ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD



Podobné dokumenty
Odstraňování berylia a hliníku z pitné vody na silně kyselém katexu Amberlite IR 120 Na

Úprava podzemních vod ODKYSELOVÁNÍ

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. (Bi) (54) Způsob čištěni radioaktivních odpadních vod uranového průmyslu

Ing. Jiří Charvát, Ing. Pavel Kolář Z 13 NOVÉ SMĚRY A PERSPEKTIVY SANACE HORNINOVÉHO PROSTŘEDÍ PO CHEMICKÉ TĚŽBĚ URANU NA LOŽISKU STRÁŽ

Základní fyzikálně-chemické procesy úpravy podzemních a povrchových vod pro hromadné zásobování pitnou vodou

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

Digitální učební materiály III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT. VY_32_INOVACE_129_Sloučeniny Na+Ca_ prac_ list

Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou

Úprava podzemních vod

Ing. Milan Vodehnal, AITEC s.r.o., Ledeč nad Sázavou

DUM č. 4 v sadě. 24. Ch-2 Anorganická chemie

Ing. Radim Staněk, prof. Ing. Jana Zábranská CSc. Čištění odpadních vod z výroby nitrocelulózy

Problematika RAS v odpadních vodách z povrchových úprav

TECHNOLOGIE REVERZNÍ OSMÓZY PROVOZNÍ ZKUŠENOSTI Z ÚV TŘEBOTOV

DIPLOMOVÁ PRÁCE VÝVOJ CHEMISMU VODY V POVODÍ NISY. Bc. Gabriela Ziková, 2013 Vedoucí práce: doc. Ing. Martin Šanda, Ph.D.

NÁZVOSLOVÍ SOLÍ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

CHEMICKÉ REAKCE A HMOTNOSTI A OBJEMY REAGUJÍCÍCH LÁTEK

Manganový zeolit MZ 10

ÚV PÍSEK PŘEDPROJEKTOVÁ PŘÍPRAVA

ZÁKLADNÍ CHEMICKÉ POJMY A ZÁKONY

Příspěvek k regeneraci ettringitu jako donoru hlinitých iontů

Rekonstrukce úpraven vody Frýdlant a Bílý Potok, volba technologií pro rekonstrukci úpravny vody

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

W E M A K E Y O U R I D E A S A R E A L I T Y SUCHÉ KONDICIONOVANÉ ODSÍŘENÍ ZNEČIŠŤOVÁNÍ

ODSTRAŇOVÁNÍ BERYLLIA ZE ZDROJŮ PITNÉ VODY

Rozpustnost s. Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku.

VZNIK SOLÍ, NEUTRALIZACE

Názvosloví anorganických sloučenin

HYDROSFÉRA 0,6% 2,14% 97,2%

VÝSLEDKY TESTŮ MIKROFILTRACE PROVEDENÝCH NA TŘECH ÚPRAVNÁCH VODY V ČESKÉ REPUBLICE

Hmotnost atomů a molekul 6 Látkové množství 11. Rozdělení směsí 16 Separační metody 20. Hustota, hmotnostní a objemový zlomek 25.

Složení soustav (roztoky, koncentrace látkového množství)

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 14 SRÁŽECÍ REAKCE

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV:VY_32_INOVACE_102_Soli AUTOR: Igor Dubovan ROČNÍK, DATUM: 9.,

DUM VY_52_INOVACE_12CH19

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

MONITOROVÁNÍ VLIVU ZIMNÍ ÚDRŽBY KOMUNIKACÍ NA JAKOST VOD PŘITÉKAJÍCÍCH DO 2. OCHRANNÉHO PÁSMA PODOLSKÉ VODÁRNY A OVLIVNĚNÍ JAKOSTI VODÁRENSKÉHO TOKU

HODNOCENÍ JAKOSTI PODZEMNÍCH VOD. Tab. č. 18/ 1. Chloridy. Jakost podzemní vody v ukazateli: (mg/l) Hydrogeologický rajón

RECYKLACE VOD OVĚŘOVÁNÍ A KONKRÉTNÍ REALIZACE. Ondřej Beneš (Veolia ČR) Petra Vachová, Tomáš Kutal (VWS Memsep)

Environmentální výchova

Chemické veličiny, vztahy mezi nimi a chemické výpočty

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Elektrická dvojvrstva

Chelatometrie. Stanovení tvrdosti vody

Provozní zkušenosti úpravy vody pomocí membránové mikrofiltrace na keramických membránách s předřazenou koagulací/flokulací

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Identifikace zkušebního postupu/metody PP-LAB (ČSN ISO 10523) PP-LAB (ČSN EN 27888) PP-LAB (ČSN )

U Ústav procesní a zpracovatelské techniky FS ČVUT. Názvosloví solí kyslíkatých kyselin

MODIFIKACE VLASTNOSTÍ PÁLENÉHO VÁPNA. IVA DOLEŽALOVÁ VÁPENKA VITOŠOV s.r.o.

ČIŠTĚNÍ ODKALIŠTNÍCH VOD NA ZÁVODĚ GEAM DOLNÍ ROŽÍNKA

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU

Podstata krápníkových jevů. Ch 8/07

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

CHO cvičení, FSv, ČVUT v Praze

SOLI. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

ROZTOK. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi


) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě.

IONOSEP v analýze vody. Využití analyzátorů IONOSEP pro analýzu vod. Doc. Ing. František KVASNIČKA, CSc.

Neutralizace prezentace

Povodí Labe, státní podnik Odbor vodohospodářských laboratoří, laboratoř Ústí nad Labem Pražská 49/35, Ústí nad Labem

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

CELKOVÝ AKTIVNÍ CHLOR - VÝZNAM A INTERPRETACE

Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu

ČIŠTĚNÍ A PŘEDÚPRAVA PROCESNÍCH A ODPADNÍCH VOD Z VÝROBY PAPÍRU ELEKTROCHEMICKÝM - FENTONOVÝM PROCESEM

Základní údaje o čistírně odpadních vod

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti

POROVNÁNÍ ÚČINNOSTI SRÁŽENÍ REAKTIVNÍCH AZOBARVIV POUŽITÍM IONTOVÉ KAPALINY A NÁSLEDNÁ FLOKULACE AZOBARVIV S Al 2 (SO 4 ) 3.18H 2 O S ÚPRAVOU ph

DOUČOVÁNÍ KVINTA CHEMIE

PŘEDMLUVA...ii. OBSAH...ii 1. ÚVOD...1

Roztok je homogenní (stejnorodá) směs dvou a více látek. Částice, které tvoří roztok, jsou dokonale rozptýleny a vzájemně nereagují.

DUM VY_52_INOVACE_12CH01

AQUATEST a.s. Zkušební laboratoře. Co znamenají naměřené hodnoty v pitné vodě?

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.


MAPOVÉ PŘÍLOHY. Mapy vodních toků v Praze. Zdroj: Lesy hl. m. Prahy. Zdroj:

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

ČIŠTĚNÍ TECHNOLOGICKÝCH VOD A VÝPUSTNÉ PROFILY CHÚ

ZÁKLADNÍ CHEMICKÉ VÝPOČTY

Mohamed YOUSEF *, Jiří VIDLÁŘ ** STUDIE CHEMICKÉHO SRÁŽENÍ ORTHOFOSFOREČNANŮ NA ÚČOV OSTRAVA

ZŠ ÚnO, Bratří Čapků 1332

II. Chemické názvosloví

Ústřední komise Chemické olympiády. 42. ročník. KRAJSKÉ KOLO Kategorie D. SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod

NEUTRALIZACE. (18,39 ml)

Gymnázium Chomutov, Mostecká 3000, příspěvková organizace Mgr. Monika ŠLÉGLOVÁ VY_32_INOVACE_06B_05_Vlastnosti kovů, hliník_test ANOTACE

ÚV MONACO PŘEDPROJEKTOVÁ PŘÍPRAVA A REALIZACE REKONSTRUKCE

Vysvětlivky: Důležité pojmy

Katedra chemické fyziky a optiky, MFF UK, Ke Karlovu 3, Praha 2, 2)

OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata


SOLI VZNIK PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Nařízení vlády č. 401/2015 Sb.

Sada 1 Technologie betonu

Oxidační číslo je rovno náboji, který by atom získal po p idělení všech vazebných elektronových párů atomům s větší elektronegativitou.

Transkript:

ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD STRNADOVÁ N., DOUBEK O. VŠCHT Praha RACLAVSKÝ J. Energie a.s., Kladno Úvod Koncentrace síranů v povrchových vodách, které se využívají krom jiného jako recipienty pro vyčištěné odpadní vody, je vymezena dvěma předpisy. Jedním je ČSN 75 7221 Klasifikace jakosti povrchových vod [1] a druhým nařízení vlády ČR č. 82/1999 Sb. [2], kterým se stanoví ukazatele a hodnoty přípustného stupně znečištění vod. Sírany patří v povrchových vodách [1] mezi doplňující chemické ukazatele. Jejich mezní hodnoty pro jednotlivé třídy jakosti vody jsou uvedeny v tabulce 1. S těmito hodnotami úzce souvisí i vymezení požadované koncentrace síranů v tocích vodárenských a ostatních formou Ukazatelů a jejich hodnot znečištění povrchových vod [2]. třída jakosti I. velmi čistá voda II. čistá voda III. znečištěná voda IV. silně znečištěná voda V. velmi silně znečištěná voda < 8 < 15 < 2 < 3 > 3 Tab. 1. Mezní koncentrace síranů v povrchových vodách [1]. Tyto vyjadřují obecně znečištění povrchových vod při Q 355 denním průtoku, po případě při minimálním zaručeném průtoku vody v nich a po smíšení s odpadními nebo zvláštními vodami, nebo hodnotu ukazatele s pravděpodobností nepřekročení 9%. Pro toky vodárenské je to hodnota 2 mg/l a toky ostatní 3 mg/l. Zmíněné nařízení vlády obsahuje též oddíl Průmyslové odpadní vody a zvláštní vody, kde pro jednotlivé typy odvětví je uveden rozsah a přípustné hodnoty minimálně sledovaných ukazatelů. Sírany mezi nimi nevystupují přímo, ale jsou nepřímo zahrnuty ve významném ukazateli, který je navíc i zpoplatněn [3], a tím jsou RAS (rozpuštěné anorganické sole). Z toho vyplývá, že výše uvedené mezní hodnoty koncentrace síranů v povrchových vodách (tabulka 1) mohou být někdy obtížně dosažitelné, především tam, kde do toku jsou zaústěny průmyslové vody obsahující, jako důlní vody, průsakové vody ze složišť energetického popílku aj. Způsoby, kterých lze pro odstranění síranů z vod použít je několik, ne všechny jsou však ekonomicky i provozně použitelné. Mezi technologie, které přicházejí v úvahu se řadí: - běžné srážení síranů z vod pomocí vápna, - srážení využívající účinků barnatých solí, - odstraňování síranů použitím vysokohlinitanových cementů, - srážení síranů v přítomnosti hlinitých a vápenatých iontů, - iontová výměna, - membránové procesy. Srážení síranů pomocí vápenného mléka se staví na roveň běžně používaných neutralizačních technologií pomocí vápenného mléka pouze s tím rozdílem, že výsledná koncentrace síranů nedosahuje požadované úrovně několika málo set mg/l, ale zastavuje se na hodnotě odpovídající součinu rozpustnosti anhydritu (CaSO 4 ) či sádrovce (CaSO 4. 2H 2 O) a představuje cca 1 5 mg/l. Jak anhydrit, tak sádrovec tvoří často přesycené roztoky, při vyšších koncentracích síranů vznikají i iontové asociáty CaSO 4 (aq), takže výsledné koncentrace síranů mohou být i vyšší než 1 5 mg/l. Významnou roli, ve vztahu k zbytkovým koncentracím síranů, představuje iontová síla vody (čím je vyšší, tím je dosahováno nižší účinnosti srážecího procesu). Srážení síranů do formy BaSO 4 je ve srovnání se srážením pomocí vápna účinnější (hodnota součinu rozpustnosti síranu barnatého je 1-1 oproti 1-4 síranu vápenatého), ale také významně ekonomicky náročnější. Použití barnatých solí sebou však přináší i jisté toxikologické nebezpečí, především v případě předávkování barnatých solí v procesu srážení. IUAPPA Praha 2 258 Section: B

Použití vysokohlinitanových cementů je obdobou procesu tvorby ettringitu (viz níže), který vzniká při srážení síranů v přítomnosti hlinitých a vápenatých iontů. Vysokohlinitanové cementy mohou být dávkovány přímo do vody s vysokým obsahem síranů nebo až po předchozí hydrataci, která mnohdy vyžaduje i několik desítek hodin. Z tohoto časového údaje vyplývá poměrně dlouhá reakční doba pro odstraňování síranů v případě přímého dávkování pevných cementů. Nevýhodou procesu je tvorba hlinitanu trivápenatého, v technologii vody nazývaného jako trikalciumaluminát (3 CaO. Al 2 O 3 ), který se vyznačuje minimální rozpustností a v důsledku toho může být příčinou nežádoucích technologických potíží (např. zatvrdnutí suspenze v reakční nádrži při delší reakční době a současně při malých rychlostních gradientech při míchání nově vznikající suspenze). Srážení síranů v přítomnosti hlinitých a vápenatých iontů do formy Candlotovy sole ettringitu spočívá v tvorbě málo rozpustné, avšak objemné sloučeniny (tato vzniká též při síranové korozi betonu, kde se negativně uplatňuje právě zmíněná objemnost sraženiny). Při odstraňování síranů (desulfataci) se tvoří sloučenina chemického vzorce 3 CaO. Al 2 O 3. 3 CaSO 4. 3-33 H 2 O. Ettringit byl popsán v roce 1939 Jonesem [4] a obecně se označuje vzorcem Ca 6 Al 2 [SO 4 (OH) 4 ] 3 o poměru Ca : Al : SO 4 = 6 : 2 : 3. Při tomto způsobu srážení jsou zbytkové koncentrace síranů mnohdy nižší než 2 mg/l [5-7]. Tvorba ettringitu se předpokládá ve vodných roztocích obsahujících CaSO 4, Ca(OH) 2 a sloučeniny u v třetím oxidačním stupni. Hliník tak může být do procesu srážení dodáván ve formě síranu, chloridu, dusičnanu či částečně hydrolyzovaného chloridu hlinitého nebo ve formě hlinitanu sodného. Použitelnost jedné či druhé formy u sebou přináší určité výhody či nevýhody a bude o nich pojednáno níže. Podmínkou dobré účinnosti procesu je přebytek vápenatých iontů, které se spotřebovávají nejen na tvorbu ettringitu, ale dále na další doprovodné reakce probíhající při čištění průmyslových vod (neutralizace hodnoty ph, odstraňování oxidu uhličitého, odželezování a odmanganování a v neposlední řadě i odstraňování těžkých kovů). Významnou pozornost při tomto způsobu desulfatace vod je nutné věnovat dávkování hlinitých iontů, které jsou vedle síranů dalším, přímo sledovaným ukazatelem v povrchových vodách. Vyšší koncentrace hlinitých iontů tak mohou způsobit v případě jejich předávkování (v důsledku technologické nekázně) v desulfatačním procesu následné problémy v recipientu (tvorba jemných vloček hydratovaného oxidu hlinitého). Příčinou zvýšené koncentrace hlinitých iontů po desulfataci může být i nedodržení dalších technologických parametrů, ke kterým se řadí intenzita a doba míchání suspenze (vlastní reakční doba pro tvorbu ettringitu), způsob separace suspenze a v neposlední řadě i vlastní neutralizace desulfatované vody. Nezanedbatelná je i kalová koncovka procesu desulfatace vod. Kal často představuje 3 až 4 %, v případě použití hlinitanu sodného i 1 % objemu čištěné průmyslové vody. Iontová výměna a membránové procesy patří k moderním technologiím, které jsou vysoce účinné, dosud však ekonomicky náročné (jak investičně, tak provozně). Stejně tak, jako v případě desulfatačních srážecích procesů musí být pozornost věnována likvidaci kalu z procesu srážení, při použití ionexových a membránových technologií musí být zabezpečena likvidace regeneračních roztoků a příslušných koncentrátů. Metodika Laboratorní testy byly zaměřeny na vyhodnocení účinnosti desulfatace vod použitím obou činidel. Testy byly prováděny na laboratorním míchacím pultu s proměnlivou volbou intenzity míchání suspenze. Při použití PAX- 18 i hlinitanu sodného byla celková reakční doba 6 minut, která zahrnovala 3 minut rychlého míchání suspenze při 16 otáčkách za minutu a 3 minut pomalého míchání při 5 otáčkách za minutu. Vápenaté ionty byly do procesu srážení dodávány ve formě 1 % vápenného mléka alespoň s 1 % přebytkem, dávka byla charakterizována výslednou hodnotou ph suspenze. Hliník byl dodáván ve formě: PAX-18 (1 ml pracovního roztoku obsahoval 121 mg u a 28 mg chloridových iontů), hlinitanu sodného (1 ml pracovního roztoku obsahoval 15 mg u a 225 mg sodíku). Na základě výše uvedeného složení ettringitu lze určit i teoretické dávkování jednotlivých činidel. Na každých 1 mg síranů je teoretická dávka: 18,7 mg u 83,3 mg vápníku Odstraňování síranů bylo prováděno s reálnou vodou o obsahu síranů 1 5 až 1 66 mg/l (ph 7,6). Výsledná účinnost procesu byla hodnocena pomocí ukazatelů stanovených v odsazené vodě po 15-ti minutové sedimentaci vytvořené suspenze (PAX-18), a ve filtrované vodě (hlinitan sodný). Výsledky a diskuse Vzhledem k tomu, že pro desulfataci vod byly použity dva rozdílné zdroje u (jeden, kde je přítomen jako jednoduchý kation, druhý, kde je přítomen jako anion), je na tomto místě uvedeno porovnání účinnosti odstranění síranů pomocí PAX-18 a hlinitanu sodného se zaměřením na jejich výhody a nevýhody. IUAPPA 2 259 Section: B

Jak bylo výše uvedeno, dalším sledovaným ukazatelem při desulfataci vod je. Závislosti zbytkových koncentrací síranů a u pro různé dávky desulfatačních činidel jsou uvedeny na obrázcích 1 a 2. Dávka PAX-18 a hlinitanu sodného je vyjadřována v % teoretické dávky u vztažené k počáteční koncentraci síranů v upravované vodě, která byla v případě použití PAX-18 166 mg/l a při použití hlinitanu sodného 149 mg/l. 16 12 8 4 2 4 6 8 1 12 14 dávka PAX-18 (%) Obr.1. Závislost zbytkové koncentrace síranů a u na dávce PAX-18. (ph reakční směsi 11, až 11,5) Z obrázku 1 je zřejmé, že se vzrůstající dávkou PAX-18 roste i účinnost desulfatace, která představuje při 1 % dávce 79 % a s rostoucí dávkou se dále zvyšuje. Při použití hlinitanu sodného (obr.2) je při 1 % dávce dosaženo srovnatelné účinnosti 72 %, tato je však při uvedeném ph 12,2 konstantní i pro vyšší dávku hlinitanu sodného. Zbytkové koncentrace u jsou pro obě činidla při 1 % dávce srovnatelné. 12 1 8 6 4 2 (mg/l) 1 8 6 4 2 12 1 8 6 4 2 5 1 15 2 dávka hlinitanu sodného (%) (mg/l) Obr.2. Závislost zbytkové koncentrace síranů a u na dávce hlinitanu sodného. (ph reakční směsi 12,2) Významná je závislost účinnosti desulfatace na hodnotě ph, resp. na dávce vápenného mléka. Zatímco je dosaženo téměř 88 % účinnosti desulfatace při hodnotě ph cca 11,3 v případě použití PAX-18 (obr.3), je této účinnosti dosaženo při použití hlinitanu sodného až při hodnotě ph cca 12,2 (obr.4). Tento fakt se významně promítá do spotřeby vápenného hydrátu a bezprostředně dále do kvality desulfatované vody, resp. do hodnoty kyselinové neutralizační kapacity (KNK), která je téměř 5 x vyšší při uvedené vyšší hodnotě ph (hlinitan sodný). IUAPPA 2 26 Section: B

16 3 12 8 4 25 2 15 1 5 (mg/l) 9 1 11 12 13 hodnota ph Obr. 3. Závislost zbytkové koncentrace síranů a u na hodnotě ph. při konstantní dávce PAX-18 (114 % teoretické dávky) 16 15 12 8 4 12 9 6 3 (mg/l) 9 1 11 12 13 hodnota ph Obr. 4. Závislost zbytkové koncentrace síranů a u na hodnotě ph. při konstantní dávce hlinitanu sodného (134 % teoretické dávky) Při desulfataci pomocí PAX-18 je dosahována hodnota KNK 4,5 cca 6 mmol/l. Současně s hodnotou KNK 4,5 je při použití hlinitanu sodného navýšen i obsah rozpuštěných látek (RL). Do obsahu RL se tudíž významně promítá i dávka PAX-18 či hlinitanu sodného prostřednictvím doprovodných iontů. V případě PAX-18 se jedná o chloridy, v případě hlinitanu sodného o sodík. Funkční závislosti obsahu chloridů či sodíku na dávce PAX-18 či hlinitanu sodného jsou znázorněny na obrázcích 5 a 6. Je zřejmé, že níže uvedené závislosti byly odvozeny pro počáteční koncentrace síranů 15 až 166 mg/l, kdy koncentrace chloridů v upravované vodě byla 11 mg/l a sodíku 76 mg/l. 1 12 8 6 4 2 chloridy 8 4 chloridy (mg/l) 2 4 6 8 1 12 14 dávka PAX-18 (%) Obr. 5. Závislost zbytkové koncentrace síranů a chloridů na dávce PAX-18. (ph reakční směsi 11, až 11,5) IUAPPA 2 261 Section: B

16 14 12 8 4 sodík 12 1 8 sodík (mg/l) 5 1 15 2 6 dávka hlinitanu sodného (%) Obr.6. Závislost zbytkové koncentrace síranů a sodíku na dávce hlinitanu sodného. (ph reakční směsi 12,2) Z uvedených obrázků je zřejmé, že existuje lineární vztah mezi zbytkovou koncentrací chloridů c(cl ), resp. sodíku c(na) vyjádřenou v mg/l a dávkou PAX-18, resp. dávkou hlinitanu sodného. Dávka je vyjádřena v % teoretické dávky u (D). Pro daný případ desulfatace byly zjištěny následující vztahy: PAX-18: c(cl ) = 7,95 D 16,9 hlinitan sodný: c(na) = 2,7 D + 797,9 Z obrázku 5 je zřejmá nejen lineární závislost pro zbytkové koncentrace chloridů a dávku PAX-18, ale také lineární závislost pro zbytkovou koncentraci síranů v desulfatované vodě ve tvaru: c(so 2-4 ) = - 12,42 D + 1587,5 Lze očekávat, že koeficienty uvedené rovnice budou pro každý typ upravované vody jiné, resp. budou záviset na jejím iontovém složení. Lineární závislost nelze získat při desulfataci pomocí hlinitanu sodného. Na základě výše uvedeného vyplývá, že desulfataci vody použitím PAX-18 je možné řídit pomocí zbytkové koncentrace chloridů v desulfatované vodě, resp. pomocí povolené koncentrace chloridů v recipientu [2]. Závěr Na základě výše uvedeného vyplývá, že pro desulfataci vod lze použít jak PAX-18, tak hlinitan sodný. Obě desulfatační činidla mají své výhody a nevýhody uvedené výše. Jejich použití lze charakterizovat následovně: Desulfatace pomocí PAX - 18 vyžaduje pro uvedený typ reálné vody (významné zastoupení síranů, sodíku a hydrogenuhličitanů) optimální hodnotu ph 11,3 11,5 a to i pro různá koncentrační pásma síranů v původní vodě. Existuje lineární závislost mezi zbytkovou koncentrací síranů a chloridů a dávkou PAX-18 a tudíž je možné na základě požadované koncentrace síranů a chloridů ve vyčištěné vodě plynule řídit dávku PAX-18. Lze bez problému docílit i 1 % účinnosti desulfatace. Jedinou nevýhodou procesu je zvýšená koncentrace chloridů v upravené vodě. Desulfatace vod pomocí hlinitanu sodného vyžaduje pro 5 % a vyšší účinnost odstranění síranů hodnotu ph vyšší než 12. Závislost zbytkové koncentrace síranů ve vyčištěné vodě na dávce hlinitanu sodného není lineární. Proces desulfatace musí probíhat při dokonalé homogenizaci celého objemu suspenze při vysoké hodnotě ph. Vzniklá suspenze má na rozdíl od suspenze vzniklé při dávkování PAX-18 gelovitý charakter a vyžaduje větší intenzitu míchání. Literatura [1] ČSN 75 7221 Klasifikace jakosti povrchových vod 199 [2] Nařízení vlády ČR č. 82/1999 Sb. [3] Zákon č. 58/1998 Sb. [4] Jones R.: Trans. Faraday Soc. 35, 1484 (1939) [5] Keely R.: Can. J. Chem. 38, 1218 (196) [6] Christoe J.R.: J. Water Pollut. Control Fed. 48, 284 (1976) [7] Schaezler D.J.: J. Water Pollut. Control Fed. 5, 1821 (1978) IUAPPA 2 262 Section: B