14. skupina (C, Si, Ge, Sn, Pb) Učební text, Hb 2008 Co Si Gertrudo Snědla? Olovo. p 2 prvky, el. konfig. valenční vrstvy ns 2 np 2, 4 valenční elektrony n oxidační číslo C 2 nekov -IV, II, IV Si 3 polokov IV, II, -IV Ge 4 polokov IV, II Sn 5 kov IV, II sloučeniny cínaté (redukční činidla) se snadno oxidují na sloučeniny cíničité Pb 6 kov II, IV sloučeniny olovičité (oxidační činidla) se snadno redukují na sloučeniny olovnaté Uhlík v přírodě volný (forma grafitu a diamantu) i vázaný (v CO 2, uhličitanech, organických sloučeninách) hlavní stavební jednotka živé hmoty Alotropické modifikace Grafit (tuha) černošedá, neprůsvitná látka s kovovým leskem, el. vodivá vrstevnatá struktura každý atom C je pevně vázán s třemi sousedními atomy, ležícími s ním v jedné rovině. Kolmo k vytvořené rovině jsou orientovány p Z orbitaly všech atomů C, ve kt. se nacházejí zbývající val el. Vzniká rozsáhlý delokaliz. pí-systém, v němž se el. mohou volně pohybovat. jednotlivé vrstvy (sestavené z 6-ti čl. cyklů) jsou vzájemně poutány pouze Van der Waalsovými silami > mohou se po sobě posouvat. Tuha se otírá píše. výroba zahříváním koksu a křemene za nepřístupu vzduchu v elektrické peci použití výroba elektrod, žárovzdorných materiálů, tužek mazadel a pigmentů Diamant nejtvrdší přírodní látka (10 st. Mohsovy stupnice tvrdosti), má největší tepelnou vodivost (5krát větší než měď) struktura každý atom C je vázán velmi pevnými vazbami se čtyřmi sousedními atomy, kt. jsou umístěny ve vrcholech tetraedru (čtyřstěnu). použití výroba řezných a vrtných nástrojů (nepřehřívají se) Fullereny (buckminsterfullereny) připraveny uměle, struktura tvořeny molekulami o různém složení ( C 60, C 70, C 80, C 84,...), které mají tvar mnohostěnů. První identifikovaná molekula C 60 tvarem připomíná fotbal. míč 1/6
2. Sloučeniny CO bezbarvý plyn, velmi málo R v H 2 O, bez zápachu toxický váže se na hemoglobin rychleji a pevněji než O 2, blokuje místo pro O 2 > udušení. První pomoc přenést postiženého na čerstvý vzduch (případně inhalace O 2 ), někdy je nutná transfuze krve. velmi reaktivní, redukční vlastnosti vznik spalováním C za nedostatečného přístupu vzduchu C + O 2 CO 2, který je následně redukován nezreagovaným uhlíkem CO 2 + C 2 CO příprava dehydratací kyseliny mravenčí konc. kyselinou sírovou HCOOH H 2 SO 4 CO + H 2 O CO 2 bezbarvý plyn, slabě kyselý zápach, těžší než vzduch (1,5 krát), není toxický, ale nedýchatelný vznik přímým slučováním C + O 2 CO 2 přeprava zkapalněný v tlakových lahvích s černým pruhem použití - pevný CO 2 = suchý led (sublimuje při teplotě -78,5 C), použití jako chladivo - kapalný CO 2 náplň sněhových hasicích přístrojů H 2 CO 3 vzniká R CO 2 v H 2 O soli uhličitany CO 3 2- (v H 2 O jsou R jen uhličitany alkalických kovů - kromě lithného; ostatní jsou méně R) a hydrogenuhličitany HCO 3 - ( jsou R v H 2 O, méně R je jen sůl Na + a Ca 2+ ). Na 2 CO 3, K 2 CO 3, CaCO 3 soda, potaš, vápenec; viz 1. a 2. skupina CO(NH 2 ) 2 močovina derivát kyseliny uhličité dobře R v H 2 O použití průmyslové dusíkaté hnojivo, výroba močovinoformaldehydových pryskyřic a plastů COCl 2 fosgen derivát kyseliny uhličité velmi toxický, v 1. sv. v. zneužit jako bojová chemická látka sluneční záření první příprava CO + Cl 2 COCl 2 aktivní uhlí výroba CO + Cl 2 COCl 2 Uhlovodíky sloučeniny C a H, zdroje: ropa, zemní plyn, uhlí bude probráno samostatně CCl 4 jedovatá karcinogenní kapalina, nasládlý zápach použití rozpouštědlo, hasicí přístroje (dnes už ne) Freony fluorochloroderiváty uhlovodíků nejedovaté, nepůsobí korozivně, ničí ozónovou vrstvu použití hnací médium do sprayů, náplně chladicích zařízení 2/6
Karbidy binární sloučeniny C s elektropozitivními prvky, např. CaC 2 příprava například reakcí C s kovy nebo jejich oxidy při vysokých T dělení iontové karbidy HCN kyanovodík lze je považovat za soli acethylenu, acetylidový anion C 2 2- patří sem acetylidy alkalických kovů M 2 C 2 (Na 2 C 2 ) a kovů alkalických zemin MC 2 (CaC 2 ) většinou reagují s vodou za vývoje acetylenu CaC 2 + 2H 2 O C 2 H 2 + Ca(OH) 2. intersticiální karbidy např. TaC a WC karbidy prvků skupiny železa Cr 3 C 2, Mn 3 C, Fe 3 C, Co 3 C a Ni 3 C kovalentní karbidy Be 2 C, Al 4 C 3, SiC a B 4 C prudce toxická (ochrnutí dýchacího centra NS) bezbarvá kapalina (bod varu 25,6 C) lineární molekuly H-C N, bez přítomnosti stabilizátoru polymeruje je R v H 2 O, jeho vodný roztok se chová jako velmi slabá kyselina 1200 C,Pt výroba CH 4 + NH 3 HCN + 3H 2 soli kyanidy CN - (kyanidy alkalických kovů a kovů alkalických zemin jsou v H 2 O R, kyanidy těžkých kovů - kromě rtuťnatého - jsou v H 2 O NR) použití rozpouštědlo elektrolytů, výroba NaCN, KCN, methylmetakrylátu, acetonitrilu Křemík 1.Výskyt, charakteristika druhý npzk (po kyslíku). v přírodě pouze v kyslíkatých sloučeninách. velká afinita ke kyslíku modrošedá, lesklá, velmi tvrdá krystalická látka (str. podobná diamantu). polovodič nejčastěji v ox. čísle IV a -IV srovnání s uhlíkem: 2. Výroba E Si-Si < E C-C, E Si-H < E C-H => na rozdíl od C má Si malou ochotu tvořit řetězce E Si-O > E C-O => existují velké skupiny křemičitanů (C analog. slouč. netvoří) redukcí křemene velmi čistým koksem, SiO 2 musí být v nadbytku (v el. obloukové peci) SiO 2 + 2C Si + 2 CO křemík používaný v elektrotech. průmyslu se dál čistí zonální tavbou (připraví se Si obs. méně než 10-9 10-10 % nečistot) 3. Zonální tavba Čištěná látka se umístí do trubice ze žáruvzdorného materiálu a pomalu se posunuje úzkým, vyhřívaným pásmem, ve kterém taje. Po průchodu tavicí zónou čištěná látka opět tuhne. Z taveniny se nejdříve vylučuje čistá složka (Si), která má vyšší bod tání. Nečistoty zůstávají v tavenině a postupují společně s roztavenou zónou. Koncentrace nečistot v tavenině roste. Celý čistící proces se několikrát opakuje => postupně získáme velmi čistou látku. Někdy se užívá i k izolaci látek, které se v taveném materiálu nachází pouze ve stopovém množství. 3/6
4. Reakce není příliš reaktivní poměrně odolný vůči kyslíku a vodě (pokrývá se vrstvou SiO 2 ) odolává roztokům kyselin reakce s kyslíkem za vysoké teploty Si + O 2 SiO 2 reakce s halogeny za vysoké teploty Si + 2X 2 SiX 4 reakce s uhlíkem - za vysoké teploty Si + C SiC reakce s vodou až za červeného žáru Si + 2 H 2 O SiO 2 + 2H 2 5. Použití polovodič 6. Sloučeniny SiO 2 pevná, težkotavitelná látka (na rozdíl od CO 2 ) v přírodě v různých modifikacích (křemen, tridymit, cristobalit), nejčastěji jako křemen, je obs. v písku odrůdy křemene křišťál (větší, průzračné krystaly křemene, použití pro výrobu optických přístrojů) ametyst (fialový), záhněda (hnědá), růženín (růžový), citrín (žlutý)... struktura každý atom Si je vázán se čtyřmi atomy kyslíku, které jsou kolem umístěny ve vrcholech tetraedru. Vzájemná poloha tetraedrů umožňuje vznik různých modifikací. Kyseliny křemičité např. H 2 SiO 3, H 4 SiO 4, H 2 Si 2 O 5, H 6 Si 2 O 7 stálé pouze ve formě vodných roztoků Křemičitany soli kyseliny křemičité Silany obecný vzorec Si n H 2n+2 (n = 1,2,...,8) monosilan SiH 4 a disilan Si 2 H 6 jsou bezbarvé plyny, vyšší homology jsou těkavé kapaliny velmi reaktivní, na vzduchu samozápalné reagují s vodou za vývoje vodíku Si 2 H 6 + 4H 2 O 2SiO 2 + 7H 2 Halogenidy křemičité SiX 4 jsou známé i vyšší homology obecného vzorce Si n X 2n+2 připravují se reakcí Si s X 2 lze je považovat za substituční deriváty silanů (monosilan SiH 4 x chlorid křemičitý SiCl 4 ) ochotně reagují s vodou SiX 4 + 2 H 2 O SiO 2 + 4HX (X=F, Cl, Br, I) SiCl 4 meziprodukt potřebný pro výrobu Si o polovodičové čistotě. SiC karbid křemíku, karborundum velmi tvrdé (tvrdost 9,5) výroba reakcí křemenného písku s nadbytkem koksu nebo antracitu v elektrické peci SiO 2 + 2C Si + 2CO Si + C SiC použití brusný materiál 4/6
Vodní sklo obchodní název vodný roztok křemičitanů alkalických kovů vyrábí se tavením sklářského písku s Na 2 CO 3 (případně K 2 CO 3 ), vznikají odpovídající křemičitany, které jsou R v H 2 O použití jako tmelicí, konzervační a impregnační prostředek Germanium v přírodě pouze ve sloučeninách, vzácně šedobílá, lesklá, krystalická látka polovodič 2. Reakce poměrně málo reaktivní při běžné teplotě na vzduchu neoxiduje, odolný vůči vodě, zředěným kyselinám, vodným roztokům hydroxidů zahřátím na teplotu červeného žáru shoří na GeO 2 3. Použití v polovodičové technice 4. Sloučeniny GeX 4, GeX 2 GeX 4 jsou stálejší než GeX 2, (X=F, Cl, Br, I) GeO, GeO 2 GeO amfoterní, GeO 2 kyselinotvorný Cín přírodě pouze ve sloučeninách (např cínovec kassiterit SnO 2 ) existuje ve třech modifikacích (α,β,γ) BÍLÝ CÍN (β) při pokojové teplotě měkký, stříbrolesklý kov 2. Reakce na vzduchu postupně ztrácí lesk, pokrývá se souvislou vrstvičkou SnO 2 (pasivace) soustava čtverečná lze ho válcovat STANIOL (tenká folie), drát KŘEHKÝ CÍN (γ) soustava kosočtverečná vzniká při zahřátí bílého cínu nad 161 C => křehne => prášek ŠEDÝ CÍN (α ) soustava krychlová skladování bílého cínu při teplotě pod 13,2 C => šedý prášek (při skladování cínových předmětů při nízké teplotě => CÍNOVÝ MOR BÍLÝ CÍN (β) odolný na vzduchu, vůči vodě, zředěným kys., vod. roztokům hydroxidů 5/6
3. Použití povrchová úprava kovů (pocínování) => zvýšená odolnost vůči korozi bílý plech - potravinářství slitiny bronzy (Cu + Sn), klempířské pájky (Sn + Pb), ložiskové kovy (Sn, Pb, Cu, Sb), litheřina (Pb, Sn, Sb) 4. Sloučeniny SnO 2 SnO použití při výrobě smaltů kyselinotvorný při vyšší teplotě: Sn + O 2 SnO 2 amfoterní oxid SnX 4, SnX 2 (X=F, Cl, Br, I) Olovo v přírodě pouze ve sloučeninách (galenit PbS) modrošedý, měkký, dobře tvarovatelný kov (malá pevnost výrobků)!! páry olova a jeho rozpustné sloučeniny jsou jedovaté!, olovo je toxický těžký kov 2. Reakce je reaktivnější než Sn, na vzduchu se pasivuje (PbO) R se v kyselinách za vývoje vodíku. Výjimkou je rce s konc. H 2 SO 4 (vzn. SO 2 ) a HNO 3 (vzn. NO) 3. Použití k výrobě drátů, plechů, tyčí, pájky, pigmentů... k ochraně kabelů, ochraně proti rtg záření slitina 91% Pb a 9% Sb se používá při výrobě olověných akumulátorů na výrobu nosných mřížek (nesoucích oxidační činidlo PbO 2 a redukční činidlo houbovité olovo) 4. Sloučeniny PbO 2 kyselinotvorný výroba olověných akumulátorů PbCrO 4 chromová žluť, pigment PbO amfoterní oxid PbX 4, PbX 2 PbX 2 jsou stálejší než PbX 4, (X=F, Cl, Br, I) 6/6