CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
|
|
- Simona Vacková
- před 8 lety
- Počet zobrazení:
Transkript
1 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
2 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné přirozené číslo, které je dělitelné číslem 8 i bod max. 3 body 3 Kružnice opsaná pravoúhlému rovnoramennému trojúhelníku má poloměr 4 cm. 3.1 Vypočítejte obsah trojúhelníku. 3.2 Vypočítejte obvod trojúhelníku. Výsledek zapište v cm a zaokrouhlete na desetiny. 4 Pro povrch kvádru bez horní podstavy platí vzorec: S = ab + 2bc + 2ac. Vyjádřete neznámý rozměr b. VÝCHOZÍ TEXT K ÚLOZE 5 Z kovového pásku tvaru obdélníka o délce 3,1 dm a šířce 3 cm se zhotovují podložky. Podložky mají tvar mezikruží s vnějším průměrem 3 cm a vnitřním průměrem 1 cm. max. 5 bodů Určete maximální počet podložek, které lze z pásku vyrobit. 5.2 Určete obsah plochy jedné podložky v cm 2 (zaokrouhlete na dvě desetinná místa). 5.3 Kolik procent z celkové plochy pásku půjde do odpadu (zaokrouhlete na jednotky)? VÝCHOZÍ TEXT K ÚLOZE 6 Glóbus má tvar koule o průměru 40 cm. Jsou na něm vyznačeny rovník a vybrané kružnice, které leží v rovinách rovnoběžných s rovinou rovníku (tzv. rovnoběžky). Přibližné zeměpisné souřadnice Prahy jsou: 50 severní zeměpisné šířky, 14 východní zeměpisné délky. 6 Vypočítejte délku rovnoběžky (na glóbu), která prochází Prahou. 2 Maturita z matematiky ZD
3 VÝCHOZÍ TEXT A TABULKA K ÚLOZE 7 Klasifikaci žáků z matematiky vyjadřuje následující tabulka: Klasifikace Počet dívek Počet chlapců Určete průměrnou známku z matematiky ve třídě. 7.2 Kolik chlapců má horší známku z matematiky, než je průměrná známka ve třídě? VÝCHOZÍ TEXT K ÚLOZE 8 Mirka a Jirka potřebují na společnou akci mít Kč. Chybí jim ještě Kč. Současné úspory Mirky jsou o 20 % větší než úspory Jirky. 8 Kolik Kč zatím naspořila Mirka? 9 Objemy dvou krychlí jsou v poměru 27 : 8. V jakém poměru jsou povrchy těchto krychlí? A) 3 : 2 B) 9 : 4 C) 27 : 8 D) 81 : 64 E) v žádném z výše uvedených 2 body 10 Přímka p v rovině je určena parametrickými rovnicemi: x = 3 2t, y = 5 + 7t. Určete vektor n, který je k přímce p kolmý (normálový vektor přímky). Normálový vektor vyberte z možností A E. A) n = (3; 5) B) n = ( 2; 7) C) n = (5; 3) D) n = (7; 2) E) n = (1; 2) 2 body Maturita z matematiky ZD 3
4 11 Rozhodněte o každém z následujících tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): ANO NE 11.1 Pro každé kladné reálné číslo a platí: a = a Pro každé kladné reálné číslo a platí: 25a 2 = 5a Pro každé kladné reálné číslo a platí: log (a ) = 2 log a + log Pro každé kladné reálné číslo a platí: log (25a 2 ) = 2 log a Funkce je určena rovnicí y = (2a) x, kde a je kladné reálné číslo. Jakou podmínku musí číslo a splňovat, aby tato funkce byla klesající? 2 body A) a (0; 1 2 ) B) a ( 1 2 ;1) C) a (1; 2) D) a (2; 10) E) a (10; + ) 2 body 13 Je dána rovnice x (x 2) = 24. Z možností A E vyberte číslo, které je rovno součinu všech kořenů dané rovnice. A) 0 B) 2 C) 2 D) 24 E) 24 2 body 14 Záření prochází několika vrstvami. Při každém průchodu vrstvou se jeho intenzita sníží o 20 % hodnoty před průchodem. Z možností A E vyberte, o kolik procent počáteční hodnoty se intenzita sníží po průchodu třemi vrstvami. A) o 40,0 % B) o 48,8 % C) o 51,2 % D) o 60,0 % E) o 64,2 % 4 Maturita z matematiky ZD
5 max. 4 body 15 Ke grafům funkcí na obrázcích přiřaďte zadání těchto funkcí rovni cí A F A) y = log 2 x B) y = 10 x C) y = 2 x D) y = 1 2 x E) y = x 2 4 F) y = 2 x KONEC TESTU Maturita z matematiky ZD 5
6 II. AUTORSKÉ ŘEŠENÍ 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. Výraz postupně upravujeme. Nejdříve využijeme vzorce (a b) 2 = a 2 2ab + b 2, (a + b)(a b) = a 2 b 2 (2x 5) 2 (2x 5) (2x + 5) + 20x = 4x 2 20x + 25 (4x 2 25) + 20x. Odstraníme závorku a dostaneme výraz: 4x 2 20x x x = 50. Řešení: 50 2 Určete nejmenší trojciferné přirozené číslo, které je dělitelné číslem 8 i 12. Nejdříve určíme nejmenší společný násobek čísel 8 a 12, což je číslo 24. Vyhledáme nyní nejmenší násobek čísla 24, který je trojciferným číslem. Násobky čísla 24 jsou: 24, 48, 72, 96, 120, Hledaným číslem je číslo bod Řešení: 120 max. 3 body 3 Kružnice opsaná pravoúhlému rovnoramennému trojúhelníku má poloměr 4 cm. 3.1 Vypočítejte obsah trojúhelníku. 6 Maturita z matematiky ZD
7 V pravoúhlém trojúhelníku je střed kružnice opsané totožný se středem přepony. Přepona má tedy délku 8 cm. Protože je trojúhelník také rovnoramenný, je výška na přeponu rovna poloměru kružnice opsané, což je 4 cm. Obsah trojúhelníku c v vypočítáme podle vzorce: S = c. Po dosazení vychází obsah trojúhelníku S = = 16 cm 2. 2 Obsah trojúhelníku je roven 16 cm 2. Řešení: 16 cm Vypočítejte obvod trojúhelníku. Výsledek zapište v cm a zaokrouhlete na desetiny. V pravoúhlém trojúhelníku ASC vypočítáme délku strany AC podle Pythagorovy věty: AC 2 = = 32, AC = 32. Obvod vypočítáme jako součet délek stran: o = = = = = 8 (1 + 2) 19,3 cm. Obvod trojúhelníku je přibližně 19,3 cm. Řešení: 19,3 cm 4 Pro povrch kvádru bez horní podstavy platí vzorec: S = ab + 2bc + 2ac. Vyjádřete neznámý rozměr b. Řešíme postupnými úpravami rovnice: S = ab + 2bc + 2ac / 2ac S 2ac = ab + 2bc / z výrazu na pravé straně vytkneme neznámou b S 2ac = b (a + 2c) /: (a + 2c) b = S 2ac a + 2c Řešení: b = S 2ac a + 2c Maturita z matematiky ZD 7
8 VÝCHOZÍ TEXT K ÚLOZE 5 Z kovového pásku tvaru obdélníka o délce 3,1 dm a šířce 3 cm se zhotovují podložky. Podložky mají tvar mezikruží s vnějším průměrem 3 cm a vnitřním průměrem 1 cm Určete maximální počet podložek, které lze z pásku vyrobit. max. 5 bodů Šířka obdélníka je rovna vnějšímu průměru podložky, proto počet podložek vypočítáme neúplným dělením délky pásku a průměru podložky: 31 cm : 3 cm = 10 (zb. 1 cm). Z pásku lze získat maximálně 10 podložek, 1 cm délky pásku zbyde. Z pásku lze vyrobit maximálně 10 podložek. Řešení: 10 podložek 5.2 Určete obsah plochy jedné podložky v cm 2 (zaokrouhlete na dvě desetinná místa). Obsah plochy podložky vypočítáme tak, že od obsahu kruhu s průměrem 3 cm odečteme obsah kruhu s průměrem 1 cm. S = π 1,5 2 π 0,5 2 = 2,25π 0,25π = 2π 6,28 cm 2. Obsah plochy jedné podložky je 2π cm 2, přibližně 6,28 cm 2. Řešení: 6,28 cm Kolik procent z celkové plochy pásku půjde do odpadu (zaokrouhlete na jednotky)? Obsah plochy pásku je S 1 = 31 3 = 93 cm 2. Obsah 10 podložek je roven S 2 = 62,8 cm 2. Odpad činí S 1 S 2 = 93 cm 2 62,8 cm 2 = 30,2 cm 2. Počet procent p = 30,2 : 93 0,32 = 32 %. Řešení: 32 % 8 Maturita z matematiky ZD
9 VÝCHOZÍ TEXT K ÚLOZE 6 Glóbus má tvar koule o průměru 40 cm. Jsou na něm vyznačeny rovník a vybrané kružnice, které leží v rovinách rovnoběžných s rovinou rovníku (tzv. rovnoběžky). Přibližné zeměpisné souřadnice Prahy jsou: 50 severní zeměpisné šířky, 14 východní zeměpisné délky. 6 Vypočítejte délku rovnoběžky (na glóbu), která prochází Prahou. Prahou prochází 50. rovnoběžka. Její poloměr PM na glóbu vypočítáme z pravo úhlého trojúhelníku SMP. Platí: cos 50 =. Odtud PM = 20 cos PM PM 12,8 cm. Délku rovnoběžky vypočítáme podle vzorce pro délku kružnice o = 2πr. o = 2π PM 80,8 cm. Na glóbu má 50. rovnoběžka délku přibližně 80,8 cm. Řešení: 80,8 cm VÝCHOZÍ TEXT A TABULKA K ÚLOZE 7 Klasifikaci žáků z matematiky vyjadřuje následující tabulka: Klasifikace Počet dívek Počet chlapců Určete průměrnou známku z matematiky ve třídě. Průměrnou známku vypočítáme jako součet všech známek dělený počtem známek: p = ( ) : ( ) = 69 : 30 = 2,3. Průměrná známka z matematiky je 2,3. Řešení: 2,3 Maturita z matematiky ZD 9
10 7.2 Kolik chlapců má horší známku z matematiky, než je průměrná známka ve třídě? Z tabulky klasifikace snadno zjistíme, že počet chlapců, kteří mají známky 3, 4 nebo 5 je = 5. Počet chlapců, kteří mají horší známku z matematiky, než je průměrná známka ve třídě, je 5. Řešení: 5 chlapců VÝCHOZÍ TEXT K ÚLOZE 8 Mirka a Jirka potřebují na společnou akci mít Kč. Chybí jim ještě Kč. Současné úspory Mirky jsou o 20 % větší než úspory Jirky. 8 Kolik Kč zatím naspořila Mirka? Za neznámou x zvolíme dosavadní úspory Jirky. Úspory Mirky jsou o 20 % větší. 20 % x vyjádříme desetinným číslem: 0,2 x. Úspory Mirky pomocí neznámé x vyjádříme takto: x + 0,20 x = 1,2x. Dosavadní úspory obou dohromady: x + 1,2x = 2,2x Platí rovnice: 2,2x = Rovnici vyřešíme: 2,2x = x = : 2,2 x = Úspory Jirky jsou Kč. Mirka zatím naspořila: 1, = Kč. Řešení: Kč 2 body 9 Objemy dvou krychlí jsou v poměru 27 : 8. V jakém poměru jsou povrchy těchto krychlí? A) 3 : 2 B) 9 : 4 C) 27 : 8 D) 81 : 64 E) v žádném z výše uvedených 10 Maturita z matematiky ZD
11 Objem krychle je roven třetí mocnině délky hrany V = a 3. Poměr objemů krychlí vyjádříme x 3 : y 3 = 27 : 8, odtud po odmocnění dostaneme poměr délek hran x : y = 3 27 : 3 8 = 3 : 2. Stěny krychle mají tvar čtverce. Povrch krychle je roven šestinásobku obsahu jedné stěny. Poměr povrchů daných krychlí je tedy (6x 2 ) : (6y 2 ) = x 2 : y 2 = 3 2 : 2 2 = 9 : 4. Správně je možnost B. Řešení: B 10 Přímka p v rovině je určena parametrickými rovnicemi: x = 3 2t, y = 5 + 7t. Určete vektor n, který je k přímce p kolmý (normálový vektor přímky). Normálový vektor vyberte z možností A E. A) n = (3; 5) B) n = ( 2; 7) C) n = (5; 3) D) n = (7; 2) E) n = (1; 2) 2 body Z parametrických rovnic zjistíme směrový vektor přímky u = ( 2; 7). Ke směrovému vektoru je kolmý vektor, který určíme tak, že zaměníme souřadnice vektoru u a u jedné změníme znaménko. Vychází vektor n = (7; 2). Kontrolu provedeme tak, že skalární součin kolmých vektorů je roven nule. Opravdu platí n v = = 0. Správně je možnost D. Řešení: D 11 Rozhodněte o každém z následujících tvrzení ( ), zda je pravdivé (ANO), či nikoli (NE): ANO NE 11.1 Pro každé kladné reálné číslo a platí: a = a Pro každé kladné reálné číslo a platí: 25a 2 = 5a Pro každé kladné reálné číslo a platí: log (a ) = 2 log a + log Pro každé kladné reálné číslo a platí: log (25a 2 ) = 2 log a Maturita z matematiky ZD 11
12 11.1 Tvrzení platí jen pro a = 0. Obecně je věta nepravdivá. Odpověď: NE 11.2 Tvrzení platí dokonce pro všechna nezáporná čísla. Odpověď: ANO 11.3 Tvrzení neplatí. Nelze obecně upravit logaritmus součtu na součet logaritmů. Odpověď: NE 11.4 Podle pravidel vychází log (25a 2 ) = log 25 + log a 2 = 2 log a + log 25. Odpověď: NE Řešení: NE, ANO, NE, NE 12 Funkce je určena rovnicí y = (2a) x, kde a je kladné reálné číslo. Jakou podmínku musí číslo a splňovat, aby tato funkce byla klesající? 2 body A) a (0; 1 2 ) B) a ( 1 2 ;1) C) a (1; 2) D) a (2; 10) E) a (10; + ) Základ exponenciální funkce, která je klesající, je kladné číslo menší než 1. Platí tedy zároveň nerovnice: 2a > 0, 2a < 1. Po úpravě dostaneme a > 0, a < 1 2. Číslo a musí splňovat podmínku a (0; 1 2 ). Správně je možnost A. Řešení: A 2 body 13 Je dána rovnice x (x 2) = 24. Z možností A E vyberte číslo, které je rovno součinu všech kořenů dané rovnice. A) 0 B) 2 C) 2 D) 24 E) Maturita z matematiky ZD
13 Rovnici upravíme do základního tvaru x 2 2x 24 = 0. Podle vztahů mezi kořeny a koeficienty kvadratické rovnice usoudíme, že součin kořenů je roven absolutnímu členu kvadratického výrazu, tedy číslu 24. Druhou možností, jak úlohu vyřešit, je vypočítat kořeny pomocí vzorce s diskriminantem. D = b 2 4ac = ( 2) ( 24) = 100, b + D x 1 = = b D 2 10 = 6, x 2a 2 2 = = = 4. 2a 2 Součin kořenů je roven 6 ( 4) = 24. Oba postupy dávají stejný výsledek. Správně je možnost E. Řešení: E 2 body 14 Záření prochází několika vrstvami. Při každém průchodu vrstvou se jeho intenzita sníží o 20 % hodnoty před průchodem. Z možností A E vyberte, o kolik procent počáteční hodnoty se intenzita sníží po průchodu třemi vrstvami. A) o 40,0 % B) o 48,8 % C) o 51,2 % D) o 60,0 % E) o 64,2 % Počáteční hodnotu intenzity záření označíme x. Po průchodu první vrstvou bude intenzita o 20 % menší, bude rovna 0,8x. Po průchodu druhou vrstvou bude intenzita opět o 20 % menší, bude rovna 0,8 0,8x = 0,8 2 x. Po průchodu třetí vrstvou bude intenzita opět o 20 % menší, bude rovna 0,8 0,8 2 x = 0,8 3 x = 0,512x. V procentech lze stav po průchodu třetí vrstvou vyjádřit jako 51,2 % počáteční hodnoty. Došlo tedy ke snížení o 48,8 %. Rychlejší postup spočívá v tom, že si uvědomíme, že intenzity tvoří geometrickou posloupnost s kvocientem q = 0,8 a využijeme vzorec pro výpočet n-tého členu geometrické posloupnosti. Správně je možnost B. Řešení: B Maturita z matematiky ZD 13
14 max. 4 body 15 Ke grafům funkcí na obrázcích přiřaďte zadání těchto funkcí rovnicí A F A) y = log 2 x B) y = 10 x C) y = 2 x D) y = 1 2 x E) y = x 2 4 F) y = 2 x 14 Maturita z matematiky ZD
15 15.1 Grafem funkce je přímka. Jedinou možností ve výběru je lineární funkce (přesněji přímá úměrnost, neboť přímka prochází počátkem). Ke grafu přiřadíme rovnici y = 1 2 x v možnosti D. Řešení: D 15.2 Grafem funkce je parabola, která je grafem kvadratické funkce. Jedinou možností ve výběru je E, kde je uvedena rovnice y = x 2 4. Řešení: E 15.3 Grafem funkce je hyperbola, která je grafem nepřímé úměrnosti. V úvahu připadají možnosti C, F. Správnou možnost můžeme odhalit tak, že větve hyperboly na obrázku leží ve 2. a 4. kvadrantu, což odpovídá možnosti F. Koeficient nepřímé úměrnosti zde musí být záporný. Správnou možnost také lze zjistit výpočtem nějakého bodu grafu. Dosazením do rovnice y = 1 2 dostaneme například pro x = 1 je y = 2. Hyperbola na obrázku prochází bodem o těchto souřadnicích. Ke grafu patří rovnice v možnosti F. Řešení: F 15.4 Na obrázku vidíme graf logaritmické funkce y = log x, což odpovídá možnosti A. Řešení: A KONEC TESTU Maturita z matematiky ZD 15
16 16 Maturita z matematiky ZD
17 III. KLÍČ 1) Maximální bodové ohodnocení je 35 bodů. 2) Úlohy 1 8 jsou otevřené. 3) Úlohy 9 15 jsou uzavřené, s nabídkou možných odpovědí, kde u každé úlohy, resp. podúlohy je právě jedna odpověď správná. Tabulka úspěšnosti Počet bodů Výsledná známka Úloha Správné řešení Počet bodů bod cm 2 1 bod ,3 cm S 4 b = 2ac a +2c bod 5.2 6,28 cm % 6 80,8 cm ,3 1 bod bod Kč 9 B 2 body 10 D 2 body NE 11.2 ANO 11.3 NE 11.4 NE 12 A 2 body 13 E 2 body 4 podúlohy 2 b. 3 podúlohy 1 b. 2 podúlohy 0 b. 1 podúloha 0 b. 0 podúloh 0 b. Maturita z matematiky ZD 17
18 14 B 2 body D 15.2 E 15.3 F 15.4 A max. 4 body 4 podúlohy 4 b. 3 podúlohy 3 b. 2 podúlohy 2 b. 1 podúloha 1 b. 0 podúloh 0 b. 18 Maturita z matematiky ZD
19 IV. ZÁZNAMOVÝ LIST 1) Maximální bodové ohodnocení je 35 bodů. 2) Úlohy 1 8 jsou otevřené. Zapište výsledek. 3) Úlohy 9 15 jsou uzavřené, s nabídkou možných odpovědí, kde u každé úlohy, resp. podúlohy je právě jedna odpověď správná. Zapište vybranou možnost. Tabulka úspěšnosti Počet bodů Výsledná známka Úloha Správné řešení Počet bodů bod bod bod bod bod body 10 2 body body 13 2 body 4 podúlohy 2 b. 3 podúlohy 1 b. 2 podúlohy 0 b. 1 podúloha 0 b. 0 podúloh 0 b. Maturita z matematiky ZD 19
20 14 2 body max. 4 body 4 podúlohy 4 b. 3 podúlohy 3 b. 2 podúlohy 2 b. 1 podúloha 1 b. 0 podúloh 0 b. 20 Maturita z matematiky ZD
CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceCVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
VíceCVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VíceCVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
VíceCVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
VíceCVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr
VíceCVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
VíceCVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
VíceCVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceCVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
VíceCVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceCVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
VíceCVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
VíceCVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
VíceCVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 17 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Jsou dány funkce f: y = x + A, g: y = x B,
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
VíceCVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
VíceCVIČNÝ TEST 38. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 38 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Pro a b a b zjednodušte výraz ( a b a ) ( b a b ). VÝCHOZÍ TEXT K ÚLOZE Jedním
VíceCVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka
VíceCVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
VíceCVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
VíceCVIČNÝ TEST 23. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 23 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete nulové body následujících výrazů. 1.1 V(a) = 9 a 27 3 a ; a
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceCVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
VíceCVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 25 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V lidové výkupně barevných kovů vykoupili
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
VíceMANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
VíceCVIČNÝ TEST 4. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 4 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Písmena A a B vyjadřují každá jednu z číslic 0, 1, 2, 3, 4, 5, 6, 7, 8,
VíceCVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
VíceCVIČNÝ TEST 18. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 18 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Anna zdědila 150 000 Kč a banka jí nabízí uložit
VíceCVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
VíceCVIČNÝ TEST 42. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 42 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na číselné ose jsou zakresleny obrazy čísel
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceVZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceCVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
VíceCVIČNÝ TEST 8. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25
CVIČNÝ TEST 8 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 23 IV. Záznamový list 25 I. CVIČNÝ TEST m 1 Vzorec F = κ 1 m R 2 vyjadřuje velikost gravitační síly, kterou na sebe
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
VíceCVIČNÝ TEST 47. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 47 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 3 IV. Záznamový list 5 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE Sbor chlapců a mužů se pro různé příležitosti
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceCVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 53 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána funkce f: y = x p, x R {3}, kde p je reálný
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
VíceFunkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
VíceII. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
VíceCVIČNÝ TEST 56. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 56 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 7 IV. Záznamový list 9 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Vrchol komína Kocourkovské elektrárny vidí pozorovatel
Více9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
VíceCVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
VíceCVIČNÝ TEST 55. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 55 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 9 IV. Záznamový list 2 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Jsou dány dva poměry 4 : a : 2 a b : 2 : 4, kde a, b jsou
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceMATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
VícePOŽADAVKY pro přijímací zkoušky z MATEMATIKY
TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
VíceMATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maimální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceOdvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
VíceMgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
VíceMATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
VíceÚlohy klauzurní části školního kola kategorie A
62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,
VíceMATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
VíceCVIČNÝ TEST 16. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 16 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Brzký ranní vlak z Prahy do Brna zastavil
VíceHledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
VíceZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceMATEMATIKA ZÁKLADNÍ ÚROVEŇ
NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém
VícePřípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
VíceVZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
VíceANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
VíceMATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Vícec) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice
Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly
VícePraha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
VíceOpakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
VíceVZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
VíceMATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
VícePosloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2
Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VícePRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
Více1 Extrémy funkcí - slovní úlohy
1 Extrémy funkcí - slovní úlohy Příklad 1.1. Součet dvou kladných reálných čísel je a. Určete 1. Minimální hodnotu součtu jejich n-tých mocnin.. Maximální hodnotu součinu jejich n-tých mocnin. Řešení.
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
VíceMATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
VíceParametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
VíceSTRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH
STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH RNDr. Milada Rezková RNDr. Vlasta Sudzinová Mgr. Eva Valentová 2016 Předmluva Tento učební text je určen studentům 4. ročníku čtyřletých gymnázií,
VíceOtázky z kapitoly Posloupnosti
Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
Více