Biotechnologická syntéza antibiotik 1. Úvod 2. Růst biomasy ve vsádkovém systému 3. Přenos hmoty v bioreaktoru 4. biotechnologického procesu 5. Separace biomasy Růst biomasy ve vsádkovém systému Fáze růstu: I: lag-fáze II: exponenciální III: stacionární IV: odumírání Rychlost tvorby biomasy: přírůstek počtu jedinců populace, nebo přírůstek jejich koncentrace v časovém intervalu, nebo přírůstek hmotnosti biomasy v časovém intervalu dn dm dc d d d n počet jedinců populace m hmotnost biomasy c koncentrace biomasy 1
Růst biomasy ve vsádkovém systému Vliv podmínek na růst biomasy Teplota: závislost specifické růstové rychlosti na teplotě E 1 a max a exp 1 RT E K d 1 exp o RT E a aktivační energie růstu biomasy E d aktiv. energie denaturace biomasy ph (vliv ph není jednoznačně objasněn) závislost specifické růstové rychlosti na ph max * max c K H 2 1 K c 1 H c H koncentrace vodíkových iontů Bioreaktor = vícefázový reaktor (biomasa, g a l fáze) Přestup kyslíku z plynné do kapalné fáze Schéma přestupu kyslíku do kapalné fáze v bioreaktoru Rychlost přestupu kyslíku: c l konc. kyslíku v l fázi dc c * 1 * l rovnovážná konc. kyslíku v l fázi k a c c 1 1 1 dt k l koeficient přestupu kyslíku a měrný povrch mezifáz. rozhraní l-g (rychlost procesu je limitována odporem přestupu kyslíku v kapalné fázi) Veličiny ovlivňující rychlost transportu kyslíku: K l a - hodnota je podmíněna velikostí bublin plynu a charakterem kapalinového filmu (c l* -c l ) - hnací síla 2
Velikost bublin: Průměry bublin bývají někdy velmi malé (0,1-1 mm), za velké jsou považovány bubliny s průměrem > 6 mm Rozměr bublin závisí na jejich tvorbě v distributoru plynu Závislost koeficientu přestupu hmoty na průměru bubliny pro systém voda- kyslík Rozpustnost kyslíku ve vodě: (c l* -c l ) - hnací síla transportu kyslíku c l* -rovnovážná koncentrace rozpuštěného kyslíku (viz Henryho zákon) Rozpustnost kyslíku ve vodě klesá s teplotou Typická rovnovážná rozpustnost kyslíku ve fermentačním médiu je přibližně 0,25 mmol/l (při 20 C) Rozpustnost kyslíku výrazně závisí i na složení fermentačního média C lk kritická koncentrace rozpuštěného kyslíku (tj. minimální koncentrace kyslíku, pod kterou je růst mikroorganismů přímo závislý na koncentraci rozpuštěného kyslíku) Určení objemového koeficientu přestupu kyslíku Určení k l a - experimentálně - pomocí korelačních vztahů Přestup kyslíku z bubliny vzduchu do prostředí s vlastnostmi blízkými vodě: Sherwoodovo číslo Laminární režim (Re 1) Sh = 0,39Gr 1/3 Sc 1/3 Turbulentní podmínky (Re 1) Sh = 2,0 +0,6Re 1/2 Sc 1/3 Grashof Reynolds Schmidt 3
V probublávaném reaktoru je charakteristickým geometrickým rozměrem průměr bublin plynu a rychlost pohybu bubliny. V reálných bioreaktorech je však situace mnohem složitější, protože se zde vytvářejí shluky bublin různých průměrů. př. vztahu pro výrobu antibiotik ve vsádkovém bioreaktoru s turbínovým míchadlem: 0,45 0,65 3 0,65.10 3 N v g m 4.10 s k a l V V H / D N výkon míchadla V objem reakční směsi v g rychlost průtoku plynu D průměr reaktoru H výška kapalné směsi m S počet sekcí míchadel Přenos hmoty a tepla v bioreaktorech Určení mezifázové plochy Určení měrného povrchu pro kulovité bubliny plynu: 6 Z a d b Z zádrž plynu Přestup tepla Všechny aerobní fermentační pochody jsou spojené s produkcí tepla. Výměna tepla mezi obsahem vsádkového bioreaktoru a chladící nebo vyhřívací soustavou je obvykle neustálený děj X izotermní děj (odvádí se pouze generované teplo) Přenos tepla v bioreaktorech Nusseltovo číslo promíchávané kapaliny (nucená konvekce): Nu f Re, Pr Nu Re m b m e c Pr w D. Nu Re m Pr 2 d m n Reynolds c p Prandtl m empirická konstanta D vnitřní průměr nádoby α součinitel přestupu tepla λ tepelná vodivost d m průměr míchadla n otáčky μ viskozita c p specifické teplo 4
Přenos tepla v bioreaktorech Stanovení hodnoty koeficientu přestupu tepla na straně temperačního média (proudění v trubkách) turbulentní proudění pro Re 2300 Nu 0,027 Re 0,8 0,14 1 / 3 Nu 1,86 Gz w Pr 1 / 3 0,14 w Graetzovo krit. Pro probublávané reaktory přestup tepla ze suspenze biomasy na stěnu zařízení závisí na mimovrstvové rychlosti plynu a prakticky nezávisí na geometrických parametrech systému. empirická rovnice 0,35 0, 25 w 9391 v Hydrodynamické podmínky Předpoklad: limitující složka je do systému trvale dodávána, její přenos k vnějšímu povrchu buněk je v rovnováze s úbytkem způsobeným biosyntézou. k ( c c ) 2 s n c max s k c s s k 2 koeficient sdílení hmoty jednotkovou plochou fázového rozhraní bezrozměrné veličiny: 1 x x koncentrace: x = c s / c D x a parametr: = k s / c Damköhlerovo číslo: Da= max / k 2 c (charakterizuje míru vlivu difuze na rychlost procesu) Faktor účinnosti hydrodynamiky: ( = skutečná rychlost procesu / rychlost bez vlivu odporu proti přestupu hmoty) x x x( 1) 1 1 x 1 Pokud převládá vliv difuze na rychlosti procesu, pak 1 D a (o rychlosti procesu rozhoduje přenos hmoty a rychlost procesu nezávisí na parametrech kinetické rovnice a rovněž vliv teploty a ph je nevýrazný). 5
Veličiny fyzikální povahy Teplota, tlak, hmotnost, výška hladiny, výška pěny, otáčky a příkon míchadla, vizkozita, průtok vzduchu, průtok kapaliny, Veličiny chemické povahy ph, redox potenciál, koncentrace rozpuštěného kyslíku, parciální tlak kyslíku a CO 2 ve výdechových plynech, koncentrace některých iontů, ethanolu, methanolu, glukosy, Veličiny biologické povahy celkové množství a koncentrace biomasy, primární a sekundární metabolity, nukleotidy, DNA/RNA, aminokyseliny, celkové množství proteinů, ATP/ADP, lipidy, Odvozené veličiny Objemový koeficient přestupu kyslíku k L a, rychlost spotřeby kyslíku, rychlost vývoje CO 2, specifická rychlost růstu biomasy, 6
Měření fyzikálních parametrů Teplota - termistor, platinový odporový teploměr, termočlánek; Tlak - membránový snímač s převodem na elektrický signál, tenzometry; Hmotnost - tenzometrické snímače, vážení; (hmotnost vsádky lze určit z diference údajů membránových manometrů) Výška hladiny - kontaktní čidla - vodivostní či kapacitní sonda; Výška pěny - kontaktní čidla - vodivostní či kapacitní sonda, snímač hydrostatického tlaku zabudovaný do stěny nádrže; Otáčky míchadla - indukčně citlivé prvky (tachodynamo), pulsní čítače, dynamometr; Příkon míchadla - torzní dynamometr, tenzometr zabudovaný na hřídel míchadla; Průtok vzduchu - rotametr s převodníkem, který poskytuje elektrický signál (optický, indukční, nebo odporový snímač), clonka s vysílačem tlakové diference; Průtok kapalin - podobné snímače jako při měření průtoků plynů; Měření chemických parametrů ph - skleněné elektrody; Redox potenciál - platinová elektroda v kombinaci s referentní elektrodou; Obsah rozpuštěného kyslíku - galvanické (potenciometrické) a polarografické (ampérometrické) elektrody; Rozpuštěný CO 2 - iontově selektivní elektrody opatřené membránou propustnou pro plyny, tepelně sterilované elektrody se zakrytou membránou; 7
Anorganické ionty - iontově selektivní elektrody; Analýza plynů - paramagnetická rezonance, IČ - spektrometrie, měření tepelné vodivosti, hmotové spektrometry; Měření fyziologických veličin Nejdůležitější údaje o stavu a vývoji procesu z hlediska optimálního řízení. Většina veličin není průběžně měřitelná (koncentrace biomasy, produktu, substrátu; specifické a absolutní rychlosti růstu biomasy, tvorby produktu). Měření fyziologických veličin Metody založené na nových principech měření: optoelektronika a užití optických vláken (měření světelné absorpce, fluorescence, reflexe, barvy, turbidity, luminiscence) Polovodičové křemíkové senzory - iontově selektivní senzory na bázi iontově selektivních FET (Field Effect Transistors) Enzymové elektrody - stanovení některých organických sloučenin (glukosa, laktosa, maltosa, aminokyseliny, ethanol, methanol, acetaldehyd, penicilin, ) 8
Řízení biotechnologického procesu Řídící systémy: systémy řízení pro stabilizaci podmínek kultivace, nebo s postupnou změnou kultivačních podmínek podle zadané trajektorie regulační smyčky teploty, ph, tlaku, míchání, aerace, rozpuštěného kyslíku a odpěňování; systémy řízení s aplikací tzv. pokročilých algoritmů řízení algoritmy již vyžadují znalost dalších stavových veličin jako je koncentrace biomasy, produktu, substrátu a umožňují konkrétní proces optimalizovat; Regulace základních kultivačních podmínek Regulace teploty Regulace přes duplikátor s teplosměným médiem cirkulujícím v uzavřeném temperačním okruhu. Chlazení se zajišťuje zaváděním chladící cody z rozvodu do temperačního okruhu, ohřev pak průtočným elektrickým topidlem nebo přiváděním páry do okruhu. Regulace ph Regulace se provádí přídavkem kyseliny, nebo zásady ze zásobníku. Problémem je značná nelinearita mezi elektrickým signálem ph elektrody a regulačním zásahem. Obsah rozpuštěného kyslíku (regulace je možná 4 způsoby) změna k L a (objemový koeficient přestupu hmoty v systému) - změny ve frekvenci otáčení míchadla změna průtoku kyslíku - mění se buď poměr kyslíku k inertnímu plynu dodávanému do fermentoru, nebo průtok vzduchu změna přívodu substrátu změna tlaku - zvyšováním pracovního tlaku dojde ke zvýšení rozpustnosti kyslíku ve fermentačním médiu 9
Odpěňování Tvorba pěny je nežádoucí (z tenkých kapalinových filmů je kyslík rychle buňkami vyčerpán a neúčinná pěna zaujímá značný prostor v reaktoru). Pěna strhávaná výstupním vzduchem zanáší sterilizační filtry a zvyšuje možnost zarůstání mikroorganismů v potrubí, nebo dokonce jejich nežádoucí únik do okolí. Metody odpěňování: Mechanické - rozbití pěny rotačním pohybem speciálně tvarovaného kotouče, odpěňování ultrazvukovými vlnami, zrychlený průtok pěny zúženým otvorem; Chemické - odpěňovací prostředky vytěsňují povrchově aktivní látky způsobující pěnění; Separace biomasy Mikroorganismy tvoří s kultivačním prostředím v bioreaktoru suzpenze Používané chemicko-inženýrské operace: Filtrace Sedimentace Odstřeďování Ultrafiltrace 10