doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

Podobné dokumenty
doc. Dr. Ing. Elias TOMEH

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

1 ÚVOD 14 2 KDEZAČÍT SE SPOLEHLIVOSTÍASYNCHRONNÍCH ELEKTROMOTORŮ 16 3 BEZDEMONTÁŽNÍ TECHNICKÁDIAGNOSTIKA 17

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

VIBRAČNÍ DIAGNOSTIKA ZÁKLADNÍCH ZÁVAD STROJŮ

Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů.

1.16 Vibrodiagnostika Novelizováno:

Diagnostika strojů - jak nastavit smysluplné měření. ANEB NAUČTE SE TO KONEČNĚ, JAK NA TO ŠTÚROVO ŠKOLÍCÍ STŘEDISKO CMMS

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

Diagnostika vybraných poruch asynchronních motorů pomocí proudových spekter

SPM od A do Z. pozadí metody SPM. SPM od A do Z. Copyright SPM Instrument

VIBRODIAGNOSTIKA HYDRAULICKÝCH POHONŮ VSTŘIKOVACÍCH LISŮ VIBRODIAGNOSTICS HYDRAULIC DRIVES INJECTION MOLDING MACHINES

Vibroakustická diagnostika

PROVOZ, DIAGNOSTIKA A ÚDRŽBA STROJŮ

Základní diagnostická měření

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Bezpečnostní kluzné a rozběhové lamelové spojky

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

Snižování hlukové emise moderní automobilové převodovky

STROJNICKÉ TABULKY II. POHONY

4 Vibrodiagnostika elektrických strojů

PŘEVODY S OZUBENÝMI KOLY

VLIV STÁLÉHO PŘEVODU NA ÚROVEŇ VIBRACÍ A HLUKU PŘEVODOVKY ŠKODA

Pohonné systémy OS. 1.Technické principy 2.Hlavní pohonný systém

ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí Analýza deformací 185

Číslo materiálu: VY_52_INOVACE_TEK_1089

VALIVÁ LOŽISKA Vysoká škola technická a ekonomická v Českých Budějovicích

SEZNAM TÉMAT K ÚSTNÍ PROFILOVÉ ZKOUŠCE ZE STROJNICTVÍ

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.

Témata profilové maturitní zkoušky z předmětu Stavba a provoz strojů

POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU

Technická zpráva. Metoda rázových pulsů SPM a. čtyři fáze poškození valivých ložisek

Konstrukční zásady návrhu polohových servopohonů

Technická diagnostika, chyby měření

MECHANICKÉ PŘEVODY STROJE STR A ZAŘÍZENÍ OJE ČÁSTI A MECHANISMY STROJŮ STR

Metoda SPM a ty i fáze po kození valivých lo isek

MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM

Popis výukového materiálu

OKRUHY K MATURITNÍ ZKOUŠCE - STROJNICTVÍ

STROJNÍ SOUČÁSTI. Podle účelu a použití se strojní součásti rozdělují na:

SPM SPECTRUM NOVÁ UNIKÁTNÍ METODA PRO DIAGNOSTIKU LOŽISEK

Dodatek k manuálu. Analyzátor vibrací Adash 4102/A

Diagnostika valivých ložisek

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

VERTIKÁLNÍ SOUSTRUHY SÉRIE VLC

Technická diagnostika Vibrodiagnostika Ing. Jan BLATA, Ph.D. Kat. 340, VŠB-TU Ostrava Ostrava 2014

DOPRAVNÍ A ZDVIHACÍ STROJE

ZVIDITELŇOVÁNÍ VIBRACÍ STROJNÍCH ZAŘÍZENÍ

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Hluk a analýza vibrací stěn krytu klimatizační jednotky

OBSAH. Katalog zubových motorů Obsah

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Czech Raildays 2010 MODIFIKACE OZUBENÍ

Vysoce elastické spojky

Identifikace kontaktní únavy metodou akustické emise na valivých ložiscích Zyková Lucie, VUT v Brně, FSI

Hřídelové klouby a kloubové hřídele Drážkové hřídele a náboje

Možné chyby ložisek a jejich příčiny

OZUBENÁ KUŽELOVÁ KOLA

Zásady regulace - proudová, rychlostní, polohová smyčka

VY_32_INOVACE_C hřídele na kinetickou a tlakovou energii kapaliny. Poháněny bývají nejčastěji elektromotorem.

Strojní součásti ČÁSTI STROJŮ R

Diagnostika rotorů v kluzných ložiskách 1

Microlog CMVA 60 ULS - kde

(elektrickým nebo spalovacím) nebo lidskou #9. pro velké tlaky a menší průtoky

OBSAH. Katalog zubových čerpadel Obsah

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno

Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu čelní a kuželové převodovky

Obr. 1 Převod třecí. Obr. 2 Variátor s osami kolmými

Tvorba technické dokumentace

VĚTRNÉ ELEKTRÁRNY Tomáš Kostka

Korelace změny signálu AE s rozvojem kontaktního poškození

Senzory průtoku tekutin

Identifikace změn parametrů signálu akustické emise jako důsledku mechanického poškození

Axiální kuličková ložiska

KOMPRESORY F 1 F 2. F 3 V 1 p 1. V 2 p 2 V 3 p 3

OBSAH. Katalog zubových čerpadel Obsah

Systém organizace CMMS s.r.o. byl prověřen a certifikován jako splňující požadavky ISO 9001:2000 pro následující činnosti:

17.2. Řetězové převody

PŘEVODOVÉ ÚSTROJÍ. přenáší výkon od motoru na hnací kola a podle potřeby mění otáčky s kroutícím momentem

Dynamická pevnost a životnost Přednášky

OPAKOVACÍ OKRUHY STROJÍRENSTVÍ OBOR: PODNIKÁNÍ V EU

ÚVOD DO PROBLEMATIKY TEKUTINOVÝCH MECHANISMŮ HYDROSTATICKÉ, PNEUMATICKÉ A HYDRODYNAMICKÉ

Dynamická pevnost a životnost Přednášky

Určení velikosti ložiska

DIAGNOSTIKA OBRÁBĚCÍHO CENTRA BLOKU VÁLCŮ

OBSAH. Katalog zubových čerpadel Obsah

Šnekové soukolí nekorigované se šnekem válcovým a globoidním kolem.

MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE

PAX 3 40 SIGMA PUMPY HRANICE VYSOKOTLAKÁ HORIZONTÁLNÍ PLUNŽROVÁ ČERPADLA

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Přednáška č.8 Hřídele, osy, pera, klíny

Témata profilové maturitní zkoušky z předmětu Silniční vozidla

PM23 OBSAH. Katalog zubových čerpadel Obsah

Programy dvou školení na téma PREDIKTIVNÍ ÚDRŽBA

vibrodiagnostika: v kritických bodech se měří a vyhodnocuje mechanické kmitání,

1 ČELNÍ PŘEVODOVKY VŠEOBECNÉHO UŽITÍ OBECNÝ POPIS OZNAČOVÁNÍ PŘEVODOVEK VÝBĚR VELIKOSTI PŘEVODOVKY..4

Sledování stavu zubového čerpadla měřením akustické. emise

Transkript:

doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1

Přehled závad strojů a zařízení Mezi obvyklé zdroje buzení vibrací patří především: Nevyváženost rotorů Nesouosost hřídelů Ohnutý hřídel Mechanické uvolnění Řemenové a řetězové převody Valivá a kluzná ložiska Ozubená soukolí Elektromotory Rezonance Znalost zařízení Elektromotory, generátory a pohony Čerpadla a ventilátory Parní a spalovací turbíny Kompresory Stroje s vratným pohybem Válcovací a papírenské stroje Obráběcí stroje Konstrukce potrubí Převodovky Elias Tomeh / Snímek 2

HLAVNÍ ZDROJE BUZENÍ VIBRACÍ Elias Tomeh / Snímek 3

1. Elektromotory Nerovnoměrná vzduchová mezera, poddajné uložení statoru 1) Excentricita statoru znamená, že osa statoru a osa rotace rotoru nejsou totožné. Excentricita statoru způsobuje vibrace na frekvenci: kde značí : f S... síťovou frekvenci [ Hz ]. f ES 2 f S Elias Tomeh / Snímek 4

1. Elektromotory 2) Excentrický rotor znamená, že rotor se otáčí kolem osy, která není jeho osou souměrnosti. Frekvencí průchodu pólů f P : f P = skluzová frekvence f SK * počet pólů p f SK = síťová frekvence f S * skluz S S f s p. f f s R 3) Prasklé rotorové tyče elektromotoru Frekvence průchodu rotorových tyčí f RT f RT = počet rotorových tyčí * RPM Elias Tomeh / Snímek 5

2. Čerpadla a ventilátory jsou Rotační stroje Lopatkové stroje Stroje s hřídeli a ložisky Stroje s vlastním pohonem (elektromotorem) Lopatková frekvence Základní budicí frekvence f L f R l = počet lopatek l Elias Tomeh / Snímek 6

3. Parní a spalovací turbíny Vibrace skříně stroje Relativní vibrace rotoru Absolutní vibrace rotoru Detekce vibrací lopatek Detekce radiální vůle na špičce lopatek Převládají kluzná ložiska Zásadní vliv rezonance Zvláštní zřetel k lopatkám (vyloučení rezonance) Turbina se dvěma rotory Elias Tomeh / Snímek 7

Plynové turbíny Místa s nejčastějším výskytem závad na plynových turbínách v %. 45 40 35 Lopatky 30 Spalovací komora 25 Teplé části skříně 20 Rotor a disky 15 Ostatní 10 5 0 Elias Tomeh / Snímek 8

Parní turbíny Místa nejčastějších závad na turbínách v % (1700 případů) 30% 25% 20% Rotorové lopatky Ložiska Těsnění hřídele Rotor s diskem Skříň 15% Strainers 10% 5% 0% Řídící systém Vedení lopatek Transmissions Armatury Ostatní Elias Tomeh / Snímek 9

4. Kompresory Lopatkové stroje (přístup podobný turbínám) Pístové stroje (přístup podobný spalovacím motorům) Jednodušší konstrukce (většinou odpadá ventilový rozvod) Pohon elektromotorem nebo jiným zdrojem (spalovacím motorem) Elias Tomeh / Snímek 10

Případ - turbokompresor Elias Tomeh / Snímek 11

Místa s nejčastějším výskytem závad na kompresorech v % 40% 35% 30% 25% 20% Ložiska, mazání Rotor Lopatky 15% Těsnění 10% 5% 0% Ozubené převody Uložení lopatek Potrubí Skříň kompresoru Elias Tomeh / Snímek 12

5. Stroje s vratným pohybem Pístové stroje Vibrace způsobeny dynamickým přímočarým pohybem pístu Ten se dá rozložit na rotorovou a dvojnásobnou harmonickou složku Vibrace závisí na kvalitě vyvážení a uspořádání válců víceválcového stroje Významná složka je frekvence zážehů (vznětů) fr f n V = počet válců spal nv 2 platí pro 4-dobé motory Elias Tomeh / Snímek 13

5. Stroje s vratným pohybem Pístové stroje V pístových strojích jsou další zdroje vibrací Ozubená kola Ventilové rozvody (rázové buzení) Proudění plynů Příslušenství generátor čerpadlo turbodmychadlo atd. Elias Tomeh / Snímek 14

6. Válcovací a papírenské stroje Výrazně nízké otáčky pracovních rotorů Velké hmotnosti a setrvačné síly Robustní konstrukce strojů Vzhledem k nízkým otáčkám (řádově Hz a zlomky Hz) Vznikají nízké budicí síly související s otáčkami Nelze očekávat vysokou účinnost spektrální analýzy (závisí od kvality měřidel, snímačů a nastavení frekvenční analýzy) Kinetická dráha hřídele Vzrůstá význam analýzy časového průběhu Význam mají specializované metody založené na frekvenční analýze (ultrazvuková analýza) Elias Tomeh / Snímek 15

6. Válcovací a papírenské stroje Příklad - papírny 4-6 m 12 20 t Elias Tomeh / Snímek 16

7. Obráběcí stroje Stroje s převahou Hřídelí - vřetena Ozubených soukolí (řazených) Ložisek Příslušenství Velké množství budicích frekvencí Využití pokročilých metod vibrodiagnostiky (kepstrum, řádová analýza) Význam stanovení kritických oblastí Vazba údržby na systémy jakosti Diagnostika jako nástroj optimalizace nastavení stroje Elias Tomeh / Snímek 17

8. Konstrukce potrubí Dlouhé pružné objekty Zásadní význam rezonancí Z toho plyne význam stanovení vlastních frekvencí Potrubím se nesou (a mohou se zesílit) budicí frekvence navazujících objektů V potrubí proudí tekutiny (zdroj náhodného signálu) Elias Tomeh / Snímek 18

9. Převodovky Specifický objekt vibrodiagnostiky Vhodný objekt multiparametricé diagnostiky (+ tribodiagnostika) Velké množství budicích frekvencí Zvláštní zřetel na hřídele a ozubená soukolí Využití pokročilých metod vibrodiagnostiky (kepstrum, řádová analýza, souběhová filtrace) Význam stanovení kritických oblastí Elias Tomeh / Snímek 19

ZDROJE BUZENÍ VIBRACÍ Elias Tomeh / Snímek 20

1. Nevyváženost rotorů Nevyváženost je jednou z nejčastějších příčin vibrací rotačních strojů, která nepříznivě ovlivňuje životnost a spolehlivost mechanických částí strojů. 12% Nevyváženost rotorů rotačních strojů je stav, kdy CHOS rotoru není totožná s OR rotoru. V případě, že se CHOS ztotožňuje s OR rotoru, říkáme, že je rotor vyvážený. ČSN ISO 1940 1: Požadavky na jakost vyvážení rotorů. ČSN ISO 10816: Hodnocení vibrací strojů na nerotujících součástech. Elias Tomeh / Snímek 21

a) Nesouosost rovnoběžná 2. Nesouosost hřídelů Rovnoběžná nesouosost b) Nesouosost úhlová Úhlová nesouosost Elias Tomeh / Snímek 22

3. Ohnutý hřídel - Ohnutý hřídel na dvou podporách - Ohnutý převislý hřídel 4. Mechanické uvolnění Ložiskové uvolnění Elias Tomeh / Snímek 23

5. Řemenové převody Základní řemenová frekvence - klínový převod D1 D2 fb fr1 fr2 L L Základní řemenová frekvence - zubový převod f Z f R1 z 1 f R2 z 2 Elias Tomeh / Snímek 24 Elias Tomeh / Snímek 24

Problémy řemenic b) Excentricita řemenice a) Nesouosost řemenic c) Rezonance řemene Elias Tomeh / Snímek 25

6. Závady ozubených soukolí Ozubené převody jsou výrazným budičem vibrací. Projevem vnitřních dynamických sil v ozubení je vibrace a hluk. Zubová (základní) frekvence je dána vztahem: z 1 ; n 1 z 2 ; n 2 f Z f R1 z 1 f R2 z 2 kde značí : z 1... počet zubů hnacího kola, z 2... počet zubů hnaného kola, f R1... rotorová frekvence hnacího kola [ Hz ], f R2... rotorová frekvence hnaného kola [ Hz ]. Elias Tomeh / Snímek 26

Hlavní druhy buzení vibrací ozubenými koly jsou následující: 1)Kinematické nepřesnosti ve výrobě a montáži, nepřesnosti v uložení soukolí, tuhosti zubů. 2)Rázové rázový vstup zubů do záběru. 3)Parametrické periodická časová změna ohybové tuhosti zubů v záběru výrazné u čelního a kuželového soukolí a přímými zuby, periodická změna smyslu třecí síly mezi boky zubů ±F T (impuls valivé kružnice) výrazné u čelního a kuželového soukolí s přímými zuby. 4)Modulace vibrací: amplitudová, např. excentrické ozubení, frekvenční, např. kloubový hřídel, proměnné otáčky. Elias Tomeh / Snímek 27

6. Závady ozubených soukolí Typický problémy ozubených soukolí 1) Tření v ozubení 2) Přetížení zubů 3) Excentricita ozubeného kola a boční vůle 4) Nesouosost ozubených kol Opatření: kvalitní montáž a seřízení záběru, snížení tuhosti zubů, šikmé ozubení, korekce profilu v závislosti na velikosti průhybu zubů v záběru, odstranění rezonanční vibrace z provozních podmínek. Elias Tomeh / Snímek 28

čelní soukolí s přímými zuby čelní soukolí s šikmými zuby β = 0 β > 0 Časová změna tuhosti zubů v záběru v závislosti na součiniteli trvaní záběru - Součinitel trvání záběru profilu ε α = 2,0 - Vněpólové ozubení pól (valivý bod) mimo záběrovou úsečku (harmonické převodovky) - Modifikace základního profilu zubů - Součinitel trvání záběru: - krokem ε β celé číslo + cca 10% (např. ε β= 1,1) - celkový ε γ = ε α + ε β >2.5, 2< ε α <2.5 Elias Tomeh / Snímek 29

7. Závady kluzných a valivých ložisek Závady kluzných ložisek jsou: 41% a) Opotřebení, problémy s vůlí: Kluzná ložiska s nadměrnou vůlí mohou způsobit, že malá nevyváženost nebo nesouosost vyvolá velké vibrace. Vysoká vibrace od poškozeného KL, znamenají problémy mazání, nesprávného zatížení, uvolnění anebo zvýšené vůle v ložisku. Pro správnou funkci kluzné ložisko vyžaduje, aby radiální vůle byla v určitých mezích. Příliš malá vůle může znamenat zhoršené mazání kluzné ložisko obvykle hřeje. Velká vůle se projevuje jako typická nelinearita. b) Nestabilita olejového filmu WHIRL (víření oleje): Obvodové proudění, často způsobené malou excentricitou hřídele v ložisku a následně i malou tuhostí olejového filmu. Víření oleje (Oil Whirl) je případ, kdy olejový film budí vibrace, když odchylky od normálních provozních podmínek (poměrná excentricita a úhel polohy) způsobí, že olejový klín tlačí hřídel dokola v ložisku. Destabilizující síla ve směru otáčení způsobí víření Whirl. c) Nestabilita oleje WHIP (tlučení oleje): Může se objevit tehdy, když je stroj provozován na, nebo nad dvojnásobkem kritické otáčkové frekvence rotoru. Elias Tomeh / Snímek 30

DIAGNOSTIKA VALIVÝCH LOŽISEK Jestliže bylo ložisko správně vybráno s ohledem na: - otáčky, - dynamické zatížení, - mazání, - kinematickou viskozitu a adekvátní filtrování maziva, potom by provozní životnost měla vhodně odpovídat únavové životnosti L10ah. Skutečná trvanlivost je určena kromě jiného: kvalitou výroby, provozním zatížením, způsobem montáže, způsobem mazání a kvalitou maziva, přídavným dynamickým provozním zatížením. Elias Tomeh / Snímek 31

DIAGNOSTIKA VALIVÝCH LOŽISEK Dojde-li k poškození na oběžných drahách nebo na valivých tělískách, je ložisko výrazným budičem vibrací. u nepoškozených radiálních valivých ložisek s větší provozní vůlí se může vyskytnout výrazné parametrické buzení cyklickou změnou tuhostí ložiska, velikost amplitudy buzení roste se zvětšující se radiální vůlí a klesá s rostoucím počtem valivých tělísek. rozhodující pro vlastnosti ložisek je provozní radiální vůle. skutečná trvanlivost VL za jinak stejných provozních podmínek vykazuje značný rozptyl. Poměr mezi maximální a minimální trvanlivostí bývá 5-10. Elias Tomeh / Snímek 32

Parametrické buzení: - k L (t) konst Parametrické buzení radiálního ložiska je přímo úměrné provozní radiální vůli v R a nepřímo úměrné počtu valivých těles. K LO V r z V r. radíální vůle Z.. počet valivých těles k L. střední tuhost f LP = 1/T = frekvence klece x počet valivých těles Možnosti snížení: (konstkukce i provoz) - dvouřadá válečková ložiska - jehlová ložiska - i dvouřadá Elias Tomeh / Snímek 33

Poruchové frekvence valivých ložisek Pro výpočet frekvencí buzení vibrací valivými ložisky je nutná znalost vnitřních rozměrů ložiska a otáček. Výrobci valivých ložisek dodávají programové vybavení pro výpočet frekvencí buzení. Na základě těchto informací program vypočte: Frekvence vad vnitřního kroužku fi Frekvence vad klece valivého ložiska fk Frekvence vad vnějšího oběžného kroužku fo Frekvence vad valivého tělíska ložiska fv Vnitřní rozměry valivého ložiska n Počet valivých tělísek fr Rotorová frekvence D - vnější průměr d - vnitřní průměr ds - střední průměr d0- průměr valivých tělísek - kontaktní úhel Elias Tomeh / Snímek 34

DIAGNOSTIKA VALIVÝCH LOŽISEK Poruchové frekvence vad valivých ložisek f v f i f r n 2 d d s 0 f r (1 d0 cos ) d s d [1 (1 d 0 s cos ) 2 f k f ] o n 2 f r (1 d 0 cos ) d 1 d f (1 0 cos ) r 2 d s s Elias Tomeh / Snímek 35

Postup rozvoje závady valivého ložiska 1.Etapa: máme ještě stále dobré ložisko. Když se stav ložiska zhoršuje a valivé prvky narážejí na vadu, začínají se v FFT spektru objevovat harmonické násobky frekvence závady. 2. Etapa: je pro ložisko, které má určité opotřebení, jež je indikováno harmonickými složkami. V tomto okamžiku není třeba vyměňovat ložisko. 3. Etapa: životnost ložiska se blíží k závěru. FFT spektra ukazují základní frekvenci závady a harmonické násobky často začínají mít postranní pásma s otáčkovou frekvencí hřídele. 4. Etapa: životnost ložiska v tomto okamžiku je extrémně krátká a vyžaduje okamžitou nápravnou akci. Elias Tomeh / Snímek 36

Metody diagnostiky valivých ložisek Metody diagnostiky valivých ložisek Firma Přístroje SPM 43A Rázové Pulsy SPM SPM Instrument SPM 21 Mepa 10 BEA 52 TMED 1 - SKF BAS 10 BCU - kinetická dráha hřídele SCHENCK VIBROCAM 1000 VIBROPORT 30 Kurtosis - součinitel K Kutosis K - 4100 SE - Špičkové energie Reutlinger IRD 811 IRD 820 K(t) parametru Robotron M 1302 Kv - činitel výkmitu Brüel & Kjaer 2513 Ultrazvuková emise ČVUT D 016 FEL Obálkové spektrum Brüel & Kjaer 2515, 2148, pulse, SKF 65, 70 SEE SKF MICROLOG KIT CMVA 10 Existuje několik metod diagnostiky VL, založených na různých principech. Všechny tyto metody zjišťování stavu VL vycházejí z poznatku, že při odvalování poškozeného prvku VL dochází k nárazům, které vyvolají zvýšení úrovně vibrací na frekvenci nárazů, dále pak na frekvencích harmonických a rezonančních, a tím je ložisko výrazným budičem vibrací. Elias Tomeh / Snímek 37

Metody diagnostiky valivých ložisek 1) Metoda rázových pulzů SPM (shock pulse meter) Princip spočívá v měření a posouzení rázových pulsů (tzv. krátkodobých tlakových vln vyvolávaných mechanickými rázy), které vznikají vlivem drsnosti ložiskových drah a valivých těles. Snímáme tzv. prahovou úroveň (dbc) a špičkovou úroveň (dbm), zakreslujeme do grafu a při vstupu do červeného pole (35 db) je ložisko vadné. Tuto metodu používají přístroje Mepa 10, SPM21, SPM 43 a TMED1 a dále mikroprocesorové zařízení analyzátor valivých ložisek BEA 52 od firmy SPM. Výhody: metoda je přesná a rychlá, lze zjistit i kvalitu mazání ložiska. Nevýhody: nutností je znalost přesných parametrů ložisek Elias Tomeh / Snímek 38

Metody diagnostiky valivých ložisek 2) Metoda BCU (Bearing Condition Unit) Trend veličiny stavu valivého ložiska Metoda se užívá u přístrojů firmy SCHENCK. Rázový impuls poškozeného ložiska vybudí ve snímači přiloženém na ložisko vibrací ve své rezonanční oblasti (20 40 khz) podobně jako u ladičky. Vnitřní energie této odeznívající vibrace (špičkové hodnoty měřeného signálu) se určuje a dále pak ještě vyhodnocuje společně s četností výskytu. Z tohoto se pak vytváří tzv. charakteristická veličina stavu valivých ložisek BCU. Výhody: výhodou použití přístroje VIBROPORT 30 je, že můžeme při měření absolutních kmitů ložisek zjistit hodnotu BCU. Nevýhody: metoda zatím není zevšeobecněna a je velmi závislá na rozměrech ložisek. Elias Tomeh / Snímek 39

Metody diagnostiky valivých ložisek 3) Metoda KURTOSIS Posouzení statistického rozdělení amplitud vibrací se zřetelem na odchylku od normálního rozdělení ve frekvenčním rozsahu 2,5-80 khz při rozdělení do pěti frekvenčních pásem. Hodnotí se podle velikosti K. Proces získávání hodnoty K je statistický proces založený na rozdělení amplitud signálu. Tento princip je použit v přístroji K 4100 firmy Envirome-tal Equipments. Výhody: dává širší možnost získávání informací o ložisku. Nevýhody: Časová náročnost měření soukolí pod 1000 RPM, nepravdivost odhadu dvouřadých válečkových a soudečkových ložisek, nemožnost měření tzv. velkých ložisek Elias Tomeh / Snímek 40

Metody diagnostiky valivých ložisek 4) Metoda špičkové energie (Spike energy) Špičková energie SE vychází ze tří veličin měření: střední hodnota zrychlení ve frekvenčním pásmu 5 50 khz frekvence pulsů a výkmit zrychlení pulsů. Tyto tři měřené veličiny pak tvoří SE. Křivka dává včasnější zprávu o probíhajících změnách ve VL než hodnota zrychlen nebo rychlosti vibrací. Princip je používán u přístrojů IRD 811 a IRD 820. SE (g) 0.5 Z r et el n á p o šk o z en í 0.1 S E P r u b eh a n eb o v t ( ca s) Elias Tomeh / Snímek 41

Metody diagnostiky valivých ložisek 5) Metoda K(t) parametru Tato metoda byla definována profesorem A. Sturmem: K(t) = a a ef(0) ef(t).a.a v(0) v(t) Závislost velikosti parametru K(t) na stavu loziska K(t) Tuto metodu používá firma Robotron u přístroje M 1302. 10 1 K > 3 vadné merení ERROR GOOD K > 1 zlepšení stavu loziska K = 1..0,2 dobré lozisko Výhody: metoda K(t) parametru je spolehlivá, není zjištěno omezení platnosti metody, nenáročná, rychlá, nezávislá na směru měřen. 0,1 0,01 T END DANGER K = 0,2 0,02 pocátecní poškození DAMAGE K < 0,02 poškození t Elias Tomeh / Snímek 42

Metody diagnostiky valivých ložisek 6) Metoda činitele výkmitu (Crest factor) Činitel výkmitu K v je poměr výkmitu (špičkového zrychlení) ku efektivní hodnotě zrychlení. Tento poměr se vyhodnocuje v časové posloupnosti ve frekvenčním pásmu 10 Hz až 10 khz. Princip využívá přístroj firmy Brüel Kjaer. K v = a a Princip (Crest factoru) činitel výkmitu v ef Výhody: jednoduchá metoda, nízké náklady. Nevýhody:náchylná k ovlivnění z jiných zdrojů zrychlení, dává jenom hrubou orientaci o stavu ložiska. Princip (Crest - factoru) činitel výkmitu Zvýšení a v Počáteční a v Počáteční a ef K v Zvýšení a ef Elias Tomeh / Snímek 43

Metody diagnostiky valivých ložisek 7) Metoda Q Je novou metodou pro hodnocení technického stavu VL. Metoda byla vyvinuta na elektrotechnické fakultě ČVUT v Praze. Používá se přístroj Diagnost D 016 FEL, který vyhodnocuje poměr mezi střední amplitudou ultrazvukového signálu emitovaného ložiskem a amplitudou špičkovou. Měření je prováděno na frekvenci 40 khz s šířkou pásma 10 khz. Výhody: hodnocení ložiska nezávisí na povozních otáčkách, velikosti ložiska a zatížení, rychlé stanovení stavu ložiska 15 sekund přesná diagnóza. Nevýhody: jednoúčelový přístroj, vyroben jenom v několika prototypech (rok 1989). Elias Tomeh / Snímek 44

Metody diagnostiky valivých ložisek 8) Metoda obálkové analýzy (envelope spectrum) Činnost ložisek a záběr ozubených kol, jež mají opakující se charakter, vytváří vibrační signály s mnohem nižší amplitudou a vyššími frekvencemi, než je tomu u vibračních signálů buzených otáčkami nebo konstrukcí. Odfiltrovávány jsou rotační vibrační signály a zesíleny opakující se složky signálů od defektů ložisek. Elias Tomeh / Snímek 45

Obálková analýza Vibrační časový signál čas Spektrum Filtrovaný časový signál frekvence 10 khz čas Obálkové spektrum 50 Hz frekvence Elias Tomeh / Snímek 46

Metody diagnostiky valivých ložisek 8) Metoda obálkové analýzy (envelope spectrum) Místní poškození vnějšího a vnitřního kroužku VL zapříčiňuje vznik sledu mechanických impulsů (rázů). Projevem závady otáčejícího se kroužku je navíc amplitudová modulace. Elias Tomeh / Snímek 47

Metody diagnostiky valivých ložisek proces obálkování signálu převádí harmonické násobky frekvence závady o vysoké frekvenci na frekvenční složky, které jsou v rozmezí FFT spektra. Účelem vytvoření obálky je zvýraznění malých signálů. Metoda nejprve oddělí ložiskové signály o vyšší frekvenci od nízkofrekvenčních vibrací stroje pomocí pásmového filtrování. V elektronickém obvodu pro vytvoření obálky se vytváří přibližně kvadrát filtrovaného časového signálu. Protože je signál od závady opakovací, může být simulován pomocí harmonické řady sinusových vln, které jsou celými násobky frekvencí závad. Elias Tomeh / Snímek 48

Metody diagnostiky valivých ložisek Základní princip detekce a analýzy obálky Elias Tomeh / Snímek 49

Metody diagnostiky valivých ložisek Obálkové spektrum poškozeného vnitřního kroužku Elias Tomeh / Snímek 50

Čtyři volitelné pásmové filtry jsou zařazeny pro dosažení optimálního provozu ve vztahu k okolnostem měření. Jiné použití pásmových filtrů, které zvýrazňuje měření, spočívá v zahrnutí konstrukčních rezonancí ložisek do pásma schéma obvodu detektoru obálky zrychlení u pásmového filtru. analyzátoru MICROLOGu. Nastavení MICRILOGu pro obálku Frekvenční pásmo [Hz] Rozsah otáček [RPM] Rozsah analýzy [Hz] Felts/ Press Rolls 5-100 0 50 0-10 Roll Bearings 50 1000 25-500 0-100 Roll Bearings/ Gears 500 10.000 250 5000 0-1000 Gears 5000 40.000 2500-0 10.000 Elias Tomeh / Snímek 51

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Poskytuje velmi včasnou detekci závad ložisek a převodů ozubených kol měřením akustické emise generované kovem. Počínající mikroskopické defekty ložisek nejsou na normálních vibračních spektrech rychlosti a zrychlení vůbec pozorovatelné, ale opakující se akustické signály vznikající působením počínajícího defektu jsou zesilovány, tzn. projeví se jako špičky na poruchové frekvenci. Lze tedy říci, že pokud se na SEE spektrech neobjeví žádné špičky, pak to znamená, že neexistuje žádný akustický signál SEE. Dolní mezní frekvence může být nastavena na 0 Hz a spektrum přesto nebude mít obvyklý tvar skokanského můstku, jak je tomu u spektra rychlosti. Elias Tomeh / Snímek 52

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Obálka zrychlení - spektrum obálky zrychlení s BPFO=1,8 Hz a se dvěma přidruženými harmonickými složkami. Protože neexistují postranní pásma od otáček, bylo diagnostikováno, že ložisko má pouze lehké poškození. Elias Tomeh / Snímek 53

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Obálka rychlosti - normální spektrum rychlosti. Neexistuje žádná indikace poškození ložiska na frekvenci 1,7 Hz. Elias Tomeh / Snímek 54

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Obálka zrychlení - spektrum zrychlení pro stejné ložisko, které rovněž nevykazuje žádné indikátory poškození. Elias Tomeh / Snímek 55

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Obálka zrychlení - příklad pro jiné ložisko na stejné převodovce. Toto ložisko je silně zatížené a začalo právě vykazovat harmonické násobky vady BPFO. Elias Tomeh / Snímek 56

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Obálka zrychlení - Spektrum ukazuje ložisko, které bylo dostatečně poškozeno, aby se ukázala postranní pásma. Frekvenční odstup základní frekvence a postranních pásem je 40 Hz a rovná se otáčkové frekvenci. Elias Tomeh / Snímek 57

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Obálka zrychlení Spektrum je pro převodovku, která byla ve třetí etapě. Je ukázáno, že lze využít obálkový proces při nastavení pochůzky. Při hledaní problému v převodovce, by měl být vybrán větší frekvenční rozsah pravděpodobně okolo 2000 Hz. Druhá harmonická složka má 990 Hz a její postranní pásma jsou zcela jasná s odstupem 25 Hz, což jsou otáčky hřídele. Elias Tomeh / Snímek 58

Metody diagnostiky valivých ložisek 9) Metoda SEE (Spektral Emited Energy) Pokud není normální průběh signálu SEE znám, použijte k hodnocení mohutnosti signálu SEE následující tabulku jako vodítko. Čísla jsou uvedena ve stupnici SEE: 0 3 žádná identifikovatelná závada 3-20 problém s mazáním, znečištění, defekt ložiska při malém zatížení nebo malý defekt při normálním zatížení 20-100 defekt ložiska nebo znečištění 100 + vážná závada ložiska Elias Tomeh / Snímek 59

Děkuji Vám za pozornost Elias Tomeh / Snímek 60