcadla, excitačního a emisního filtru pro určitý druh fluoroforu se do epifluorescenčního mikroskopu vkladá pohromadě jako tzn. kostka, jejíž dvě stěny jsou tvořeny filtry a uhlopříčka dichroickým zrcadlem. Kostky jsou umístěny na výměníku a je možné je vyměňovat dle potřeby. Dva a více fluoroforů v jednom vzorku může být detekováno odděleně použitím různých sad optických filtrů. Historie fluorescenční mikroskopie počátek 20. století první fluorescenční mikroskop vychází z konstrukce mikroskopu pro UV záření August Kőler, Carl Reichert, Heinrich Lehmann, a další využití mikroskopu nebylo doceněno několik desetiletí 1930 rakouský vědec Max Haitinger a další vyvinuli techniku sekundarní fluorescence 1950 zdokonalení techniky, Albert Coons a Nathan Kaplan předvedli lokalizaci antigenu ve tkáni pomocí reakce s fluorescenčně značenou protilátkou 1980 metoda excitace vzorku pomocí evanescentních vln při totálním odrazu, Daniel Axelrod rozlišení malých detailů současná konstrukce fluorescenčních mikroskopů pochází z roku 1932 od E. Singera

Konfokální mikroskop Základní rozdíl mezi fluorescenčním a konfokálním mikroskopem je rozlišovací schopnost pinhole je konjugován s fokálním bodem čočky = konfokální pinhole světlo z fokálního bodu čočky objektivu davá ostrý obraz světlo z jiného bodu než je fokální, je také zobrazeno čockami mikroskopu, ale jeho obraz není ostrý fluorescenční mikroskop celý vzorek je zcela osvícen, tudíž celý vzorek fluoreskuje a nezaostřené body tvoří pozadí X konfokální mikroskop použití pinhole (= bodová clonka) odfiltruje neostrý signál Rozlišovací schopnost mikroskopu je dána minimální vzdáleností dvou ještě rozlišitelných bodů v případě optického mikroskopu ji lze teoreticky odvodit spojením Rayleighova kritéria s teorií difrakce (ohyb vlnění) na kruhovém otvoru: X min = 0,61. λ / n sin θ kde λ je vlnová délka světla ve vakuu n index lomu prostředí před objektivem θje polovina vrcholového úhlu kužele paprsků vstupujících do objektivu Rayleighovo kritérium (1879) vychází ze skutečnosti, že lidský zrak zaznamená pozvolný předěl mezi dvěma difrakčními kroužky teprve tehdy, poklesne li intenzita mezi nimi alespoň o 20 % oproti přilehlým maximům (pro modré světlo viditelné záření nejkratších vlnových délek se teoretická rozlišovací schopnost blíží hodnotě kolem 0.17 mm) Velikost konfokální pinhole velikost konfokální pinhole se musí shodovat s velikostí Airyho kruhu: pinhole je menší pinhole je větší ztrácíme užitečné světlo promiká více světla mimo focus

difrakce způsobuje, že obrazen bodového světla není bod, ale tzv. Airyho kruh Graph zobrazuje intensitu světla jako funkci průměru bodového světla (průměr = 4) Obraz Airyho kruhu je cirkulárně symetrický. V ideálním světě by byl obrazem bodu pouze intensivní bod přímo v centru (průměr = 0). Na přeexponovaném obrazu Airyho kruhu vidíme sekundarní kruh. Typy konfokálních mikroskopů laserový rastrovací konfokální mikroskop = LSCM (Laser Scanning Confocal Microscope) skenující zařízení zařizuje posun ohniska excitujícího laserového paprsku obraz celé zaostřené roviny lze pak získat rastrováním bod po bodu některým z těchto postupů: rozmítání laserového paprsku příčný posuv vzorku před objektivem posuv objektivu nad vzorkem mikroskop s rotujícím diskem = TSCM (Tandem Scanning Confocal Microscope) místo skenujícího zařízení obsahuje rotující Nipkowův kotouč, na kterém je mnoho navzájem oddělených clonek Historie konfokální mikroskopie Marvin Minsky 1957 patentoval nápad na konfokální mikroskopii, ale nenašel vhodný zdroj světla M. Petráň a M. Hadravský 1967 z Lékařské fakulty UK v Plzni patentovali konfokální mikroskop na bázi rotujícího Nipkowa kotouče (Tandem Scanning Confocal Microscope). S tímto přístrojem byly poprvé získány kvalitní optické řezy silným preparátem, konkrétně mozkovou tkání. Koncem 70. let první spolehlivý konfokální mikroskop s rozmítaným laserovým paprskem

Schema tandemového skenovacího konfokálního mikroskopu Nipkowův kotouč: obsahuje desítky až stovky tisíc otvorů (až 200 tis) uspořádaných v Archimedových spirálách rotuje rychlostí až desítky Hz otvory jsou konjugované (v dopadajícím a detekovaném světle) světlo může procházet také stejným souborem otvorů vzorek se většinou pozoruje v reálném čase okem (okulár) nebo chlazenou CCD kamerou Schema rastrovacího konfokálního mikroskopu osvětlení = bodový zdroj světla = laserový paprsek fokusovaný na clonku clonka (Light Source Pinhole) je objektivem mikroskopu zobrazena na vzorek, do bodu o průměru rovnajícím se difrakční mezi mikroskopu excitační filter dichroické zrcátko objektiv sbírá světlo vzorkem odražené nebo rozptýlené emisní filter druhá konfokální bodová clonka (Detektor Pinhole) v místě kam objektiv zaměřuje světlo z ohniskové roviny vzorku (odfiltruje až 95% emitovaného světla) detektor = fotonásobič propojen s počítačem Paprsky jdoucí z mimoohniskových rovin jsou zachycené clonkou

Rastrování rozmítáním laserového paprsku dvě otočná řádkovací zrcadla umožňují osvícení celého vzorku pro rastrování může být použito také pohyblivé dichroické zrcadlo Analýza obrazu vždy pouze jeden bod ze vzorku je vyobrazen detektor je připojen na počítač, který zároveň dostává informaci o souřadnicích snímaného bodu a skládá obraz (vždy přidá jeden pixel) např. obrázek 512 x 512 pixel může být oskenován cca 3x za sekundu ke zrychlení může dojít např. náhradou jednoho skenovacího zrcadla Acoustic Optical Deflector, který užívá vysoce frekvenční zvukové vlny zrychlení 10x bod po bodu je oskenován celý vzorek v ruznůch optických rovinách, vzdálenosti mezi jednotlivými rovinami snímání by měly být vždy menší než hloubka ostrosti jednotlivých snímků skenování ovládáno počítačem sestaví velmi čistý 3D obraz (i perspektivní), přičemž objekt lze zobrazit z libovolné strany (zorného úhlu)

Dekonvoluce obrazu = matematická metoda korekce objektů pro dosažení vyšší ostrosti obrazu je li znám stupeň zkreslení (tj. lze ho matematicky popsat jako konvoluci pomocí funkce bodových pokryvů), pak lze obraz podrobit dekonvoluci obraz po dekonvoluci se tak více podobá skutečnému tvaru objektu a stává se tak ostřejší, s menším šumem a větším rozlišením Prakticky se dekonvoluce provádí tak, že se pomocí konkrétného mikroskopu pořídí snímky malé latexové kuličky (známe její tvar) a podle získaných snímků se stanoví míra zkreslení dané optické soustavy. Následně je získaný obraz přepočítán tak, aby kulička byla zobrazena jako kulička. Tato korekce se poté používá i pro ostatní objekty. Sekvenční versus současné skenování několika lassery při použítí několika fluoroforů v jednom vzorku, kdy každý fluorofor poskytuje různou barvu excitovaného světla sekvenční skenování = postupné snímání emitovaného záření různých fluoroforů, kdy se tyto fluorofory liší použitým laserem pro excitaci nejprve je získán kompletní obraz emitovaný jedním fluoroforem, potom dalšími (preparát zůstává na stejném místě) následně lze pomocí softwaru složit získané obrazy do jednoho současné snímání fluorescenčních obrazů pomocí tří fotonásobičů se spektrálními filtry spektrální filtry pro modrou, zelenou a červenou barvu rekombinací dílčích obrazů v základních barvách získáme optický řez v reálných barvách emitované fluorescence nahrazení fotonásobiče spektrofotometrem i pro fluorofory s blizkými emisnimi maximy

Příklady snímků pořízených konfokálním mikroskopem Vnitřní ucho (hlemýžď) Corttiho orgán zeleně vláskové buňky (receptory sluchu) (fluorescenin phalloidin se váže na aktin) modře jádra vnitřních buněk (DAPI) červeně neurony Rekonstrukce dendritické buňky diferencované z kostní dřeně geneticky modifikované myši (gen pro MHC glykoprotein II třídy značen GFP) zeleně endozomální systém (vizualizovaný pomocí MHC II. třídy GFP) červeně mikrotubulární cytokelet (monoklonální protilátka proti tubulinu) modře jádro (DAPI) Střevní tkáň myši červeně aktin (RFP + Alexa Fluor 568 navázána na phalloidin) modře N acetylglucosamine a N acetylneuraminic residua (Alexa Fluor 350 navázána na lektin aglutinin z pšeničných klíčků) zeleně DNA (SYTOX Green) Buňka endotelu plicní tepny skotu červeně buňka (MitoTracker Red CMXRos) zeleně aktin (Alexa Fluor 488 navázána na phalloidin) modře DNA (Hoechst 33258)

Srovnaní flourescenční a konfokální mikroskopie shrnutí Fluorescenční mikroskopie: Konfokální mikroskopie: předpokládá nekonečně malou tloušťku vyšší rozlišovací schopnost daná detekcí preparátu (vzorku), při zkoumání silných světla pouze z ohniskové roviny mikroskopu, vzorků je kvalita zobrazení nepříznivě ovlivňována překrýváním obrazu roviny, do níž přítomnost pinhole eliminuje neostrý signál jak vertikálně tak horizontálně je mikroskop právě zaostřen (ohnisková minimální hloubka ostrosti rovina), n eostrými obrazy rovin ležících nad ní možnost optické tomografie 3D a pod ní rekonstrukce obrazu, která není limitována lze zkoumat jen vzorky o tloušťce menší, než je Rayleighovým kriteriem: obraz vzniká hloubka ostrosti objektivu, která závisí na skládáním z jednotlivých bodů, které jsou 2 jeho numerické apertuře (Z min = 0,25 nλ/na ) navíc pozorovány přes clonku, jejíž rozměry obrazem bodu není bod, ale Airyho kroužky difrakční obrazec vzniká ohybem zobrazujícího se světla na čočkách objektivu, bývají menší než průměr Airyho kroužků vyžaduje mimořádně silné zdroje světla typu laserů a speciální technologii při zobrazení blízkých bodů se mohou jejich detekce fotonů z horizontalní roviny Airyho kroužky překrývat, až se stanou téměř 5 10x dražší nerozlišitelnými nevýhodou je zatíženost statistickým zdroj světla rtuťová výbojka šumem, jehož velikost je úměrná N/N, kde nižší cena N je počet detekovaných fotonů (nelze snadno řešit zvýšením intenzity záření) Pigment Dispersní Hormon (PDH) v mozku Drosophila melanogaster snímky stejného mozku pořízené fluorescenčním a konfokálním mikroskopem

Praktická část demonstrace práce na konfokálním mikroskopu FluoView TM FV1000