Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření



Podobné dokumenty
Laboratorní práce č. 1: Měření délky

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

Soustava vznikla v roce 1960 ze soustavy metr-kilogram-sekunda (MKS).

Prototyp kilogramu. Průřez prototypu metru

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_04_FY_A

Laboratorní práce č. 4: Určení hustoty látek

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_04_FY_A

soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny

Bezpečnost práce, měření fyzikálních veličin, chyby měření

1. Změřte rozměry a hmotnosti jednotlivých českých mincí a ze zjištěných hodnot určete hustotu materiálů, z nichž jsou zhotoveny. 2.

264/2000 Sb. VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. července 2000,

1. OBSAH, METODY A VÝZNAM FYZIKY -

Měření délky, určení objemu tělesa a jeho hustoty

VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: Ročník: 7., 8.

Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu

MĚŘENÍ FYZIKÁLNÍCH VELIČIN. m = 15 kg. Porovnávání a měření. Soustava SI (zkratka z francouzského Le Système International d'unités)

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.

Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

HUSTOTA PEVNÝCH LÁTEK

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_07_FY_A

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Úvod do teorie měření. Eva Hejnová

Měření momentu setrvačnosti

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ÚVOD. Fyzikální veličiny a jednotky Mezinárodní soustava jednotek Skalární a vektorové veličiny Skládání vektorů

Úvod do teorie měření. Eva Hejnová

Určení hustoty látky. (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/

VY_32_INOVACE_ELT-1.EI-02-FYZIKALNI JEDNOTKY. Střední odborná škola a Střední odborné učiliště, Dubno

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_01_FY_A

Teorie: Hustota tělesa

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Tabulka 1. SI - základní jednotky

Soustava SI FYZIKÁLNÍ VELIČINY A JEDNOTKY

Základy elektrotechniky - úvod

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Fyzikální veličiny. Převádění jednotek

Praktikum I Mechanika a molekulová fyzika

Mezinárodní soustava SI:

Soustava SI, převody jednotek

Fyzika - Kvinta, 1. ročník

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Měřicí přístroje a měřicí metody

Přepočty jednotlivých veličin

Počítání s neúplnými čísly 1

FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě

Fyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost

Stanovení hustoty pevných a kapalných látek

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina:

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

Měření magnetické indukce elektromagnetu

Úvod. rovinný úhel např. ϕ radián rad prostorový úhel např. Ω steradián sr

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule

1. MECHANIKA Úvodní pojmy

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Náhodné chyby přímých měření

VY_52_INOVACE_2NOV47. Autor: Mgr. Jakub Novák. Datum: Ročník: 7.

Úvod do teorie měření. Eva Hejnová

Optické zobrazování - čočka

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově. 05_1_Fyzikální veličiny a jejich měření

1 Měrové jednotky používané v geodézii

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Úvod do teorie měření. Eva Hejnová

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

Skalární a vektorový popis silového pole

Měření momentu setrvačnosti prstence dynamickou metodou

DODATEK B PŘEDPIS L 5

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

Spolupracovník/ci: Téma: Měření setrvačné hmotnosti Úkoly:

1. Měření hustoty látek. Úkol 1: Stanovte hustotu tělesa přímou metodou a pomocí Tabulek určete druh látky, z níž je těleso zhotoveno.

Úvod Fyzika hypotéza Pracovní hypotéza Axiom Fyzikální teorie Fyzikální zákon princip Fyzikální model materiální model

Název: Studium kmitů na pružině

OBJEM A POVRCH TĚLESA

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

MECHANIKA TUHÉHO TĚLESA

Skaláry a vektory

Měření povrchového napětí

Termodynamika - určení měrné tepelné kapacity pevné látky

264/2000 Sb. VYHLÁKA Ministerstva průmyslu a obchodu

Kalorimetrická měření I

FYZIKÁLNÍ VELIČINY A JEDNOTKY Implementace ŠVP

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S /10

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Měření permitivity a permeability vakua

CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

PRAKTIKUM I Mechanika a molekulová fyzika

Federální shromáždění Československé socialistické republiky II. v. o. Vládní návrh. Zákon

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

Praktikum I Mechanika a molekulová fyzika

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_03_FY_A

Transkript:

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření Pro potřeby projektu MAN zpracoval: Mgr. Libor Lepík

Praktická část: 1. Fyzikální veličiny a jednotky Příprava: Fyzikální vlastnosti, stavy fyzikálních objektů a jejich změny, které jsou měřitelné, charakterizujeme fyzikálními veličinami. V České republice se používají zákonné měřicí jednotky vycházející z Mezinárodní soustavy jednotek SI. Za zákonné jednotky se považují jednotky základní, odvozené, násobky a díly jednotek, vedlejší jednotky. Skalární fyzikální veličina je určena číselnou hodnotou a jednotkou. Vektorová fyzikální veličina je určena číselnou hodnotou, jednotkou a směrem. Otázky a úkoly: 1) Doplňte do tabulky základní jednotky, jejich značky, jednotky a značky jednotek: Základní veličina Značka veličiny Základní jednotka Značka jednotky délka hmotnost čas elektrický proud termodynamická teplota látkové množství svítivost 2) Doplňte tabulku fyzikálních veličin, které znáte ze základní školy: Fyzikální veličina Značka veličiny Jednotka veličiny Značka jednotky Fyzikální vztah dráha rychlost čas hustota objem hmotnost tlak síla plocha

3) Doplňte tabulku a rozhodněte, zda je daná fyzikální veličina skalár nebo vektor: Fyzikální veličina Značka veličiny skalár - vektor dráha rychlost čas hustota objem hmotnost tlak síla plocha gravitační síla hydrostatický tlak tlaková síla moment síly práce výkon perioda frekvence teplo skupenské teplo tání elektrický proud napětí elektrický odpor elektrický náboj kapacita vlnová délka polohová energie pohybová energie elektrická energie 4) Vyberte si fyzikální veličinu, která má jednotku pojmenovanou po významném fyzikovi, a napište, čím byl daný fyzik přínosem pro náš svět. Jednotka: ampér, kelvin, watt, hertz, newton, pascal, joule, coulomb, volt, farad, ohm, siemens, weber, tesla, henry, becquerel, gray, Celsiův stupeň ad. Informace o fyzikovi můžete získat z knih nebo z internetu (nezapomeňte ověřit pravdivost informací).

5) Doplňte chybějící údaje: 2 pn = N 6 kj = J 2 TW = W 3 nm = m 1 MV = V 60 µa = A 6 min = s 4 h = min 7 GJ = J 0,3 t = kg 200 g = kg 18 s = min 400 l = m 3 45 mhz = Hz 5 m/s = km/h 2. Měření hustoty tělesa, odchylky měření Úvod Často se dostáváme do situace, kdy určitou veličinu neměříme přímo měřicím přístrojem, ale vypočítáváme ji pomocí jiných, již změřených veličin. Chceme např. určit obsah obdélníkové stěny kvádru, jehož hrany jsme změřili. K dispozici máme výsledky měření rozměrů stěny, např.: Víme, že plošný obsah obdélníku určíme jako součin jeho stran, tedy podle vzorce P = ab. Jak však stanovíme odchylku takto vypočtené hodnoty? Nejprve určíme střední hodnotu plošného obsahu jako součin středních hodnot změřených stran, tedy Tuto hodnotu musíme zaokrouhlit podle hodnoty průměrné odchylky P, kterou teprve určíme. Při násobení nejdříve vypočítáme relativní odchylku P jako součet relativních odchylek změřených veličin, tedy v našem případě P = a + b = 0,43 % + 0,42 % = 0,85 %. Ze vztahu pro relativní odchylku P = P / P 100 % pak určíme hodnotu průměrné odchylky P, kterou zaokrouhlíme, jak jsme již uvedli, na jednu platnou číslici. Dostaneme P = P P = 0,85 3 345 mm² 30 mm². Po zaokrouhlení střední hodnoty podle průměrné odchylky napíšeme konečný výsledek P = (3 350 ± 30) mm², P = 0,85 %. Obsah zvolené stěny kvádru je (3 350 ± 30) mm². Tento výsledek je dostatečně přesný, neboť hodnota relativní odchylky je menší než 1 %. V uvedeném příkladu, kde šlo o násobení naměřených veličin, jsme určovali průměrnou odchylku vypočítávané veličiny pomocí součtu relativních odchylek veličin změřených. Podobně postupujeme také v případech, kdy jde o dělení změřených veličin.

Jednodušší je postup, máme-li změřené sčítat nebo odečítat. Zde můžeme průměrnou odchylku vypočítávané veličiny určit přímo z průměrných odchylek změřených veličin (nemusíme tedy předem počítat jejich relativní odchylky). Při výpočtu fyzikální veličiny pomocí veličin změřených postupujeme takto: 1. Určíme střední hodnotu veličiny pomocí středních hodnot změřených veličin. 2. Vypočítáme průměrnou odchylku vypočítané veličiny buď přímo z průměrných odchylek změřených veličin (tak je tomu při sčítání a odčítání veličin), nebo pomocí jejich relativních odchylek (při dalších početních operacích). 3. Průměrnou odchylku zaokrouhlíme na jednu platnou číslici. 4. Podle průměrné odchylky zaokrouhlíme střední hodnotu vypočítané veličiny. 5. Určíme relativní odchylku vypočítané veličiny. 6. Výsledek zapíšeme ve známém tvaru. Otázky a úkoly: 6) Doplňte tabulku: Početní operace Střední hodnota Stanovení průměrné odchylky MĚŘENÍ HUSTOTY PEVNÉ LÁTKY Pomůcky: těleso tvaru válečku, digitální váha, posuvné měřidlo, odměrný válec s vodou Hustota ρ je definována vztahem:, kde m je hmotnost tělesa, V jeho objem. Z tohoto vztahu vyjdeme při měření hustoty homogenního tělesa. Úkol: Změřte hustotu látky, z níž je zhotoven homogenní rotační váleček. Jeho hmotnost určete vážením na digitální váze, objem výpočtem z délkových rozměrů. Postup měření: Váleček zvážíme na digitální váze. Zapište výsledek: m = ( ± ) g, δm = %. Objem válečku V výšce h a poloměru r je dám vztahem.

Výšku h změříme posuvným měřidlem. Měření zapisujeme do tabulky předem připravené. Zapíšeme výsledek měření: h = ( ± ) cm, δh = %. Průměr d změříme měřidlem. Výsledek měření zapíšeme ve tvaru d = ( ± )cm, δ h = %. Poloměr válečku, relativní odchylka. Nyní vypočteme objem V válečku a relativní a průměrnou odchylku vypočteného objemu. Relativní odchylka je dána vztahem δv = δh + 2δr, a průměrná odchylka. Objem je tedy Nyní vypočteme hustotu válečku. Relativní odchylka hustoty je δρ = δm + δv, průměrná odchylka. Výsledek měření zapíšeme ve tvaru Jestliže víme, z jaké látky je váleček zhotoven, porovnáme výsledek měření s hodnotou uvedenou v MFChT, v opačném případě se pomocí MFChT pokusíme určit, o jakou látku jde. Pro kontrolu výsledku určíme přibližnou hodnotu objemu válečku tak, že jej ponoříme do odměrného válce s vodou. Připomeňme, že u tělesa nepravidelného tvaru nelze určit objem výpočtem a je nutné buď určit objem pomocí odměrného válce, nebo k měření hustoty použít jinou měřicí metodu... Praktický úkol 1: Určete hustotu materiálu, ze kterého je vyroben váleček. Praktický úkol 2: Určete hustotu materiálu, ze kterého je vyrobena kulička.

Vědomostní část: Určili jsme hmotnost koule m = (2100 ± 2) kg. Opakovaně jsme změřili průměr koule. Použili jsme tyto pomůcky: koule, metr, váha. Průměr koule jsme změřili desetkrát a naměřené hodnoty jsme zapsali do tabulky. Tabulka s naměřenými hodnotami: Číslo měření: i 1. 708 2. 705 3. 709 4. 708 5. 710 6. 709 7. 708 8. 707 9. 706 10. 711 Součet absolutních hodnot: Aritmetický průměr: Otázky a úkoly: 7) Vypočítejte průměr koule, průměrnou odchylku, relativní odchylku: 8) Vypočítejte objem koule, průměrnou odchylku, relativní odchylku: 9) Vypočítejte hustotu koule, průměrnou odchylku, relativní odchylku: 10) Určete pomocí tabulek materiál, z kterého je koule vyrobena: