Obsah přednášky Metody používané v cytologii Metody založené na barvení buněk

Rozměr: px
Začít zobrazení ze stránky:

Download "Obsah přednášky Metody používané v cytologii Metody založené na barvení buněk"

Transkript

1 Obsah přednášky Metody používané v cytologii Metody založené na barvení buněk Nejčastěji používané mikroskopické techniky Imunofluorescenční značení Příklady a využití Konfokální mikroskopie Princip metody Aplikace metody, využití GFP technologie Elektronová mikroskopie Princip metody a rozdělení technik Příprava vzorků pro elektronovou mikroskopii

2 Světelná mikroskopie První funkční mikroskop přelom šestnáctého a sedmnáctého století Z. Jansen 9x zvětšení Antonie van Leeuwenhoek polovina sedmnáctého století Primitivní mikroskop s přesně vybroušenými čočkami Až 275x zvětšení Jako první popsal lidské buňky, bakterie, vakuoly Robert Hooke 1665 složený mikroskop Optické prvky světelných mikroskopů dosáhly hranice technických možností asi ve 30. letech minulého století 2000x zvětšení, rozlišení 0,2 mm

3 Čím je dáno rozlišení světelného mikroskopu? Rozlišení objektivní a subjektivní Rozlišení oka v ideální zaostřovací vzdálenosti (25 cm) je asi 75 mm Rozlišení optického mikroskopu je 280 nm v bílém světle (160 nm v UV světle) Abbeho teorém: d = 0,61. l. (n. sin q) -1 Objektiv s nízkou NA Objektiv s vysokou NA Numerická apertura (NA) objektivu NA = n. sin q Objektivy suché vs. objektivy imerzní

4 Viditelná část elektromagnetického spektra

5 Jablonského diagram a fluorescence

6 Excitace a emise fluorescenčního vzorku λ em > λ exc

7 Světelná mikroskopie Mikroskopické metody v cytologii Studium živých buněk live cell imaging. Na zvýraznění buněčných kompartmentů možno použít vitální barviva (intravitální, supravitální a postvitální barvení) Studium usmrcených buněk po fixaci pozorování trvalých preparátů. Důležitá je zejména fixace (fyzikální, chemická), kdy dochází zakonzervování a stabilizaci buňky Fluorescenční mikroskopie Laserová konfokální mikroskopie Podobně jako fluorescenční mikroskopie je založena na pozorování fluorescenčních látek v živých či fixovaných preparátech Na rozdíl od fluorescenční mikroskopie nevyužívá jako zdroj lampy ale lasery Má malou hloubku ostrosti a dokáže odfiltrovat záření z vrstev nad a pod rovinou zaostření používá se na získání tzv. optických řezů Elektronová mikroskopie Místo fotonů využívá elektrony a namísto běžných čoček se používají elektromagnetické čočky Studium subcelulárních struktur Transmisní elektronová mikroskopie (TEM) na ultratenkých řezech vs. rastrovací (scanning) elektronová mikroskopie (SEM) na povrchu struktur

8 Mikroskopické metody v cytologii Speciální techniky Stereoskopické mikroskopy Pro trojrozměrná pozorování, vhodné pro preparativní postupy Malé zvětšení (max. 200x) Ultramikroskop Založený na Tyndallově efektu Pozorování a kvantifikace zářících částic ve tmavém zorném poli Fázový kontrastní mikroskop a interferenční mikroskop (DIC) Umožňuje zkontrastnit nebarvené nativní buňky pouze na základě fázového posunu polarizovaných složek světla Takto se dají pozorovat buňky ve viditelném světle a je možné studovat jemné detaily buněčných struktur (změny v jádře, buněčné dělení ) Fluorescenční mikroskop Pozorování živých buněk i fixovaných mrtvých buněk, imunofluorescenční techniky Používá se ke studiu rychlých buněčných procesů, mitóza atd. Vhodné spíše ke studiu oddělených buněk v suspenzích, ne optické řezy

9 DIC differencial interference contrast microscopy Interference

10 Metody barvení v buněčné biologii Vitální barvení vs barvení fixovaných buněk Používají se barviva přirozená (karmín, šafrán, berberin) a umělá (kyselá, zásaditá a neutrální) Barvení možno provádět progresivně či regresivně Živé buňky od mrtvých možno odlišit pomocí methylenové modři Běžná barviva používaná v biologii: Krystalová violeť barví buněčnou stěnu, důležitá složka při Gramově barvení DAPI (4',6-diamidino-2-phenylindole) fluorescenční barvička excitovaná v UV oblasti, barví jádro, lze použít in vivo i in vitro Eosin barvení cytoplasmy, kolagenu a svalových vláken Ethidium bromid/jodid fluorescenční barvička, interkaluje se do DNA, nebarví živé buňky ale možno použít ke studiu apoptózy Kyselý fuchsin barví kolagen, hladký sval či mitochondrie. Lze použít rovněž i k barvení jader Hoechst barvení DNA v živých buňkách, skupina barviv běžně používaných ve fluorescenční mikroskopii Rhodamin Rhodamin B se používá např. pro značení mitochondrií FM4-64 styrylová barvička, barvení PM a dalších buněčných struktur

11 Metody barvení v buněčné biologii grampozitivní gramnegativní

12 Epifluorescenční mikroskop

13 Epifluorescenční mikroskop

14 Epifluorescenční mikroskop

15 Konfokální laserový mikroskop

16 Fluorescenční značky pro fluorescenční/konfokální mikroskopii

17 Značení za použití více fluorescenčních látek

18 Imunofluorescenční značení Technika založena na použití značených protilátek fluorescenční značky Pro pozorování většinou postačuje standardní fluorescenční mikroskop ale možno použít i konfokální Pozorují se fixované preparáty Pozorování tkáňových řezů, histologické řezy atd. - mikrotomy Pozorování tkání nebo celých organismů (rostlin) roztlaky Rozlišujeme přímé a nepřímé značení Přímé značení: fluorescenční značka navázána na primární protilátku. Používá se zejména v diagnostice pro studium autoimunitních onemocnění Nepřímé značení: použití primární a sekundární protilátky. Je citlivější než přímá fluorescence a používá se standardně pro značení více protilátkami

19 Imunofluorescenční značení základní termíny Antigen Monoklonální protilátka Polyklonální protilátka Cross-reaktivita Primární protilátka Sekundární protilátka

20 Postup při imunofluorescenční detekci Fixace kritický krok, musí být rychlá a dostatečně účinná methanol, aceton či paraformaldehyd / Permeabilizace Blokování omezení nespecifických interakcí BSA apodob. Primární protilátka Jedna či více primárních protilátek Při použití více protilátek nutno použít rozdílné typy Promytí Sekundární protilátka Promytí Zalití do média

21 Přímé značení

22 Přímé značení

23 Nepřímé značení

24 Shrnutí - optimalizace podmínek pro imunoznačení Účinná fixace a blokování Volba protilátek (isotyp, cross-reaktivita) Správná koncentrace protilátek (koncentrace vs. sensitivita) Vhodná volba fluorochromu a optického systému Kontrolní inkubace (preimunní sérum) Opakovaná značení

25 Konfokální mikroskopie Princip a využití LASER SCANNING CONFOCAL MICROSCOPY KONFOKALITA Zdoj záření: laser Konfokality dosaženo pomocí pinhole, jsou zaostřeny pouze paprsky z roviny ostrosti Kontrolovaná hloubka ostrosti SCANNING záznam obrazu se děje většinou pomocí skenování-galvano-optická zrcadla, pro vyhodnocení a rekonstrukci obrazu nutný výkonný počítač Možnost optických řezů

26 Konfokální mikroskopie Set Up

27 Konfokální mikroskopie Beam Splitter vs AOBS Konvenční beam splitter zařízení kombinující dichroická zrcadla a soustavu emisních filtrů AOBS Acousto Optical Beam Splitter má několik výhod proti standardnímu BS Rychlejší a citlivější Nedochází k vysvícení vzorku Přesnější kontrola emisních profilů fluoroforů

28 Konfokální mikroskopie Skenovací zařízení Paprsek (single beam) je postupně naváděn celou plochou vzorku x-y skenování Rychlost skenování a průměrování ovlivňuje kvalitu obrazu (a vysvěcování vzorku) AOBS zvyšuje rychlost skenování Multiple beam scanning Nipkowův disk používá se ke studiu rychlých dějů

29 Konfokální mikroskopie Optické řezy Díky kontrole hloubky ostrosti možno zaostřit do jedné roviny Optické řezy po z ose obvykle kolem 1 mm a méně Při dostatečně tenkých optických řezech možno vytvořit rekonstrukci 3D obrazu snímaného objektu

30 Konfokální mikroskopie Optické řezy Jsou možné díky Laser Scanning Confocal Microscopy: Konfokální mikroskop umožňuje kontrolu hloubky ostrosti snímku konfokalita X-Y Skenování obrazu za pomoci laseru Skenování podél osy Z s možností 3D rekonstrukce získaných optických řezů

31 Konfokální mikroskopie Optické řezy Optical sections - root anatomy

32 Konfokální mikroskopie Optické řezy a 3D rekonstrukce 3D modely

33 Konfokální mikroskopie Optické řezy a časové snímání

34 Konfokální mikroskopie Studium dynamiky 20s32ms 20s32ms 40s474ms 1m0s711ms 1m20s948ms 1m41s185ms 2m1s422ms

35 Výhody a nevýhody konfokální mikroskopie vůči fluorescenční Základní výhodou je získání opticky čistého, zaostřeného obrazu (fluorescence z vrstev mimo rovinu zaostření je do značné míry potlačena) Získání optických řezů možnost rekonstrukce 3D obrazu, skenování sekcí může probíhat ve všech rovinách (x-y-z sectioning) Systémy pro konfokální mikroskopii umožňují použití několika fluoroforů současně a to jak díky svým optickým vlastnostem tak i počítačovému vyhodnocení obrazu (linear unmixing) Skenovací laserový mikroskop má i některá omezení: možnosti excitace dány počtem laserů, skenování je relativně pomalý proces, díky odfiltrování fluorescence z ne-fokálních vrstev může dojít k dramatickému poklesu signálu, laser má vysoký výkon může dojít k vysvícení vzorku a poškození buněk

36 GFP technologie

37 Wild type GFP GFP Green Fluorescent Protein tradičně se tak označuje protein izolovaný z medúzy Aequorea victoria Aequorin vs GFP fluorescence po ozáření modrým světlem Protein je složený z 238 aminokyselin (26.9 kda) Struktura GFP založena na b-barelu s chromoforem ukrytým uvnitř molekuly Neurony značené pomocí GFP

38 Wild type GFP GFP z A. victoria má hlavní excitační peak při 395 nm a vedlejší při 475 nm, emise při 509 nm v zelené části spektra Dnes se používají pouze mutanty wild type GFP 1995 první významná mutace zvýšena stabilita i fluorescence, změna excitace pouze na jednu hodnotu 488 nm Za výzkum GFP (a dalších fluorescenčních proteinů) udělena Nobelova cena v roce 2008

39 Chromofor v molekule GFP GFP má přirozenou schopnost fluorescence danou svojí vnitřní strukturou tripeptid (Ser65-Tyr66-Gly67) ukrytý uvnitř b-barelu cyklizuje a podléhá oxidaci (maturace) Není potřeba žádný kofaktor Tento proces je autokatalytický, vyžaduje pouze přítomnost kyslíku Cyklizace a oxidace za vzniku aktivního chromoforu Vzniklý chromofor obsahuje konjugované dvojné vazby, které umožňují uchování a přenos energie elektronů

40 Wild type GFP Modré záření vzniká v důsledku jiné chemické reakce (chemiluminiscence) Energie tohoto záření je absorbována konjugovanými dvojnými vazbami chromoforu Uvolněná energie je vyzářena v procesu fluorescence (508 nm)

41 Další fluorescenční proteiny odvozené od GFP Wild type GFP má řadu nevýhod pro běžné použití, např. neefektivní folding proteinu při 37 C, dnes se nejčastěji používá enhanced GFP, egfp (možno používat i v živočišných buňkách) Od GFP byly odvozeny další fluorescenční proteiny, jsou to jeho tzv. spektrální varianty Cyan Fluorescent Protein (CFP) Yellow fluorescnt Protein (YFP) Blue Fluorescent Protein (BFP) Paleta fluorescenčních proteinů rozšířena ještě o DsRed (Red Fluorescent Protein) z korálu Discosoma striata

42 Další fluorescenční proteiny odvozené od GFP Změny v oblasti fluoroforu či v downstream oblasti vedou ke změnám ve vlnové délce emitovaného záření

43 Další fluorescenční proteiny odvozené od GFP site-directed mutagenesis

44 Vlastnosti GFP a výhody jeho využití Relativně malý vysoce stabilní protein Univerzální možno klonovat a exprimovat téměř ve všech organismech Auto-fluorescence Možnost kvantifikace Použití: První použití GFP bylo jako reportérový gen Největší využití GFP je pro lokalizaci fúzních proteinů v živých systémech, fúze většinou neovlivňuje vlastnosti proteinu FRET (Fluorescence Resonance Energy Transfer) FRAP (Fluorescence Recovery After Photobleaching)

45 Aequorea GFP technologie GFP Promotor Fimbrin Arabidopsis Fúzní protein -N-terminální fúze -C-terminální fúze -Intramolekulární fúze

46 GFP technologie - Gateway

47 FRET FRET (Fluorescence/Förster Resonance Energy Transfer) neradioaktivní přenos energie mezi dvěma chromofory skrze interakci dipól-dipól excitovaný donor a akceptor ve vzdálenosti obvykle menší než 10 nm používá se k studiu proteinových interakcí BRET (Bioluminiscence Resonance Energy Transfer) na podobném principu ale využívá jevu bioluminiscence (použití např. luciferasy) odpadají některé problémy vzniklé s excitací CFP

48 FRAP Fluorescence recovery after photobleaching Tuto techniku možno využít v laserovém konfokálním mikroskopu Používá se ke studiu dynamických dějů Studium lipidové dvouvrstvy Studium dynamiky mikrotubulů apodob.

49 BiFC Bimolecular fluorescence complementation Zkoumání proteinových interakcí Subcelulární lokalizace vzniklých komplexů Transientní nebo stabilní exprese Nutno použít slabé promotory Studium dynamiky mikrotubulů apodob.

50 Transgenní organismy exprimující fluorescenční proteiny Fetální fibroblasty transformovány genem pro RFP metodou retrovirální vektorové infekce Proveden nukleární transfer ze somatických buněk do oocytů Vzniklá embrya implementovíny do vejcovodu náhradní matky

51 Transgenní organismy exprimující fluorescenční proteiny S.G.Hong et al., Generation of Red Fluorescent Protein Transgenic Dogs, genesis, 2008, vol. 47, pg

52 Elektronová mikroskopie Elektronová mikroskopie V optické mikroskopii je mezní rozlišení asi 200 nm, pro dosažení vyššího rozlišení nutno použít záření o nižší vlnové délce Jako zdroj záření využívá elektrony proč? -> korpuskulárně-vlnový charakter, lze je urychlit v elektromagnetickém poli Urychlující napětí se pohybuje od 40 kv do 120 kv (300 kv) Transmisní elektronová mikroskopie (TEM) a rastrovací (skenovací) elektronová mikroskopie (SEM)

53 Rozdíl mezi světelnou a elektronovou mikroskopií

54 Základní fyzikální jevy v elektronové mikroskopii Vzorek propouští elektrony TEM ad. Vzorek odráží elektrony BSE (backscattered) Vzorek adsorbuje elektrony Vzorek emituje elektrony (sekundární elektrony) SEM Vzorek emituje elektromagnetické záření (g-záření) mikroanalýza Vzorek emituje ionty

55 Konstrukce TEM Elektronická část Vakuová část Vakuový systém je schopen dosáhnout hodnot až 10-6 torru Zobrazovací část Osvětlovací systém Zobrazovací systém Zvětšovací systém Záznamová část

56 Konstrukce SEM

57 Využití EM pro pozorování biologických preparátů TEM studium subcelulárních struktur v buňce nebo studium proteinových interakcí v buněčných lyzátech Zvětšení až x ( x), rozlišení až 50 pm Při studiu biopreparátů v TEM vzniká problém zejména s vakuem vzorek nutno upravit: Fixace Post-fixace Odvodnění Vzorky pro TEM nejsou dostatečně kontrastní možno provést barvení (negative staining) nebo značení protilátkami (immunogold) SEM používá se ke studium povrchů, má menší rozlišení než TEM, ale dokáže dobře rekonstruovat povrch vzorku ve 3D

58 Imunoznačení pro TEM Pomocí imunoznačení můžeme potvrdit lokalizaci proteinu v hledaném kompartmentu buňky Při použití protilátek s různým značením (zlaté kuličky o různém průměru) můžeme studovat navíc i kolokalizaci očekávaných interakčních partnerů

59 Postup imunoznačení Ultratenké řezy zařízení ultramikrotom Blokování Primární protilátka / Promytí Sekundární protilátka značená zlatem / Promytí Negativní barvení uranyl acetát, citronan olovnatý Pozorování

Fluorescenční mikroskopie. -fluorescenční mikroskopie -konfokální mikroskopie

Fluorescenční mikroskopie. -fluorescenční mikroskopie -konfokální mikroskopie Fluorescenční mikroskopie -fluorescenční mikroskopie -konfokální mikroskopie Fluorescence a fluorofory Schéma konvenčního fluorescenčního mikroskopu -Na fluorescenčně značený vzorek dopadá pouze světlo

Více

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší

Více

-fluorescenční mikroskopie. -konfokální mikroskopie -multifotonová konfokální mikroskopie

-fluorescenční mikroskopie. -konfokální mikroskopie -multifotonová konfokální mikroskopie Fluorescenční mikroskopie -fluorescenční mikroskopie -konfokální mikroskopie -multifotonová konfokální mikroskopie Fluorescence a fluorofory Schéma konvenčního fluorescenčního mikroskopu -Na fluorescenčně

Více

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE

Více

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka Optická konfokální mikroskopie a Pavel Matějka 1. Konfokální mikroskopie 1. Princip metody - konfokalita 2. Instrumentace metody zobrazování 3. Analýza obrazu 2. Konfokální 1. Luminiscenční 2. Ramanova

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Luminiscence jev, kdy látka vysílá do prostoru světlo chemická reakce chemiluminiscence (např. světluška) světlo fotoluminiscence fluorescence (emisní záření jen krátkou dobu po skončení exitačního záření)

Více

FLUORESCENČNÍ MIKROSKOP

FLUORESCENČNÍ MIKROSKOP FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po

Více

Bioimaging rostlinných buněk, CV.2

Bioimaging rostlinných buněk, CV.2 Bioimaging rostlinných buněk, CV.2 Konstrukce mikroskopu (optika, fyzikální principy...) Rozlišení - kontrast Live cell microscopy Modulace kontrastu (Phase contrast, DIC) Videomikroskopia Nízký kontrast

Více

F l u o r e s c e n c e

F l u o r e s c e n c e F l u o r e s c e n c e Fluorescenční mikroskopie Luminiscence jev, kdy látka vysílá do prostoru světlo chemická reakce chemiluminiscence světlo fotoluminiscence Vyvolávající záření exitační fluorescence

Více

Zoologická mikrotechnika - FLUORESCENČNÍ MIKROSKOPIE

Zoologická mikrotechnika - FLUORESCENČNÍ MIKROSKOPIE Fluorescence Fluorescence je jev, kdy látka absorbuje ultrafialové záření nebo viditelné světlo s krátkou vlnovou délkou a emituje viditelné světlo s delší vlnovou délkou než má světlo absorbované Emitace

Více

FRET FRET. FRET: schéma. Základní vztahy. Základní vztahy. Fluorescence Resonance Energy Transfer

FRET FRET. FRET: schéma. Základní vztahy. Základní vztahy. Fluorescence Resonance Energy Transfer Fluorescence Resonance Energy Transfer je Fluorescence Resonance Energy Transfer Fluorescenční rezonanční energetický transfér podle objevitele Főrster nazýván také Förster Resonance Energy Transfer přenos

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY s názvem KONFOKÁLNÍ MIKROSKOPIE - CEITEC MU II. ČÁST 2 vyhotovené podle 156 zákona č. 137/2006 Sb., o veřejných zakázkách, v platném znění (dále jen Zákon o VZ) 1. ODŮVODNĚNÍ

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS

Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová

Více

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení

Více

Fluorescenční vyšetření rostlinných surovin. 10. cvičení

Fluorescenční vyšetření rostlinných surovin. 10. cvičení Fluorescenční vyšetření rostlinných surovin 10. cvičení Cíl cvičení práce s fluorescenčním mikroskopem detekce vybraných rostlinných surovin Princip nepřímé dvojstupňové IHC s použitím fluorochromu Fluorescenční

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 1. SVĚTELNÁ MIKROSKOPIE A PREPARÁTY V MIKROSKOPII TEORETICKÝ ÚVOD: Mikroskopie je základní metoda, která nám umožňuje pozorovat velmi malé biologické objekty. Díky

Více

Struktura a skladba potravin Magisterský studijní program. Přednáška 4.

Struktura a skladba potravin Magisterský studijní program. Přednáška 4. Struktura a skladba potravin Magisterský studijní program Přednáška 4. Zobrazovací techniky a jejich využití při studiu struktury a skladby potravin. Téma 1. Světelná mikroskopie Přehledné a cílené barvící

Více

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Typy světelných mikroskopů

Typy světelných mikroskopů Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský

Více

Fluorescenční mikroskopie. principy a použití

Fluorescenční mikroskopie. principy a použití Fluorescenční mikroskopie principy a použití Luminiscence objekt absorbuje záření určité vlnové délky, které se vnitroatomovým přeskupením změní na záření o delší vlnové délce excitace viditelné světlo,

Více

Techniky mikroskopie povrchů

Techniky mikroskopie povrchů Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní

Více

Principy a instrumentace

Principy a instrumentace Průtoková cytometrie Principy a instrumentace Ing. Antonín Hlaváček Úvod Průtoková cytometrie je moderní laboratorní metoda měření a analýza fyzikálních -chemických vlastností buňky během průchodu laserovým

Více

Přehled histologických barvení včetně imunohistochemie

Přehled histologických barvení včetně imunohistochemie Přehled histologických barvení včetně imunohistochemie Výukový materiál pro praktická cvičení z histologie Anna Malečková Vytvořeno v rámci projektu OP VVV Zvýšení kvality vzdělávání na UK a jeho relevance

Více

Fluorescenční a konfokální mikroskopie

Fluorescenční a konfokální mikroskopie Fluorescenční a konfokální mikroskopie Hana Sehadová, Biologické centrum AVČR, České Budějovice, 2011 Co je to fluorescence? některé látky (fluorofory) po ozáření (excitaci) světlem jsou schopny absorbovat

Více

MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek.

MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek. MIKROSKOPIE E- mailový zpravodaj MIKROSKOP firmy Olympus Journal of Scanning Probe Microscopy (http://www.aspbs.com/jspm.html) Materials Today, 2008, New Microscopy Special Issue MIKROSKOP Historie Jeden

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček

Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie

Více

Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek

Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví René Kizek 12.04.2013 Fluorescence je fyzikálně chemický děj, který je typem luminiscence. Luminiscence se dále dělí

Více

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková Mikroskopie V M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Hloubka ostrosti problém m velkých zvětšen ení tloušťka T vrstvy vzorku kolmé k optické ose, kterou vidíme ostře zobrazenou Objektiv

Více

IMUNOCYTOCHEMICKÁ METODA JEJÍ PRINCIP A VYUŽITÍ V LABORATOŘI

IMUNOCYTOCHEMICKÁ METODA JEJÍ PRINCIP A VYUŽITÍ V LABORATOŘI IMUNOCYTOCHEMICKÁ METODA JEJÍ PRINCIP A VYUŽITÍ V LABORATOŘI Radka Závodská, PedF JU v Českých Budějovicích Imunocytochemická metoda - použítí protilátky k detekci antigenu v buňkách (Imunohistochemie-

Více

Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu

Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu Mikroskopické metody Přednáška č. 3 Základy mikroskopie Kontrast ve světelném mikroskopu Nízký kontrast biologických objektů Nízký kontrast biologických objektů Metodika přípravy objektů pro světelnou

Více

Využití a princip fluorescenční mikroskopie

Využití a princip fluorescenční mikroskopie Využití a princip fluorescenční mikroskopie fyzikálně chemický děj Fluorescence typem luminiscence (elektroluminiscence, fotoluminiscence, radioluminiscence a chemiluminiscenci) patří mezi fotoluminiscenční

Více

Fluorescenční rezonanční přenos energie

Fluorescenční rezonanční přenos energie Fluorescenční rezonanční přenos energie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 Přenos excitační energie Přenos elektronové energie se uskutečňuje mechanismy zářivými nebo

Více

Základy světelné mikroskopie

Základy světelné mikroskopie Základy světelné mikroskopie Kotrba, Babůrek, Knejzlík: Návody ke cvičením z biologie, VŠCHT Praha, 2006. zvětšuje max. 2000 max. 1 000 000 cca 0,2 mm stovky nm až desetiny nm rozlišovací mez = nejmenší

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Fluorescenční mikroskopie Mgr. Jan Černý PhD. Oddělení vývojové biologie, Katedra fyziologie živočichů, Přírodovědecká fakulta UK v Praze janmartincerny@seznam.cz Klasická světelná mikroskopie sloužila

Více

Nové metody v průtokové cytometrii. Vlas T., Holubová M., Lysák D., Panzner P.

Nové metody v průtokové cytometrii. Vlas T., Holubová M., Lysák D., Panzner P. Nové metody v průtokové cytometrii Vlas T., Holubová M., Lysák D., Panzner P. Průtoková cytometrie Analytická metoda využívající interakce částic a záření. Technika se vyvinula z počítačů částic Počítače

Více

Optické metody a jejich aplikace v kompozitech s polymerní matricí

Optické metody a jejich aplikace v kompozitech s polymerní matricí Optické metody a jejich aplikace v kompozitech s polymerní matricí Doc. Ing. Eva Nezbedová, CSc. Polymer Institute Brno Ing. Zdeňka Jeníková, Ph.D. Ústav materiálového inženýrství, Fakulta strojní, ČVUT

Více

IMUNOFLUORESCENCE. Mgr. Petr Bejdák Ústav klinické imunologie a alergologie Fakultní nemocnice u sv. Anny a Lékařská fakulta MU

IMUNOFLUORESCENCE. Mgr. Petr Bejdák Ústav klinické imunologie a alergologie Fakultní nemocnice u sv. Anny a Lékařská fakulta MU Mgr. Petr Bejdák Ústav klinické imunologie a alergologie Fakultní nemocnice u sv. Anny a Lékařská fakulta MU Luminiscence jev, při kterém látka emituje záření po absorpci excitačního záření (fotoluminiscence)

Více

Princip rastrovacího konfokálního mikroskopu

Princip rastrovacího konfokálního mikroskopu Konfokální mikroskop Obsah: Konfokální mikroskop... 1 Princip rastrovacího konfokálního mikroskopu... 1 Rozlišovací schopnost... 2 Pozorování povrchů ve skutečných barvách... 2 Konfokální mikroskop Olympus

Více

1. Teorie mikroskopových metod

1. Teorie mikroskopových metod 1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Technická specifikace předmětu veřejné zakázky

Technická specifikace předmětu veřejné zakázky předmětu veřejné zakázky Příloha č. 1c Zadavatel požaduje, aby předmět veřejné zakázky, resp. přístroje odpovídající jednotlivým částem veřejné zakázky splňovaly minimálně níže uvedené parametry. Část

Více

Bioscience Imaging Centre

Bioscience Imaging Centre Bioscience Imaging Centre (Středisko mikroskopie) zajišťujeme moderní mikroskopické zařízení a softwary pro analýzu obrazu poradíme s plánováním experimentů (histologie, detekce proteinů a mrna) pomůžeme

Více

Konfokální mikroskop vybavený FLIM modulem pro detekci interakce molekul u živých buněk

Konfokální mikroskop vybavený FLIM modulem pro detekci interakce molekul u živých buněk Písemná zpráva zadavatele zpracovaná podle ust. 85 zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů Veřejná zakázka na dodávky, ev. č. 527942 zadávaná podle 21 odst. 1 písm.

Více

SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE

SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE SKENOVACÍ (RASTROVACÍ) ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, Olomouc 4.12. Workshop: Mikroskopické techniky SEM a TEM Obsah historie mikroskopie proč právě elektrony

Více

Pokročilé biofyzikální metody v experimentální biologii

Pokročilé biofyzikální metody v experimentální biologii Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1/1 Proč biofyzikální metody? Biofyzikální metody využívají fyzikální principy ke studiu biologických systémů Poskytují kvantitativní

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX / 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)

Více

Diagnostika amyloidózy z pohledu patologa Látalová P., Flodr P., Tichý M.

Diagnostika amyloidózy z pohledu patologa Látalová P., Flodr P., Tichý M. Diagnostika amyloidózy z pohledu patologa Látalová P., Flodr P., Tichý M. Ústav klinické a molekulární patologie LF UP a FN Olomouc Úvodem -vzácná jednotka i pro patologa Statistika Ústavu klinické a

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ BAKALÁŘSKÁ PRÁCE 2014 Aneta Sedlmajerová UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA BIOLOGICKÝCH A BIOCHEMICKÝCH VĚD FLUORESCENČNÍ MIKROSKOPIE

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Základy mikroskopování

Základy mikroskopování Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

ONLINE BIOSENZORY PŘI HLEDÁNÍ KONTAMINACE PITNÉ VODY

ONLINE BIOSENZORY PŘI HLEDÁNÍ KONTAMINACE PITNÉ VODY ONLINE BIOSENZORY PŘI HLEDÁNÍ KONTAMINACE PITNÉ VODY Ing. Jana Zuzáková Ing. Jana Zuzáková, Doc. RNDr. Jana Říhová Ambrožová, PhD., Ing. Dana Vejmelková, PhD., Ing. Roman Effenberg, RNDr. Miroslav Ledvina

Více

ení s chemickými látkami. l rní optiky

ení s chemickými látkami. l rní optiky OPTICKÉ SENSORY Základem je interakce světeln telného zářenz ení s chemickými látkami. l Při i konstrukci katalytických biosensorů se používaj vají: optické techniky: absorbance fluorescence luminiscence

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 Kvantové tečky a jejich využití v bioanalýze Jiří Kudr Datum: 9.4.2015 Hvězdárna Valašské Meziříčí, p.o, Vsetínská 78, Valašské Meziříčí, Nanotechnologie

Více

PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i.

PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i. PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i. Konstrukce a výroba speciálních optických dielektrických multivrstev pro systémy FluorCam Firma příjemce voucheru

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) 7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) Steady-state měření Excitujeme kontinuálním světlem, měříme intenzitu emise (počet emitovaných fotonů) Obvykle nedetekujeme všechny

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ T. Jeřábková Gymnázium, Brno, Vídeňská 47 ter.jer@seznam.cz V. Košař Gymnázium, Brno, Vídeňská 47 vlastik9a@atlas.cz G. Malenová Gymnázium Třebíč malena.vy@quick.cz

Více

Barevné hry se světlem - co nám mohou říci o biomolekulách?

Barevné hry se světlem - co nám mohou říci o biomolekulách? Barevné hry se světlem - co nám mohou říci o biomolekulách? Martin Kubala Univerzita Palackého v Olomouci Přírodovědecká fakulta, katedra biofyziky Tato prezentace je spolufinancována Evropským sociálním

Více

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího

Více

Vitální barvení, rostlinná buňka, buněčné organely

Vitální barvení, rostlinná buňka, buněčné organely Vitální barvení, rostlinná buňka, buněčné organely Vitální barvení používá se u nativních preparátů a rozumíme tím zvýšení kontrastu určitých buněčných složek v živých buňkách, nebo tkáních pomocí barvení

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Fluorescenční mikroskopie Luminiscence Emise záření spontánně nastávajícího při přechodu molekuly z excitovaného stavu do základního - Chemiluminiscence excitace je vyvolána chemickou reakcí - Fotoluminiscence

Více

METODY STUDIA PROTEINŮ

METODY STUDIA PROTEINŮ METODY STUDIA PROTEINŮ Mgr. Vlasta Němcová vlasta.furstova@tiscali.cz OBSAH PŘEDNÁŠKY 1) Stanovení koncentrace proteinu 2) Stanovení AMK sekvence proteinu Hmotnostní spektrometrie Edmanovo odbourávání

Více

ZPRACOVÁNÍ OBRAZU přednáška 3

ZPRACOVÁNÍ OBRAZU přednáška 3 ZPRACOVÁNÍ OBRAZU přednáška 3 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody

6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com

Více

Helena Langhansová. 30. listopadu 2011

Helena Langhansová. 30. listopadu 2011 VYUŽIT ITÍ PRŮTOKOV TOKOVÉ CYTOMETRIE V IMUNOLOGII Helena Langhansová 30. listopadu 2011 Projekt Vytvoření a rozvoj týmu zaměřeného na výzkum a výuku v oblasti medicínské biologie, reg. č. CZ.1.07/2.2.00/15.0361,

Více

Technické parametry příloha č. 2 k veřejné zakázce s názvem: Mikroskopy pro Centrum modelových organismů

Technické parametry příloha č. 2 k veřejné zakázce s názvem: Mikroskopy pro Centrum modelových organismů Technické parametry příloha č. 2 k veřejné zakázce s názvem: Mikroskopy pro Centrum modelových organismů Část 1 veřejné zakázky: Super-rezoluční mikroskop s možností zobrazování živých dějů - invertovaný

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

DODATEČNÉ INFORMACE dle 49 zákona č. 137/2006 Sb., o veřejných zakázkách

DODATEČNÉ INFORMACE dle 49 zákona č. 137/2006 Sb., o veřejných zakázkách DODATEČNÉ INFORMACE dle 49 zákona č. 137/2006 Sb., o veřejných zakázkách Zadavatel tímto poskytuje dodavatelům v souladu s 49 odst. 4 zákona o veřejných zakázkách dodatečné informace k veřejné zakázce

Více

Barevné principy absorpce a fluorescence

Barevné principy absorpce a fluorescence Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické

Více

Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci. reg. č.: CZ.1.07/2.2.00/

Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci. reg. č.: CZ.1.07/2.2.00/ Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci reg. č.: CZ.1.07/2.2.00/28.0088 Metodické základy patologie Moderní metody vizualizace buněk a tkání Ing. Bc.

Více

Elektronová Mikroskopie SEM

Elektronová Mikroskopie SEM Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne

Více

Funkční a biomechanické vlastnosti pojivových tkání (sval, vazy, chrupavka, kost, kloub)

Funkční a biomechanické vlastnosti pojivových tkání (sval, vazy, chrupavka, kost, kloub) Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze ( https://www.lf2.cuni.cz) Biofyzika Napsal uživatel Marie Havlová dne 9. Leden 2013-0:00. Sylabus předmětu BIOFYZIKA pro letní semestr 1. ročníku,

Více

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza

FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza FIA a CIA FIA fluorescenční imunoanalýza (fluorescence immuno-assay) CIA chemiluminiscenční imunoanalýza Značky pro antigeny a protilátky: radioizotop enzym fluorescenční sonda luminiscenční sonda kovové

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

MOLEKULÁRNÍ METODY V EKOLOGII MIKROORGANIZMŮ

MOLEKULÁRNÍ METODY V EKOLOGII MIKROORGANIZMŮ MOLEKULÁRNÍ METODY V EKOLOGII MIKROORGANIZMŮ (EKO/MMEM) FLUORESCENČNÍ MIKROSKOPIE A ANALÝZA OBRAZU Použití fluorescenční mikroskopie je založeno na detekci objektů pomocí fluorochromů látek, jež se specificky

Více

Histochemie a imunohistochemie, elektronová mikroskopie

Histochemie a imunohistochemie, elektronová mikroskopie Histochemie a imunohistochemie, elektronová mikroskopie Příprava histologických preparátů pro vyšetření světelným mikroskopem je sled pracovních úkonů v laboratoři, které mají za cíl vytvořit co nejlépe

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Bakalářské práce. Magisterské práce. PhD práce

Bakalářské práce. Magisterské práce. PhD práce Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2018-2019 1 Název Fenotypová analýza vybraných dvojitých mutantů MAPK v podmínkách abiotického stresu Školitel Mgr.

Více

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní

Více

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická

Více

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová

Více

DELFIA Dissociation-Enhanced Lanthanide Fluorescent ImmunoAssay

DELFIA Dissociation-Enhanced Lanthanide Fluorescent ImmunoAssay DELFIA Dissociation-Enhanced Lanthanide Fluorescent ImmunoAssay Fluoroimunoanalytická metoda vyvinutá finskou firmou Wallac Oy (LKB Pharmacia), velmi citlivá a specifická metoda pro stanovení nízko- i

Více

Bakalářské práce. Magisterské práce. PhD práce

Bakalářské práce. Magisterské práce. PhD práce Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel

Více

TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE

TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE TRANSMISNÍ ELEKTRONOVÁ MIKROSKOPIE Klára Šafářová Centrum pro výzkum nanomateriálů, UP Olomouc 4.12.2009 Workshop: Mikroskopické techniky SEM a TEM Obsah konstrukce transmisního elektronového mikroskopu

Více

Mikroskopy. Světelný Konfokální Fluorescenční Elektronový

Mikroskopy. Světelný Konfokální Fluorescenční Elektronový Mikroskopy Světelný Konfokální Fluorescenční Elektronový Světelný mikroskop Historie 1590-1610 - Vyrobeny první přístroje, které lze považovat za použitelný mikroskop (Hans a Zaccharis Janssenové z Middleburgu

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Téma: Testy životaschopnosti a Počítání buněk

Téma: Testy životaschopnosti a Počítání buněk LRR/BUBV vičení z buněčné biologie Úloha č. 3 Téma: Testy životaschopnosti a Počítání Úvod: Při práci s buňkami je jedním ze základních sledovaných parametrů stanovení jejich životaschopnosti (viability).

Více

Buňka. základní stavební jednotka organismů

Buňka. základní stavební jednotka organismů Buňka základní stavební jednotka organismů Buňka Buňka je základní stavební a funkční jednotka těl organizmů. Toto se netýká virů (z lat. virus jed, je drobný vnitrobuněčný cizopasník nacházející se na

Více

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10 Úloha č. 10 Základy mikroskopie Úkoly měření: 1. Seznamte se základní obsluhou třech typů laboratorních mikroskopů: - biologického - metalografického - stereoskopického 2. Na výše jmenovaných mikroskopech

Více