5. ŽELEZO A JEHO SLITINY

Podobné dokumenty
ŽELEZO A JEHO SLITINY

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin

Fe Fe 3 C. Metastabilní soustava

SLITINY ŽELEZA. Přehled a výroba materiálu

1. V jakých typech sloučenin se železo v přírodě nachází? 2. Jmenujte příklad jedné železné rudy (název a vzorec):

ŽÍHÁNÍ. Tepelné zpracování kovových materiálů

SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ

HLINÍK A JEHO SLITINY

METALOGRAFIE II. Oceli a litiny

42 28XX nízko středně legované oceli na odlitky odlévané jiným způsobem než do pískových forem 42 29XX vysoko legované oceli na odlitky

OCELI A LITINY. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu

FÁZOVÉ PŘEMĚNY. Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny)

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti. Číslo přílohy: VY_52_INOVACE_CH9.

VÝROBA TEMPEROVANÉ LITINY

ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ

Výroba surového železa, výroba ocelí, výroba litin

NTI/USM Úvod do studia materiálů Ocel a slitiny železa

Technické materiály. Surové železo. Části vysoké pece. Suroviny pro vysokou pec

TEORIE SLÉVÁNÍ. Autoři přednášky: prof. Ing. Iva NOVÁ, CSc. Ing. Jiří MACHUTA, Ph.D. Pracoviště: TUL FS, Katedra strojírenské technologie

4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ. 4.1 Technické slitiny železa Slitiny železa s uhlíkem a vliv dalších prvků

TECHNOLOGIE I (slévání a svařování)

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

Svařitelnost korozivzdorných ocelí

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

Technologie I. Část svařování. Kontakt : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře

Výroba surového železa, oceli, litiny

TEPELNÉ ZPRACOVÁNÍ. Ing. V. Kraus, CSc. Opakování z Nauky o materiálu

ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ

Ocel je slitina Fe + C + doprovodných prvků (Si, Mn, S, P) + legujících prvků (Ni, Cr, Mo, W, Zi ), kde % obsah uhlíku ve slitině je max %.

K618 - Materiály listopadu 2013

Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace

Krystalizace ocelí a litin

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoce korozivzdorná specielní ocel, legovaná m.j. dusíkem. Optimální kombinace vysoké korozivzdornosti, tvrdosti a houževnatosti.

LITINY. Slitiny železa na odlitky

Metalografie ocelí a litin

Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace

Diagram Fe N a nitridy

HLINÍK. Lehké neželezné kovy a jejich slitiny

Konstrukční, nástrojové

Rozdělení ocelí podle použití. Konstrukční, nástrojové

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Uhlík a jeho alotropy

TE1 slévání 1 /u12133

Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces

Výroba surového železa a výroba oceli

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.

Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING

05 Technické materiály - litina, neželezné kovy

NAUKA O MATERIÁLU OCEL A JEJÍ ROZDĚLENÍ. Ing. Iveta Mičíková

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.

Polotovary vyráběné práškovou metalurgií

1 Druhy litiny. 2 Skupina šedých litin. 2.1 Šedá litina

Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí. Ing. Petr Beneš

Uplatnění ocelových konstrukcí

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

Metody studia mechanických vlastností kovů

KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV

ZLÍNSKÝ KRAJ. Název školyě národního Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště

Nauka o materiálu. Přednáška č.11 Neželezné kovy a jejich slitiny

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

Tepelné zpracování ocelí. Doc. Ing. Stanislav Věchet, CSc. ; Ing. Karel Němec, Ph.D.

TEORIE TVÁŘENÍ. Lisování

Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Tepelné zpracování

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4

Žíhání druhého druhu. Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007

Výroba technických kovů

Požadavky na technické materiály

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN

LETECKÉ MATERIÁLY. Úvod do předmětu

Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky.

V Y _ 3 2 _ I N O V A C E _ _ Ž E L E Z N É K O V Y _ P W P A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A

C Cr N Mo Ni Mn 0,3% 15,0 % 0,5 % 0,95% 0,5% 1,0%

KAPITOLA 9: KOVY Vysoká škola technická a ekonomická v Českých Budějovicích

Trvanlivost,obrobitelnost,opotřebení břitu

Nástrojové oceli. Ing. Karel Němec, Ph.D.

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE Z TECHNOLOGIE

Identifikace zkušebního postupu/metody PP (ČSN ISO 9556, ČSN ISO 4935) PP (ČSN EN , ČSN )

42 X X X X. X X Hutní skupina. Pořadové číslo slitiny Sudé tvářené Liché - slévárenské

RYCHLOŘEZNÉ NÁSTROJOVÉ OCELI

OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:

t-tloušťka materiálu te [mm] C Ce 25 < 0,2 < 0,45 37 < 0,2 < 0,41

Elektrostruskové svařování

Svafiování elektronov m paprskem

TECHNOLOGIE I (slévání a svařování)

Hliník a slitiny hliníku

CHEMICKO - TEPELNÉ ZPRACOVÁNÍ

Slouží jako podklad pro výuku svařování. Text určen pro studenty 3. ročníku střední odborné školy oboru strojírenství.vytvořeno v září 2013.

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

OK SFA/AWS A 5.11: (NiTi3)

Metalurgie vysokopevn ch ocelí

ϑ 0 čas [ s, min, h ]

Nová tavící technologie firmy Consarc -vakuum CAP - ve vakuu nebo v ochranné atmosféře

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman

OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:

Kovy a kovové výrobky pro stavebnictví

Chemie železa, výroba oceli a litiny

Transkript:

5. ŽELEZO A JEHO SLITINY 5.1 Čisté železo a rovnovážná soustava s uhlíkem 95 % výroby kovů polymorfie - schopnost tvořit slitiny s kovy i nekovy (široká paleta, ekonomicky i ekologicky vhodné) Atomové číslo 26 - hmotnost 55,874, hustota 7,87 g.cm -3 - vodivé, houževnaté, měkké - tažnost 50 %, kontrakce 90 %, pevnost 180 až 250 MPa, tvrdost 45 až 55 HV - feromagnetické vlastnosti - Curieova teplota -- tepelná hystereze - A c, A r - polymorfní /obr. 5.1/ kubická prostorově centrovaná - α, δ - 2,86.10-10 m Obr. 5.1: Křivky chladnutí a ohřevu čistého železa kubická plošně centrovaná - γ - 3,6.10-10 m Teploty a koncentrace uhlíku důležitých bodů a čar metastabilního a stabilního rovnovážného diagramu slitin železa s uhlíkem Obr. 5.2: Rovnovážný diagram metastabilní a stabilní soustavy slitin železa s uhlíkem 1

Teploty bodů a čar / o C/ Koncentrace bodů /% C/ A 1 536 A 0,00 N H J B 1 499 1 392 A J 0,10 0,16 A C F G 1 147 911 B E 0,51 2,11 M O P S K 760 727 C F 4,30 6,68 D E - C - F 1 360 1 153 S P 0,80 0,02 P - S -K 738 Q C 10-7 4,26 E S 2,08 0,69 P 0,018 Uhlík nejvíce ovlivňuje vlastnosti technických slitin /obr. 5.2/ - rozpustnost - intersticiální (adiční) - polohy v mřížce - austenit, ferit - Fe 3C - cementit - orthorombická mřížka - T T 1380 0 C - slabé magnetické vlastnosti ztrácí při 217 0 C - tvrdý, křehký, 700-800 HV - není stabilní nad cca 400 0 C se rozpadá (grafitizace) - možnost komplexních karbidů (substituce) ev. přechodných (ε) Dle stability : stabilní Fe C metastabilní Fe Fe 3C stabilita závisí - přítomnost dalších prvků (čistota), rychlost ochlazování, obsah uhlíku popis fází, vzniku, složení, teplot - primární krystalizace, sekundární krystalizace (překrystalizace) význam - tavení a odlévání, tváření, tepelné zpracování, vlastnosti 5.2 Vliv dalších prvků Doprovodné (přicházející ze surovin) škodlivé - P, S, N, O, H prospěšné - Mn, Si, Al, Přísadové (legující - úmyslně přidávané - mohou překrývat i vliv C - přechod ČSN např. Mn 0,9%, Si 0,5%, Cr 0,3% ap.) - Cr, Ni, Mn, Si, Mo, V, W, Al, Ti, Co, Nb ap. Škodlivé prvky: Síra - rudy a paliva - sirníky FeS a MnS (oceli až 0,06%) značné odmíšení - nízký součinitel difúze - FeS T T = 1180 o C - eutektikum Fe-FeS 985 o C - obálky zrn - tvařitelnost za tepla se zhoršuje, křehkost za červeného žáru - MnS T T = 1620 o C - vyplavuje se do strusky - globulární útvary na hranicích zrn - automatové oceli - obrobitelnost (lámavost třísky) - až 0,3 % Fosfor - ze vsázky - ocel pod 0,04% - rozpouští se v γ Fe, uzavírá pole α (při 800 0 C 2,8%, pokojová 0,015%) - tvoří několik typů (4) fosfidů v oceli u nízkouhlíkových zvyšuje pevnost a tvrdost feritu - při 0,1% zaviňuje jeho křehkost, zvyšuje přechodovou teplotu (krystalické lomy - křehkost za studena) - ovlivňuje negativně popouštěcí křehkost, svařitelnost v litinách až 0,3-0,4% - zvyšuje tekutost a tím slévatelnost litiny - tvoří binární ev. ternární eutektikum Fe-Fe 3P- Fe 3 C (T T = 965 resp. 1050 0 C) - steadit - snížení houževnatosti, zvýšená odolnost proti opotřebení, tvrdost - Kyslík - vlivem zkujňování - význam hlavně u ocelí, u litin eliminován uhlíkem - forma výskytu: 2

volný - rozpustný do 0,01% - tvrdost feritu, křehkost za studena FeO - obálky na hranicích zrn (spálení) - ztráta koheze, křehkost za tepla i za studena, sklon k lomům (dřevité) ap. - vměstky (oxidy dalších prvků) - dle formy, tvaru, způsobu rozložení Dusík - z pecní atmosféry - jednak intersticiální tuhý roztok, jednak různé typy nitridů - přednostní vylučování na hranicích zrn a skluzových rovinách - stárnutí oceli (u měkkých ocelí doba až několik let - urychlení deformací za studena a zvýšenými teplotami (do 200 0 C)) - snižuje plastické vlastnosti, zvyšuje R e, R m, H, negativně ovlivňuje svařitelnost - odstranění - regenerace zkřehlé oceli - rozpouštěcí žíhání - legování prvky s vyšší afinitou (Al, Cr, Ti, Si, V) přísada - austenitotvorný - zjemnění zrna - Cr-Mn, Ni-A chemicko-tepelné zpracování Vodík - výroba oceli (vlhkost surovin), moření, galvanické pochody, svařování - rozpustnost v atomárním stavu, nejvíce ve stavu tekutém (25 ppm) pak v γ (4 ppm) a nejméně v α (0,002 ppm) - silně redukční (vodíková koroze, oduhličení) - submikroskopická místa difúzí přechází na molekulární formu (tlak) - mikrotrhliny typický charakter - vločky - žíhání Stopové prvky - nebezpečné v minimálních množstvích - nerozpustné nebo nízkotavitelné obálky na hranicích zrn - Pb, As, Sn, Sb ap. Prospěšné prvky: Mangan - rozšiřuje oblast austenitu - desoxidační přísada (neúplné uklidnění do 2%) - austenitické oceli 12% - odsiřovací prostředek - zvyšuje R e a R m s mírným zhoršením plasticity, zlepšuje tvařitelnost za studena a odolnost proti opotřebení, zvyšuje sklon k hrubnutí zrna při ohřevu na překrystalizační teploty, snižuje teplotní vodivost, snižuje teplotu přeměny γ na α a zpomaluje její rychlost - Křemík- uzavírá pole γ - desoxidační přísada - rozpouští se ve feritu (zpevňuje) - zvyšuje R m, H, zhoršuje tvařitelnost, snižuje tepelnou a elektrickou vodivost, zvětšuje permeabilitu a hysterézní ztráty, zlepšuje odolnost proti oxidaci za zvýšených teplot ev. proti korozi - Měď -? - suroviny (nelze odstranit) - zpevnění - vytvrditelné oceli - zvýšení korozivzdornosti proti povětrnostním vlivům (Atmofix) - stabilizace lamelárního perlitu - zhoršení tváření za tepla Slitinové -od setin až do desítek % - dosažení speciálních vlastností - obvykle kombinace prvků (komplexní legování) - vznikají tuhé roztoky (substituční i intersticiální) i intermediární fáze př.: zvýšení mechanických vlastností bez výrazného snížení houževnatosti - Mn, Si, Ni, Mo, V, W, Cr zvýšení prokalitelnosti - Cr, Mn, Mo, V zlepšení fyzikálních vlastností (el. a magn.) Si vytvoření tvrdých a stabilních karbidů (opotřebení)- W, Cr, V, Mo zmenšení sklonu k růstu zrna (disperzní karbidy,nitridy)- Al,Ti,V zvýšení žáropevnosti (dispergované karbidy) - Cr, Mo, V, W zvýšení odolnosti proti oxidaci (stabilní povrchové oxidy) - Cr, Si, Al zvýšení odolnosti proti korozi - Cr, Ni, Mo, Si, Cu zabránění vylučování karbidů a nitridů v korozivzdorných ocelích -Ti, Nb, Ta ap. podle vlivu na termodynamickou stabilitu fází a teplotu polymorfních přeměn Fe: Obr. 5.3: Schéma ovlivnění oblasti austenitu / a- neomezené rozšíření, b- omezené další fází/ Obr. 5.4: Schéma ovlivnění oblasti feritu /a-ferit stabilní v celé oblasti, b-omezený heterogenní oblastí/ 3

Dle ovlivnění diagramu: austenitotvorné /obr. 5.3/- snižují teplotu A 3, zvyšují A 4 - rozšiřují pole γ - I. typ bez omezení - Mn, Ni, Co, Rh, ap. - II. typ s omezením další fází - C, N, Zn ap. - (prvý typ jednofázový, neprodělává přeměny, zjemnění zrna pouze rekrystalizací) feritotvorné /obr. 5.4/- zvyšují teplotu A 3, snižují A 4 - zmenšují a uzavírají pole gama - I. typ - Cr, Si, Al, W, Mo, V, Ti - II. typ - Ta, Zr, B, S, O - kombinace - vliv C u Cr ocelí(podpora stability austenitu) substituční vliv - vlastnosti mechanické, fyzikální, technologické ap., výrazně fyzikálně chemické (korozní /pasivace/, žárovzdornost) - fázové složení tuhý roztok, karbidy (orthorombické, šesterečné, kubické), nitridy (stabilita), nové fáze (sigma, Lavesovy fáze) - vlivy Podle vztahu k uhlíku: karbidotvorné - buď se rozpouštějí v cementitu nebo samostatné karbidy - složitější kovová vazba (typ M 3C, M 6C, M 7C 3, M 23C 6 ap.) - komplikovaná mřížka, méně stabilní (větší poloměr než 0,59) - stabilní jednoduché (MC, M 2 C ap.) - vysoká afinita (Ti, Nb, Zr, V) - všechny tvrdé, křehké, disperzní vyloučení, zpevnění hranic i matrice netvořící karbidy - snižují stabilitu cementitu, podporují rozpad na grafit a Fe - při vyšším obsahu C i grafitizace oceli (snížení R m, zkřehnutí) - ovlivnění hlavně matrice litin (Si, Ni, Al - kluzné vlastnosti, stabilita rozměrů) 5.3 Základy metalurgie železa Obecně surovinou rudy: magnetit Fe 3O 4 (cca 75%, redukovatelnost), hematit (krevel) Fe 2O 3 (60%), limonit (hnědel) Fe(OH) 3, siderit (ocelek) FeCO 3 (30%), pyrit (kyz železný) FeS + komplexní rudy - úpravy rud - obohacování, snížení obsahu S ev. P, hlušiny, zlepšení zpracovatelnosti (velikost, redukovatelnost ap.) Surové železo - nejčastěji redukce Fe ve vysoké peci /obr. 5.5/ - palivo koks, struskotvorné přísady vápenec - snaha získat co nejbohatší kov, převést hlušinu a nevítané prvky do strusky - popis vysoké pece, názvy částí pásma (odvod plynů, sušící pásmo, rozklad uhličitanů, redukce CO i C, nauhličující tavící)) - výstup (kychtový plyn, struska, surové železo) - složení, využití Zkujňování odstranění nežádoucích prvků obvykle oxidací - produkty plynné nebo vázané do strusky - surovinou surové železo + odpad (celosvětově cca 30%) - prvky vyšší afinita ke kyslíku (problematika Ni,Cu) - hlavně C, SiO 2, MnO P 2O 5 redukuje uhlík, vazba na zásaditou strusku - obdobně S - převaha FeO v lázni - Obr. 5.5: Schéma vysoké pece následuje desoxidace + snížení obsahu S (Mn, Si, Al) - vliv i vyzdívky v peci (zásadité a kyselé) SiO 2 (nižší kyslík, silikátové vměstky tvárnější - S reakce se struskou - Pochody: Bessemerův a Thomasův konvertor - tekutá vsázka, zařízení, vyzdívka, složení vsázky, udržení procesu, ekologie atp. kyslíkové konvertory dnes /obr. 5.6/ - proces LD (50. léta, kyslík na roztavenou lázeň) - dnes až 60% celosvětové výroby - pece do 200 t, kyslík 40-60 m 3.t -1, doba cca 40 min - různé modifikace (způsob dmýchání, pevné a plynné přísady) 4

výhody: urychlení oxidační reakce, vysoká aktivita "strusky", odstranění prvků s nižší afinitou (Cu, Sn, As, Sb), nižší obsah dusíku, vysoká jakost a čistota, nevyžaduje palivo (exotermická reakce, chlazení kovovým odpadem 25-30%), nutnost dolegování Siemens-Martinské pece - dnes 25% - nístějové pece + rekuperátory na plyn a vzduch - kyselé i zásadité, pevné i sklopné - paliva plynná ev. kapalná - pochod rudný - 85 % tekuté surové železo + odpad - pro vytvoření varu (oxidace CO) ruda, okuje ev. kyslík - pochod odpadový (šrotový) - tuhá vsázka + surové železo a ruda (vytvoření varu) nevýhody: nízké měrné výkony, velké investiční náklady, nízká produktivita práce(tavba 8 hod.) - reakce mezi struskou a lázní výhody: univerzální pochod, nezávislost na hutích elektrické pece obloukové - analogie Martinovy, 3 fáz. el. oblouk - cca 750 kwh.t -1 - po oxidační periodě možno provést redukční s vhodnou struskou (snížení obsahu síry, odstranění FeO i legování prvků s vyšší afinitou ke kyslíku (Cr, Ti, V)) výhody: vyšší teplota strusky (rychlejší reakce), výkon i výrobnost, nižší vměstkovitost (vyšší čistota) nevýhody: elektrická energie, možnost naplynění elektrické pece frekvenční - u ocelí vysokofrekvenční (300-800 khz) - kelímek uvnitř chlazené indukční cívky - pouze rafinace - umělá (studená) struska - výhody: vysoká rychlost tavení, nižší spotřeba elektr. energie, využití prvků v surovině, nižší obsah plynů, možnost přehřátí, chemická homogenita (míchání el. polem) - nevýhody: nelze zkujňovat, vysoká čistota surovin Obr. 5.6: Schéma kyslíkového konvertoru 5.4 Čistota oceli Čistota oceli podstatně ovlivňuje její vlastnosti - spec. součásti nutnost zlepšení - druhy: srážecí desoxidace - vyšší množství zplodin, jednoduchá a rychlá difúzní desoxidace - reakce mezi struskou a lázní - stahování strusky, dlouhá doba, nákladná, výhodnější vakuová rafinace - tavení ve vakuu 10 -(1 až 3) Pa (nejen odplynění, ale i odstranění stopových prvků Pb, As, Bi, Zn ap.) - odlévání ve vakuu (různé způsoby) - odplynění i desoxidace elektrostruskové přetavování - materiál jako tyčová elektroda - natavování v přehřáté vodivé strusce (kapky s velkým reakčním povrchem procházejí reaktivní struskou - desoxidace i odsíření) Obr. 5.7: Obsah kyslíku v různých typech oceli /1-uklidněná, 2- polouklidněná, 3-neuklidněná se zastaveným varem,4,5-neuklidněná/ syntetické strusky - dvě pece - smíchání kovové a struskové lázně - náročné, nákladné Většina ocelí odlévána do litinových forem (kokil), tuhne na ingoty. Pouze 5 až 7% se využívá ve slévárenství na odlitky. Dle obsahu FeO /obr. 5.7/ a způsobu krystalizace: uklidněné - úplná desoxidace (vazba rozpuštěného kyslíku desoxidačními přísadami zabrání reakci kyslíku s uhlíkem) - ve ztracené hlavě ingotu centrální staženina (lunkr) - nesmí zasahovat do těla ingotu (izolace, exotermické zásypy) - ztráty u obvyklých ocelí 20%, u nástrojových až 40% - nízké využití - celkově cca 20% výroby 5

neuklidněné - bez nebo s částečnou desoxidací (vyšší obsah FeO než je rovnovážný) - při lití reakce s uhlíkem (sekundární var oceli - bubliny CO unikají z oceli a částečně zůstávají v kovu zavřeny) - menší staženina neb bez ní - dva druhy bublin: primární (v kolumnární vrstvě - podlouhlé), sekundární (v třetím pásmu - globulitické) - nutnost bublin bez oxidace, během tváření svaření - větší výtěžnost, dobrá svařitelnost, nižší vměstkovitost polouklidněné - desoxidace FeMn+část.FeSi (Si do 0,15%) - nižší sekundární var a jeho zastavení při krystalizaci (ovlivnění tlakem ev. desoxidací) - malá staženina (plechy) - Odlévání ocelí diskontinuální - ztráty materiálové (hlavy) i energetické (ohřevy) horem - velké ingoty, jednoduché, levné, nižší teplota lití, vhodný tepelný gradient, dlouhá doba lití, povrchové vady, spodem - menší ingoty, větší přesnost a náklady, nebezpečí "zamrznutí", vyšší teplota lití, opačný teplotní gradient, rychlé, čistý povrch, kontinuální - odlití celé tavby - průchozí chlazený krystalizátor - stálý tlak (vyrovnávací pánev) - dochlazení ve válcích příp. rovnání, řezání, další tváření - problém strhávání strusky, chemická heterogenita, vysoké investiční náklady Ingoty dle průřezu: kolmého (čtvercový, kruhový, vícehranný) - podélného (V, A, lahvovitý) Obr. 5.8: Schématické znázornění krystalických zón v ingotu z uklidněné oceli Krystalizace - obecně tři pásma /obr. 5.8/ - šířka pásem různá závislá na složení a podmínkách krystalizace (lití) I. pásmo (primární) - vysoké přechlazení (velké množství kryst. zárodků) - jemné směrově neorientované rovnoosé globulitické krystality - II. pásmo (transkrystalizační) - kokila se ohřívá, klesá tepelný gradient - směrově orientované dendrity ve směru odvodu tepla (kolumnární dendritysloupkovité krystality) - v této fázi nastává i výrazné odměšování (čistší část tuhne, část s nižší teplotou tání zůstává kapalná - hlavně znečistění S, P, C) III. pásmo (terciální, střední) - neorientované velké globulitické krystality Odmíšení - nestejnoměrnost chemického složení - z toho vyplývá i heterogenita mechanických vlastností - druhy: dendritické - rozdíl mezi složením os a meziosními výplněmi krystalitů - hlavně v II. pásmu (likvace) pásmové - od povrchu do středu ingotu (hlavně P a S) Obr. 5.9: Schéma rozdělení segregací v uklidněném ingotu /1- hlavová staženina, 2-V-segregace, 3-A-segregace, 4-A-segregace vnitřní, 5-sedimentační kužel/ 6

vycezeniny (segregace) /obr. 5.9/ - v důsledku předchozích složení vyšší koncentrace hlavně ve třetím pásmu (P a S) - typ dle vzhledu: A - stvolové vycezeniny vyplnění kanálků po plynových bublinách ev. vyplouvání taveniny o nižší hustotě V - ve středové části "zabrzděné proudění" - vyplnění mezer vzniklých smrštěním při tuhnutí sedimentační kužel - krystaly před krystalizační frontou klesají dolů a strhávají především oxidy Dělení vměstků: dle vzniku (endogenní, exogenní) dle velikosti dle tvaru dle chemického složení dle plasticity ap. 7