Náhodné chyby přímých měření
|
|
- Arnošt Kučera
- před 6 lety
- Počet zobrazení:
Transkript
1 Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná. Dva základní problémy: 1) Jakým způsobem ze souboru naměřených hodnot zjistit výsledek měření, který se nejvíce blíží správné (tj. skutečné) hodnotě měřené veličiny? 2) Jakým způsobem charakterizovat odchylku výsledku měření od správné hodnoty, tj. jak určit velikost náhodné chyby?
2 Náhodná veličina (n. v.) Na soubory naměřených hodnot pohlížíme jako na soubory náhodných veličin, které se řídí statistickými zákony. O výsledcích měření můžeme vyslovit pouze pravděpodobnostní výroky. Náhodnou veličinu lze charakterizovat pravděpodobností, s jakou nabývá svých hodnot. N. v. může být buď spojitá nebo nespojitá.
3 Nespojitá náhodná veličina Může nabývat jen konečně mnoha nebo spočetně mnoha hodnot. Jedná se často o hodnoty celočíselné (např. počet impulzů, počet částic, ) získaných čítáním. Předem zadané hodnoty x nabývá s pravděpodobností P(x).
4 Klasická definice pravděpodobnosti: Pravděpodobnost Počet případů příznivých Počet případů možných Jakých hodnot může pravděpodobnost daného jevu nabývat? Jaká je pravděpodobnost, že na hrací kostce padne číslo 3?
5 Při měření intenzity pozadí ionizujícího záření byly naměřeny následující hodnoty: číslo měření intenzita (imp/10s) 1 3 Nakreslete histogram: graf četnosti intenzity jako funkce měřené hodnoty četnost takto kreslíme četnost hodnoty intenzita (imp/10s)
6 Tento graf nazýváme histogram. Měříme opakovaně n krát za shodných podmínek stejnou veličinu. Danou hodnotu x naměříme m krát. Číslu m říkáme četnost měřené hodnoty x. Číslu m/n říkáme relativní četnost měřené hodnoty x.
7 Statistická definice pravděpodobnosti n krát opakujeme daný experiment m krát je výsledek úspěch (příznivý případ). Pravděpodobnost lim n m n
8 Graf závislosti pravděpodobnosti na naměřené hodnotě nazýváme rozdělení diskrétní náhodné proměnné. pravděpodobnost hodnota Pravděpodobnost naměření hodnoty x i budeme značit P xi
9 Doposud jsme se věnovali diskrétní náhodné proměnné. To je taková proměnná, která nabývá jen určitých hodnot. (Př.: výsledek hodu kostkou, posloupnost čísel při tahu sportky apod.) Fyzikální veličiny však obvykle mohou nabývat libovolné hodnoty. Náhodná proměnná spojená s takovou fyzikální veličinou bude tzv. spojitá (spojitá n. v.). Toto je však pouze teorie. Ve skutečnosti je každá měřená hodnota diskrétní diskretizaci provádí měřící přístroj. Tento digitální voltmetr naměří hodnoty 1,295, 1,296 nebo 1,297, ale nic mezi tím.
10 Přestože se ve skutečnosti se spojitými náhodnými proměnnými (veličinami) při měření v praxi nesetkáme, používají se spojitá rozdělení častěji lépe se s nimi počítá s využitím aparátu matematické analýzy. Formalismus popisu náhodných proměnných je odlišný. Jaká je pravděpodobnost, že naměříme hodnotu frekvence elektromagnetického záření 2, GHz? Přesně!
11 Pravděpodobnost naměření určité konkrétní hodnoty spojité náhodné proměnné nemá smysl, je vždy rovna nule. Spojitá náhodná veličina může nabývat hodnot, které se od sebe libovolně málo liší, ale žádné dvě nejsou stejné. Smysl má pouze pravděpodobnost naměření hodnoty v určitém intervalu. Definujeme tzv. hustotu pravděpodobnosti px ( ) dp dx p(x) x
12 Analogie hustota (hmotnosti) a hustota pravděpodobnosti hustota (hmotnosti) m V průměrná hustota kusu látky o hmotnosti m a objemu V Pokud se hustota tělesa mění místo od místa (těleso není homogenní), má smysl definovat lokální hustotu: dm dv Hustota v bodě = hmotnost nekonečně malého kousku děleno objemem tohoto kousku.
13 Známe-li průměrnou hustotu, můžeme hmotnost tělesa spočítat takto: m V Známe-li lokální hustotu, hmotnost tělesa se spočítá takto: m V dv Pravděpodobnosti naměření hodnoty x z intervalu (x 1, x 2 ) se spočítá jako: P( x, x ) p( x) dx 1 2 x x 2 1
14 Čemu je roven výraz: p( x) dx? p(x) x
15 Seřaďte podle velikosti od nejmenšího po největší 1) pravděpodobnost naměření hodnoty v intervalu (50,100) 2) pravděpodobnost naměření hodnoty v intervalu (100,150) 3) pravděpodobnost naměření hodnoty v intervalu (250, 300) p(x) x
16 Základními parametry rozdělení jsou: diskrétní rozdělení spojité rozdělení střední hodnota n Px x ( ) i i i1 D x p x dx n počet všech možností D definiční obor rozptyl (disperze) n D Px ( xi ) i1 i 2 2 D ( x ) p( x) dx D
17 Které rozdělení má větší střední hodnotu (černé nebo červené)? hustota pravděpodobnosti 0,006 0,005 0,004 0,003 0,002 0,001 D xp( x) dx 0, hodnota
18 Které rozdělení má větší disperzi (černé nebo červené)? Proč je červené rozdělení nižší než černé? hustota pravděpodobnosti 0,006 0,005 0,004 0,003 0,002 0,001 0,000 2 D ( x ) p( x) dx D hodnota
19 Střední hodnota určuje polohu rozdělení na ose x a disperze jeho šířku. Disperze však nemůže být přímo jakkoliv definovanou šířkou nemá vhodnou jednotku. 2 D ( x ) p( x) dx D Proto definujeme tzv. směrodatnou odchylku σ vztahem: D
20 Normální (Gaussovo) rozdělení 1 p( x) e 2 střední hodnota: µ disperze: D = σ 2 σ je směrodatná odchylka 2 ( x ) 2 2 hustota pravděpodobnosti 0,004 0,003 0,002 0,001 0, hodnota je nejčastější používaný model rozdělení náhodné veličiny (n. v.) Používá se pro náhodné jevy, které vznikly složením vlivů, které jsou nezávislé, je jich velký počet a každý z těchto vlivů ovlivňuje skutečnou hodnotu n. v. jen malým příspěvkem Přímo měřené fyzikální veličiny zpravidla těmto předpokladům vyhovují (u přesných měření je třeba nejdříve vyšetřit, jakým rozdělením pravděpodobnosti lze n. v. popsat!).
21 µ = 500 σ = 100 µ = 300 σ = 100 hustota pravděpodobnosti 0,004 0,003 0,002 0,001 0, hustota pravděpodobnosti 0,004 0,003 0,002 0,001 0, hodnota hodnota µ = 500 σ = 200 0,0025 hustota pravděpodobnosti 0,0020 0,0015 0,0010 0,0005 0, hodnota
22 Intervaly spolehlivosti Při zpracování naměřených hodnot hledáme velikost intervalu pro zvolenou hodnotu pravděpodobnosti, přičemž předpokládáme, že máme naměřeno nekonečně mnoho hodnot. Zajímají nás jen ty intervaly, které jsou symetrické kolem střední hodnoty. Interval, jemuž přísluší pravděpodobnost P, nazýváme P-procentní interval spolehlivosti pro parametr μ (nazývaný také konfidenční interval). (μ kσ, μ + kσ), kde k 0.
23 Měříme-li veličinu, která se řídí normálním rozdělením se střední hodnotou µ a směrodatnou odchylkou σ, je pravděpodobnost toho, že při dalším měření naměříme hodnotu z intervalu (µ - σ, µ + σ) rovna 68% (v tomto případě je k = 1). hustota pravděpodobnosti 0,004 0,003 0,002 0,001 0, hodnota µ µ - σ µ + σ ( x ) 1 p x dx e dx 2 inflexní bod 2 2 ( ) 0,68 2 µ = 500 σ = 100
24 Odhadněte, jaké je pravděpodobnost naměření hodnoty z intervalu (µ - 3σ, µ + 3σ) (k = 3). hustota pravděpodobnosti 0,004 0,003 0,002 0,001 0, hodnota µ µ - σ µ + σ inflexní bod
25 Pravděpodobnost naměření hodnoty v intervalu (µ - 3σ, µ + 3σ) je rovna P = 99,7 %. Tento interval definujeme jako krajní (mezní) chybu. krajní (mezní) chyba = jistota Interval často nazýváme 3σ interval.
26 Dále definujeme pravděpodobnou chybu pro P = 50 % (k = 2/3). Pravděpodobnost naměření hodnoty v intervalu (µ - 2/3σ, µ + 2/3σ) je rovna 50 % (tento interval vymezuje právě polovinu obsahu plochy pod normální křivkou). Při běžných měřeních často stačí pracovat s tímto intervalem.
27 Vlastnosti spojité n. v., která se řídí normálním rozdělením V ideálním případě, tj. máme-li nekonečně mnoho naměřených hodnot, je střední hodnota μ náhodné veličiny rovna její skutečné hodnotě. Matematicky se dá odvodit, že střední hodnota n. v. je dána výrazem μ = lim N N i=1 N a rozptyl n. v. je dán výrazem N σ 2 i=1(x i μ) 2 = lim N N x i Při reálném měření provádíme ale vždy konečný počet měření (většinou 5 až 20). Získáme pouze tzv. výběrový soubor ze souboru základního. Střední hodnotu a směrodatnou odchylku můžeme tedy vždy pouze odhadnout.
28 Odhad střední hodnoty a směrodatné odchylky pro konečný počet měření Měříme fyzikální veličinu (n. v.) a chceme určit odhad její střední hodnoty a chyby, tedy výraz: x (hodnota chyba) jednotky Opakujeme n krát měření za stejných podmínek, odhad střední hodnoty získáme jako: x 1 n xi n i 1 Vlastnosti aritmetického průměru aritmetický průměr Odhad směrodatné odchylky získáme jako: s x n i1 ( x x) i n 1 2 směrodatná odchylka (chyba) jednoho měření 1. Součet odchylek od aritmetického průměru je vždy roven nule. 2. Součet čtverců odchylek od aritmetického průměru je nejmenší. Důkaz: Hledáme, pro jaké x nabývá výraz S x = (x x 1 ) 2 +(x x 2 ) x x n 2 minima ds(x) dx = 0 a ukážeme, že tento výraz nabývá minima právě pro x.
29 Směrodatná odchylka aritmetického průměru Takto vypočtená směrodatná odchylka však není pro celý soubor N měření dostačující. Pokud bychom znovu provedli N měření, dospěli bychom k jiné hodnotě arit. průměru (i když je střední hodnota μ stejná). Pro reprodukovatelnost střední hodnoty proto zavádíme veličinu s x, kterou nazýváme směrodatná odchylka aritmetického průměru. x 1 n xi n i 1 s x n i1 ( x x) i nn ( 1) 2 x ( x s ) x
30 Směrodatná odchylka při malém počtu měření Co je dostatečně velký a malý počet měření, závisí na přesnosti, s jakou chceme získat výsledek. Obvykle je to 10 až 20 měření. Jeli počet měření N 20, je to velmi mnoho (nekonečně mnoho). Je-li N 10, je to málo. Při malém počtu měření se spojitá n. v. neřídí normálním rozdělením, ale tzv. Studentovým neboli t-rozdělením Křivka je plošší (tím více, čím nižší je N) pro dosažení stejné pravděpodobnosti P výskytu naměřené hodnoty v nějakém intervalu symetrickém kolem μ je třeba u t-rozdělení zvolit interval (μ kσ, μ + kσ) širší.
31 Hodnoty čísla k pro pravděpodobnost P při různém počtu měření N Příklad pro P = 0,5 a N 20 je interval spolehlivosti (μ 0,67σ, μ + 0,67σ) pro P = 0,5 a N = 10 je interval spolehlivosti (μ 0,70σ, μ + 0,70σ) pro P = 0,7 a N = 10 je interval spolehlivosti (μ 1,1σ, μ + 1,1σ)
32 Kritéria pro vyloučení hrubých chyb měření Připomeňme si: Pravděpodobnost naměření hodnoty v intervalu (µ - 3σ, µ + 3σ) je rovna (tzv. 3σ interval) je 99,7 % (= jistota) krajní (mezní) chyba Velké chyby jsou ale málo pravděpodobné. Je-li N velké (N ), naměříme hodnotu, která se od střední hodnoty µ liší o více než 3σ, jen ve třech případech z měření. V reálném případě (tj. při měření) je N malé, výskyt hrubých chyb je proto zanedbatelný. Pravidlo Vyskytne-li se taková hodnota, která leží mimo interval (x ks x, x + ks x ), ze zpracování ji vyloučíme 3s x kritérium. Toto kritérium používáme i pro menší počet měření, pro něž k 3. Pokud ze souboru některé hodnoty vyloučíme, musíme znovu vypočítat x a s x.
33 Shrnutí postup při zpracování hodnot získaných přímým měřením 1. Pro soubor naměřených hodnot určíme aritmetický průměr x a směrodatnou odchylku jednoho měření s x. 2. Vyloučíme hrubé chyby pomocí 3s x - intervalu a případně znovu vypočteme aritmetický průměr a směrodatnou odchylku jednoho měření. 3. Určíme směrodatnou odchylku aritmetického průměru s x. 4. Směrodatnou odchylku i aritmetický průměr zaokrouhlíme. 5. Určíme interval spolehlivosti pro zvolenou hodnotu P (obvykle volíme P = 0,999 nebo P = 0,995 (mezní chyba) nebo P = 0,5 (pravděpodobná chyba)) a s přihlédnutím k počtu měření N najdeme v tab. odpovídající číslo k. 7. Výsledek (tj. výslednou chybu k. s x a x ) zaokrouhlíme a zapíšeme ve tvaru x = x ± k. s x 8. Vypočteme relativní chybu δ (výsledek uvedeme v % a zaokrouhlíme ho na jedno nebo na dvě desetinná místa).
34 Cvičení. Určení střední hodnoty a chyby při malém počtu měření Posuvným měřidlem byly naměřeny tyto hodnoty délky: 3,12 cm; 3,00 cm; 3,06 cm. Předpokládejte, že měřené hodnoty jsou zatíženy jen náhodnými chybami. Vypočtěte odhad střední hodnoty a směrodatnou odchylku jednoho měření a aritmetického průměru. Určete interval spolehlivosti pro P= 0,995 a P = 0,5. Vypočtěte relativní chyby. Postup: 1. x, s x (chybu zaokr. na dvě platné číslice) 2. vyloučit hrubé chyby a stanovit 3s x - interval 3. vypočítat s x a zaokrouhlit 4. určit interval spolehlivosti pro zvolené P, podle počtu měření N nalézt k 5. k. s x a x zaokrouhlit a zapsat x = x ± k. s x 6. vypočítat relativní chybu δ, výsledek v %
35 Cvičení. Určení střední hodnoty a chyby při malém počtu měření Posuvným měřidlem byly naměřeny tyto hodnoty délky: 3,12 cm; 3,00 cm; 3,06 cm. Předpokládejte, že měřené hodnoty jsou zatíženy jen náhodnými chybami. Vypočtěte odhad střední hodnoty a směrodatnou odchylku jednoho měření a aritmetického průměru. Určete interval spolehlivosti pro P = 0,995 a P = 0,5. Vypočtěte relativní chyby. Výsledky: 1. x = 3,06 cm, s 1x = 0,06 cm 2. 3s x - interval pro vyloučení hrubých chyb je (3,06 ± 3.0,06) cm = (2,88;3,24) cm 3. s x = 0,035 cm 4. intervaly spolehlivosti: pro P = 0,995 (mezní chyba) a N = 3 je k = 14,09, x (3,060 ± 14,09.0,035) cm (3,060 ± 0,049) cm (3,06 ± 0,05) cm s relativní chybou δ = 1,63 % pro P = 0,5 (pravděpodobná chyba) a N = 3 je k = 0,82, x (3,060 ± 0,82.0,035) cm (3,060 ± 0,029) cm nebo (3,06 ± 0,03) cm s relativní chybou δ = 0,98 %
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Úvod do práce v laboratoři
Úvod do práce v laboratoři Zdeněk Bochníček Literatura: PÁNEK, Petr. Úvod do fyzikálních měření. Brno: skripta PřF MU, 2001 HORÁK, Zdeněk. Praktická fysika. SNTL Praha, 1958 BROŽ, Jaromír a kol. Základy
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.
Posouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Charakterizují kvantitativně vlastnosti předmětů a jevů.
Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost
Diskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.
5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
Úvod do teorie měření. Eva Hejnová
Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
Zákony hromadění chyb.
Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost
1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné
Numerické metody zpracování výsledků
Numerické metody zpracování výsledků Měření fyzikální veličiny provádíme obvykle tak, že měříme hodnoty y jedné fyzikální veličiny při určitých hodnotách x druhé veličiny, na které měřená veličina závisí.
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT
PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
10. N á h o d n ý v e k t o r
10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Rovnoměrné rozdělení
Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
Náhodný vektor a jeho charakteristiky
Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Laboratorní práce č. 1: Měření délky
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Cvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
Výpočet pravděpodobností
Výpočet pravděpodobností Pravděpodobnostní kalkulátor v programu STATISTICA Cvičení 5 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen 2016 Ambrožová Klára Trocha teorie Náhodné jevy mají
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Fyzikální korespondenční seminář MFF UK
Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce
Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Pravděpodobnostní rozdělení
Náhodná proměnná Pravděpodobnostní rozdělení Základy logiky a matematiky, ISS FSV UK Martin Štrobl Tento pomocný materiál neobsahuje všechnu látku k danému tématu, pouze se zaměřuje na pochopení důležitých
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.
ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu
Generování pseudonáhodných. Ing. Michal Dorda, Ph.D.
Generování pseudonáhodných čísel při simulaci Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky V simulačních modelech se velice často vyskytují náhodné proměnné. Proto se budeme zabývat otázkou, jak při simulaci
Úloha 5: Spektrometrie záření α
Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.