příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
|
|
- Antonín Horák
- před 8 lety
- Počet zobrazení:
Transkript
1 Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl na které jsem zapomněl v cvičení. Vektorový prostor Vektorový prostor V nad tělesem R je množina V pro jejíž prvky je definováno násobení skalárem reálným číslem a u V a R u V a sčítání u + v V u v V. Prvky vektorového prostoru nazýváme vektory. Násobení vektoru skalárem a sčítání vektorů má navíc tyto vlastnosti ab u = ab u u + v + w = u + v + w u + v = v + u a u + v = a u + a v a + b u = a u + b u u = u kde a b R u v w V. Dále zde existuje nulový prvek 0 pro který platí v + 0 = 0 + v = 0 kde v V. A ke každému vektoru u V existuje vektor u V pro který platí u + u = 0 = u + u. Příkladem vektorového prostoru nad R jsou všechny n-tice reálných čísel u u... u n u u... u n R pro které definujeme násobení skalárem a sčítání vektorů jako a u = au u... u n = au au... au n u + v = u u... u n + v v... v n = u + v u + v... u n + v n. Tento vektorový prostor budeme označovat jako R n. Poznámka: Vektoru tvaru a u + a u a m u m kde a a... a n R u u... u m V říkáme lineární kombinace vektorů u u... u m. Báze a dimenze vektorového prostoru lineární nezávislost Uvažujme vektorový prostor V a v něm systém n vektorů u u... u n. O tomto systému řekneme že je lineárně nezávislý pokud pro rovnici a u + a u + + a n u n = 0
2 s neznámými a a... a n R existuje jediné řešení a = 0 a = 0... a n = 0. Pokud není systém vektorů lineárně nezávislý tak říkáme že je lineárně závislý. Předpokládejme že systém vektorů u u... u n je lineárně závislý. To znamená že existuje řešení rovnice takové že alespoň jedno z čísel a a... a n je nenulové. Předpokládejme že je tímto nenulovým číslem například a n a rovnici upravme do tvaru u n = a a n u + a a n u + + a n a n u n. Vektor u n tedy lze vyjádřit jako lineární kombinaci ostatních vektorů. Této vlastnosti můžeme užít k tomu abychom lineární nezávislost vektorů definovali i jiným způsobem. Lineární nezávislost sytému vektorů můžeme definovat také pomocí požadavku že žádný z vektorů tohoto systému nelze vyjádřit jako lineární kombinaci ostatních vektorů tohoto systému s výjimkou případu kdy máme puze jeden vektor v tomto případě je systém lineárně nezávislý pokud je vektor nenulový. Lineárně nezávislý systém vektorů e e... e n z vektorového prostoru V pro který platí to že přidáme-li k němu libovolný další vektor u V tak dostaneme lineárně závislý systém nazýváme bází vektorového prostoru. Lze ukázat že existuje-li báze obsahující konečný počet vektorů tak i všechny ostatní báze obsahují stejný počet vektorů a počet těchto vektorů nazýváme dimenzí vektorového prostoru. Příklad: Jsou dány vektory u = u = 4 u = u 4 = 0 určete zda jsou tyto vektory lineárně nezávislé pokud nejsou tak z nich vyberte maximální počet lineárně nezávislých vektorů. Řešení: Aby byly vektory lineárně nezávislé tak musí mít rovnice a u + a u + a u + a 4 u 4 = 0 pro neznámé a a a a 4 jediné řešení. Dosazením za u u u u 4 dostáváme a + a 4 + a + a 4 0 = a + a + a a + 4a a + a 4 = 0 0. Jedná se o systém rovnic o neznámých který můžeme přepsat pomocí matice kterou můžeme upravit na schodovitý tvar Vidíme že tato soustava má nekonečně mnoho řešení zadaný systém vektorů tedy není lineárně nezávislý. Vynecháme-li však v matici ty sloupce které neobsahují žádný vedoucí člen vedoucí člen je první nenulový člen v řádku schodovité matice tj. druhý a čtvrtý sloupec tak dostaneme matici která odpovídá soustavě rovnic mající jediné řešení. Uvědomíme-li si že sloupce matice 4 odpovídají jednotlivým vektorům v rovnici tak je jasné že vynechání sloupců matice odpovídá vynechání patřičných vektorů v rovnici. To že jsme v matici vynechali druhý a čtvrtý sloupec tedy znamená že uvažujeme systém vektorů ve kterém jsme vynechali druhý a čtvrtý vektor tj. systém u u. Vektory u a u tedy tvoří lineárně nezávislou podmnožinu vektorů u u u u 4.
3 Příklad: Doplňte vektory u = u = o další vektor tak aby tvořili bázi v R. První způsob řešení: Budeme předpokládat že hledaný vektor u má složky x y z. Aby byly vektory u u u lineárně nezávislé tak musí mít rovnice a u + a u + a u = a + a + a x a a + a y a + a + a z = jediné řešení. Tuto soustavu zapíšeme pomocí matice x 0 x 0 y 0 0 y x 0 z z x 0 Z tvaru této matice vidíme že soustava má řešení pouze tehdy platí li z x což splníme například volbou x = y = 0 z = 0. Vektory u u tedy můžeme doplnit o vektor u = 0 0. Druhý způsob řešení: Druhou možností jak řešit tento příklad je přidat k vektorům u u vektory e = 0 0 e = 0 0 e = 0 0 které sami o sobě tvoří bázi v R a z tohoto systému 5 vektorů vybrat lineárně nezávislé vektory tak aby dva z nich byly u u. Budeme tedy zkoumat rovnici a u + a u + a e + a 4 e + a 5 e = a + a + a a a + a 4 a + a + a 5 = kterou zapíšeme pomocí matice Vidíme že čtvrtý a pátý sloupec matice upravené do schodovitého tvaru neobsahují vedoucí členy čtvrtý a pátý vektor tedy vynecháme a zbydou nám vektory u u e které jsou lineárně nezávislé a tvoří bázi v R. Vektor zapsaný v bázi přechod mezi bázemi Necht V je n-dimenzionální vektorový prostor a e e... e n jeho báze. Přidáme-li k bázi další vektor u tak vzniklý systém e e... e n u již nebude lineárně nezávislý protože báze je tvořena maximálním počtem lineárně nezávislých vektorů a podobným způsobem jako jsme v rovnici vyjádřili vektor e n můžeme vyjádřit i vektor u tj. u = u e + u e + + u n e n = u i e i. Soubor čísel u u... u n pak nazýváme souřadnicemi vektoru u v bázi e e... e n a často je zapisujeme jako řádkovou matici u u... u n. Uvažujme nyní jinou bázi e e... vektorového prostoru V. Prvky nové čárkované báze jsou vektory vektorového prostoru V takže je můžeme vyjádřit pomocí vektorů nečárkované báze i= e = T e + T e T n e n e = T e + T e T n e n. = T n e + T n e T nn e n
4 což zapíšeme jako e i = T ij e j. 5 j= Uspořádáme-li čísla T ij do matice tak že v i-tém řádku a j-tém sloupci bude číslo T ij tj. složka j-tá souřadnice vektoru e i v bázi e e... e n řádky matice T jsou tedy tvořeny souřadnicemi vektorů čárkované báze v nečárkované bázi tak budeme moci tento vztah zapsat také v maticovém zápisu jako e T T... T n e e T T... T n e. =... T n T n... T nn Matici T nazýváme maticí přechodu. Stejným způsobem můžeme vyjádřit také bázové vektory e e... e n nečárkované báze jako lineární kombinaci vektorů čárkované báze tj. e i = S ij e j. j= e S S... S n e e. = S S... S n e e n S n S n... S nn Přičemž řádky matice S jsou tvořeny souřadnicemi vektorů nečárkované báze v čárkované bázi. Dosadíme-li 7 do 6 tak získáme rovnici e e e e e. = T e. = T S e e T S I.. = 0 e n která bude splněna tehdy když T S = I tj. tehdy když S = T T = S = T matice T a S jsou tedy vzájemně inverzní. Pro vyjádření vektoru u v bázi e e... e n dostáváme e e u = u i e i = e u u... u n. i=. = u u... u n T e. e n přičemž v poslední rovnosti jsme užili 7 Porovnáme-li tento výraz s vyjádřením vektoru u v bázi e e... u =. e n u i e i = u u... u e n. i= tak vidíme že souřadnice vektoru u v bázi e e... vypočteme z jeho souřadnic v bázi e e... e n pomocí vztahu u u... u n = u u... u n T 8 e 6 4
5 Podobně pro přepočet souřadnic vektoru u v bázi e e... na souřadnice v bázi e e... e n dostáváme u u... u n = u u... u n T. 9 Příklad: Uvažujte změnu báze e = e + e e = e e e = e vyjádřete vektor u = e + e + e pomocí čárkované báze a vektor v = e e + e pomocí nečárkované báze. Řešení: Ze vztahů zadávajících změnu báze určíme matici přechodu T T = K této matici vypočteme matici inverzní 0 T = Souřadnice vektoru u v bázi e e e jsou u u u = souřadnice v čárkované bázi e e e vypočteme pomocí vzorce 8 u u u = u u u T = 0 0 = 0 0 Vektor u tedy pomocí báze e e e zapíšeme jako. u = e e + e. Souřadnice vektoru v v bázi e e e jsou v v v = souřadnice v nečárkované bázi e e e vypočteme pomocí vzorce 9 0 v v v = v v v T = 0 = Vektor v tedy pomocí báze e e e zapíšeme jako v = e + e. Poznámka: Vztah mezi bází e e e a bází e e e jsme zapsali pomocí matice T jako e e = 0 0 e e e 0 0 e e = e + e e = e e e = e 5
6 což jsou vztahy uvedené v zadání. Matici T pak užijeme k tomu abychom dostali řešení této soustavy rovnic pro vektory e e e e 0 e = 0 e 0 0 e e e e = e + e e = e e. e = e Vektor u vyjádřený v bázi e e e tedy získáme tím že vektory e e e vyjádříme pomocí báze e e e tj. u = e + e + e = e + e + e e + e = e e + e. A to je přesně to co je skryto v nepěkně vypadajícím vzorci 8. Skalární součin Uvažujme vektorový prostor V nad R. Skalární součin je zobrazení : V V R které dvěma vektorům u v z vektorového prostoru V přiřadí reálné číslo u v. Pro skalární součin platí a u + a u v = a u v + a u v ua v + a v = a u v + a u v v u = u v u u 0 u u = 0 právě tehdy když u = 0. 0 Pro vektory u v vyjádřené v bázi e e... e n tj. dostáváme u = u v = u i e i v = i= n i= u i e i v j e j = j= i= j= v i e i i= u i v j e i e j přičemž při úpravách jsme užili první dvě pravidla z 0. Uvažujme bázi pro kterou platí e i e j = { i = j 0 i j Takovou bázi nazýváme ortonormální bází a výraz pro skalární součin se zjednoduší na u v = u i v i = u v + u v + + u n v n. i= Poznámka: V R n budeme uvažovat skalární součin u u... u n v v... v n = u v + u v + u n v n. 6
7 Poznámka: Definujeme-li velikost vektoru u jako pak dostaneme pro skalární součin vyjádření u = u u u v = u v cos φ kde φ je úhel mezi vektory u a v. O vektorech u a v tedy řekneme že jsou na sebe kolmé pokud u v = 0. Poznámka: Máme-li nenulový vektor u jenž nemá jednotkovou velikost můžeme ho normovat což znamená že vytvoříme nový vektor u = u u = u u u který je násobkem původního vektoru a platí pro něj u =. Uvažujme ortonormální bázi e e... e n. Budeme-li dále uvažovat další ortonormální bázi e e... ke které přejdeme z báze e e... e n pomocí matice přechodu T pak dostáváme podmínku n n l I ij = e i e j = T ik e k T jl e l = T ik T jl e k e l = T ik T jk = T T T ij k= l= k= k= kde I značí jednotkovou matici a kde jsme užili 5 a. Dostáváme tedy podmínku T T T = I a to znamená že platí T = T T. Změnu ortonormální báze na jinou ortonormální bázi tj. změnu báze zadanou maticí pro kterou platí T T T = I T T = T nazýváme ortonormální změnou báze. Příklad: Je zadána změna ortonormální báze k= e = e + e e = e + e ověřte že báze e e je rovněž ortonormální a zapište vektor u = e + e pomocí této báze. Řešení: Ze zadané změny báze určíme matici přechodu T = Aby byla touto maticí přechodu zadána změna ortonormální báze musí být výraz T T T jednotkové matici tj. T T T = 0 = = I. 0 roven Matice T tedy zadává ortonormální změnu báze. Inverzní matice k matici T je rovna matici transponované T = T T =. Ze souřadnic vektoru u v bázi e e u u = 7
8 vypočteme podle vzorce 8 jeho souřadnice v bázi e e u u = u u T = = Vektor u tedy pomocí báze e e vyjádříme jako Příklad: Jsou dány vektory u = e + e. u = 0 u =. Vektory normujte a doplňte je o další vektor u tak aby vektory u u u tvořili ortonormální bázi v R. Řešení: Přímým výpočtem zjistíme že pro vektory u u platí u u = u u = 0 u u = tj. že jsou na sebe kolmé a jejich velikost je a. Tyto vektory potřebujeme doplnit o další vektor u tak aby platilo u u = 0 u u = 0 u u =. Budeme předpokládat že vektor u má tvar u = x y z kde x y z jsou zatím neurčené neznámé. Dosadíme-li tento výraz do podmínek tak získáme soustavu rovnic u u = x + y = 0 u u = x y + z = 0 u u = x + y + z =. Z první rovnice dostáváme y = x. Odtud dosadíme za y do druhé rovnice čímž dostaneme z = x. Do třetí rovnice dosadíme za y a z čímž dostaneme x + x + x = 6x = tj. x = ± 6. Řešením jsou tedy vektory u = x y z = ± Dostáváme tedy dvě možnosti jak zvolit vektor u. Zbývá normovat vektory u u tj. u = u u = 0 = 0 Trojice vektorů u = 0 u = u = u u = =. u = x y z = ± tedy tvoří ortonormální bázi v R. Jiný postup který můžeme užít nalezení vektoru kolmého k vektorům u a v je vypočíst vektor jejich vektorový součin tj. u v a ten poté normovat. 8
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Matematika. Kamila Hasilová. Matematika 1/34
Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická
3 Lineární kombinace vektorů. Lineární závislost a nezávislost
3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Vektory a matice Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Výběr báze. u n. a 1 u 1
Výběr báze Mějme vektorový prostor zadán množinou generátorů. To jest V = M, kde M = {u,..., u n }. Pokud je naším úkolem najít nějakou bázi V, nejpřímočařejším postupem je napsat si vektory jako řádky
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Analytická geometrie. c ÚM FSI VUT v Brně
19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
prvního semestru oboru odborná informatika. Látka je rozložena do deseti kapitol, které jsou uspořádány v souladu se skripty [5]
1 ÚVOD Cílem mé práce je sestavit sbírku úloh z lineární algebry. Ta je určena především pro posluchače prvního semestru oboru odborná informatika. Látka je rozložena do deseti kapitol, které jsou uspořádány
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
ftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
z textu Lineární algebra
2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.
Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
12. Determinanty. 12. Determinanty p. 1/25
12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
Necht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Lingebraické kapitolky - Analytická geometrie
Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory
Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,
Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
11. Skalární součin a ortogonalita p. 1/16
11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.
Matematika I, část I Vzájemná poloha lineárních útvarů v E 3
3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet
Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem