Polohovací zařízení. 1. Počítačová myš. Rozdělení počítačových myší

Podobné dokumenty
Polohovací zařízení. Počítačová myš

Polohovací Zařízení. -By Mikuláš Hrdlička

2.12 Vstupní zařízení II.

Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Polohovací zařízení Ing. Jakab Barnabáš

Dotykové technologie dotkněte se budoucnosti...

Vzdělávací program Základní počítačové dovednosti Téma č.5. Dotykové technologie

Identifikátor materiálu: ICT-1-13

Hardware Osobní počítač a jeho periferie. Mgr. Lukáš Provazník ZŠ praktická a ZŠ speciální Lomnice nad Popelkou DUM č.: VY_3.

INTERAKTIVNÍ TABULE. 1 Obsluha. Interaktivní tabule je velká interaktivní plocha, ke které je připojen počítač a datový projektor,

3. Maturitní otázka PC komponenty 1. Počítačová skříň 2. Základní deska

Otázka číslo 5 Hardware: vstupní a výstupní zařízení počítače

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií

Externí zařízení - procvičování

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

Jak funguje dotykový displej?

Ing. Karel Johanovský Mgr. Petr Jelínek

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

DUM č. 17 v sadě. 31. Inf-7 Technické vybavení počítačů

Předmět: informační a komunikační technologie

DataLab LCD. Panelové LCD monitory s dotykovou obrazovkou

DataLab LCD Panelové LCD monitory s dotykovou obrazovkou

Výukový materiál. Bankovní spojení: KB Česká Třebová, č.ú /0100, IČO:

MONITOR. Helena Kunertová

Detektory kovů řady Vistus

Inovace a zkvalitnění výuky prostřednictvím ICT Technické vybavení Vizualizační technika Ing. Jakab Barnabáš

Bankovní spojení: KB Česká Třebová, č.ú /0100, IČO: Výukový materiál

VY_32_INOVACE_INF.08. Microsoft Windows II.

Komponenty a periferie počítačů

Vyhrazené střední tlačítko myši Pokročilý laserový senzor s rozlišením 8200 DPI Klávesy QuickZoom2 Funkční tlačítko

Inteligentní koberec ( )

Spektrální charakteristiky

VSTUPNÍ A VÝSTUPNÍ ZAŘÍZENÍ PRO POČÍTAČE

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

MĚŘIČ DÉLKY A RYCHLOSTI

Zobrazovací zařízení. Základní výstupní zařízení počítače, které slouží k zobrazování textových i grafických informací.

Návod k obsluze Eagle Jumbo

Seznam speciálních pomůcek služby Lifetool

Výukové texty pro předmět Měřící technika (KKS/MT) na téma

1. Úvod do obsluhy AutoCADu

MĚŘIČ DÉLKY. typ MD6LED/1-B s rozsahem měření 99,999 až 999,999m.

Návod k obsluze MPS-1. Monitor PLC signálu

Funkční klávesy ( F1,F2,F3,F4... F12. Numerická klávesnice ( čísla musí se aktivovat NUMLOCK )

Bezdrátový laserový prezentér s podporou funkce myši PR-05 6D

Univerzita Tomáše Bati ve Zlíně

PK Design. Uživatelský manuál. Modul LED a LCD displeje s maticovou klávesnicí. Přídavný modul modulárního vývojového systému MVS. v2.

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

SpaceMouse Enterprise URČENÝ PRO VRCHOLNÉ KONSTRUKTÉRSKÉ VÝKONY

Popis videotelefonu a kamerové jednotky: Videotelefon. Dveřní kamerová jednotka. Montáž: Videotelefon

Zobrazovací jednotky. 1 z :53. LED technologie.

Přehled produktových řad. OL1 Přesné vedení v dráze v plném spektru SENZORY PRO MĚŘENÍ VZDÁLENOSTI

Optické myši. Ceník - Multimédia: myši a podložky Bezdrátové. Kabelové. Bezdrátová optická myš AM Optická bezdrátová myš Milano DOPRODEJ

Optoelektronické. snímače BOS 26K

MSA PLUS Elektrosvařovací jednotky

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

knové senzory v geotechnice a stavebnictví

NATIS s.r.o. Seifertova 4313/ Kroměříž T: Videoendoskopy a příslušenství

Monitory LCD. Obsah přednášky: Princip činnosti monitorů LCD. Struktura základní buňky. Aktivní v. pasivní matice. Přímé v. multiplexované řízení.

F-WVR610. Bezdrátový (2,4 GHz) digitální videorekordér

DODATEČNÉ INFORMACE K PODMÍNKÁM VÝBĚROVÉHO ŘÍZENÍ Č. I

DS-450dvrGPS Displej s navigací a kamerou (černou skříňkou) ve zpětném zrcátku

Periferie počítače (vstupní a výstupní zařízení počítače) Vstupní zařízení. Klávesnice

PB169 Operační systémy a sítě

Multi-dotykový 10,1" LCD monitor s HDMI FA1012-NP/C/T

MSA PLUS Elektrosvařovací jednotky

Uživatelský manuál. Kamera se záznamem na MicroSD kartu OXE 14002

Metodika testů pro zařízení LZZ

TERM05. Zobrazovací a ovládací panel. Příručka uživatele AUTOMATIZAČNÍ TECHNIKA

Fyzická bezpečnost. Téma: Průmyslová televize - kamerové systémy. Ing. Kamil Halouzka, Ph.D. kamil.halouzka@unob.cz

SNÍMAČE PRO MĚŘENÍ TEPLOTY

Ovládání, základní, senzory větru

HILGER s.r.o., Místecká 258, Ostrava-Hrabová, Telefon: (+420) , (+420) ,

MĚŘÍCÍ Senzory. Velmi přesná kontrola kvality

Základní pojmy informačních technologií

Optoelektronické. BGL Vidlicové optické závory. snímače

Optoelektronické. snímače BOS 18M. BOS 18M standardní. BOS 18M robustní. Vlastnosti

PK Design. Uživatelský manuál. Modul 4 LED displejů, klávesnice a LCD rozhraní v1.0. Přídavný modul modulárního vývojového systému MVS

Dotykový 8" LCD monitor s HDMI 869GL80NP/C/T

Monitor EU peníze středním školám Didaktický učební materiál

Technická specifikace LOGGERY D/R/S

Nový standard pro fotoelektrické snímače M18

Výhody/Použití. Varianty. prostředí. Flexibilní vícekomponentní měřící. Třída přesnosti 0,0025. Měřící zesilovač. Ovládání dotykovou obrazovkou

RYCHLÝ ÚVOD PRO Lumens PS 350 / 550 New

Point of view HDMI SmartTV dongle 200 BT

Leica DISTO TM Laserové dálkoměry

15.5. Magnetické snímače

Informační a komunikační technologie 1.2 Periferie

Specifikace předmětu plnění

4-paprsková infra závora s volbou kanálů. Atsumi Electric Co.,Ltd.

ZAŘÍZENÍ PRO MĚŘENÍ DÉLKY

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém

HHF42 Série Anemometr se sondou se žhaveným drátem pro velmi nízké rychlosti proudění vzduchu

Diagnostika signálu vlakového zabezpečovače

BEZDRÁTOVÁ FOTOBUŇKA HL3-1x. Uživatelský manuál Verze 04/2016

Monitory a grafické adaptéry

Periferie Klávesnice: Abecední pole Funk ní klávesy Kurzorové klávesy Kurzorové a numerické klávesy Myš Scanner ernobílý scanner barevný scanner

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery

On-line datový list VT12-2P110S01 V12-2 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE

Klávesnice Základní provedení kláves:

Digitální profiloměr Elcometer 224

Transkript:

Polohovací zařízení Polohovací zařízení jsou vstupní periferie, jejichž úkolem je umožnit snadnější ovládání programů a programových součástí operačního systému. Jedná se především o pohyb kurzoru po pracovní ploše obrazovky, potvrzovací akce, vyvolání místní nabídky, manipulace s grafickými i textovými objekty atd. V současné době jsou používanými polohovacími zařízeními: počítačová myš, trackball, touchpad, trackpoint, 3D polohovací zařízení (SpacePilot, SpaceExplorer, SpaceNavigator, SpaceTraveler), grafický tablet, herní polohovací zařízení - joystick, gamepad, volant, ovládání pohybem těla (např. Kinect), dotykový displej (Touchscreen), rukavice a helma pro virtuální realitu. 1. Počítačová myš Počítačová myš je malé polohovací zařízení, které převádí informace o změně své pozice na povrchu plochy (např. desce stolu) do počítače, což se obvykle projevuje na monitoru jako pohyb kurzoru. Nachází se na ní několik tlačítek, může obsahovat jedno i více rolovacích koleček pro usnadnění pohybu v dokumentu. Ze spodní strany nalezneme zařízení snímající pohyb. Rozdělení počítačových myší 1. Podle způsobu úchopu: a. horizontální b. vertikální (resp. ergonomické) 2. Podle způsobu propojení s počítačem: a. drátové (RS-232, PS/2, USB) b. bezdrátové 3. Podle způsobu snímání pohybu: a. kuličkové b. optické c. laserové 4. Podle typického použití: a. kancelářské b. herní

Principy činnosti počítačových myší a. Kuličková myš Nejstarší typ počítačové myši. Vespod je vložena kulička, která se pohybem těla myši odvaluje po podložce a přenáší tak svůj pohyb na dvě hřídele s tzv. clonou kotouč s otvory (vertikální a horizontální pohyb). Kotouč je umístěn mezi infraled emitující světelné záření a fototranzistor, popřípadě fotorezistor. Otáčením kotouče dochází k přerušování světelného paprsku (světelné impulsy). Ty se pomocí fototranzistoru převádějí na impulsy elektrické, které jsou přes standardizované rozhraní přenášeny do počítače, jenž podle nich vyhodnotí aktuální polohu kurzoru na obrazovce. Na každém snímači jsou dvě infraled. Vždy se však prosvětluje pouze jeden otvor clony (kotouče). Směr pohybu myši se určuje podle toho, kterým otvorem projde světelný paprsek dřív. b. Optická myš Pracuje na principu optického snímání povrchu pod myší. V myši je umístěn optický snímač (CCD, CMOS), který snímá obraz v podobném rozlišení, jaké má například ikona programu. Rychlost snímání jsou typicky stovky vyhodnocených obrazů za sekundu. Vyhodnocení polohy podle snímaných obrazů provádí zabudovaný procesor. K osvětlení plošky snímané senzorem se využívá převážně červená LED. Principiálně však není vyloučena ani jiná barva (např. modrá LED u technologie BlueTrack). Optická myš pracuje spolehlivě téměř na každém povrchu kromě reflexního povrchu a povrchu stejné barvy jakou vyzařuje LED. Jelikož neobsahuje mechanické prvky vyhodnocující pohyb myši, nevyžaduje pravidelné čištění. Dosahuje větší citlivosti než kuličková myš.

c. Laserová myš Místo červené LED mají laserovou diodu. Laserový paprsek má lepší vlastnosti při použití na problematických površích, jako jsou například lesklé povrchy, protože při osvícení povrchu laserem dochází k daleko menšímu rozptylu světla než u LED. Dosahují vysoké přesnosti i při nepatrných změnách polohy. Speciálním případem je bezdrátová optická indukční myš, která ke své činnosti nepotřebuje napájecí baterie. Napájení je řešeno na bázi elektromagnetické indukce. Myš je napájena ze speciální podložky, která je připojena k počítači pomocí USB kabelu. Vertikální (resp. ergonomická) myš Vertikální, neboli ergonomické 1 myši jsou tvarovány tak, aby snížily nevhodné dlouhodobé zatížení, které může vyvolat syndrom RSI (z angl. Repetitive Strain Injury, neboli poškození zápěstí z opakovaného namáhání). Jedná se o soubor poškození, která jsou vyvolána prací v neergonomickém prostředí nebo s neergonomickými nástroji. Typickými projevy RSI jsou tenisový loket, poškození hybnosti ramenních pletenců, poškození šlach prstů nebo syndrom karpálního tunelu. RSI vzniká jako důsledek křížení kostí mezi loktem a zápěstím a také díky stále ohnutému zápěstí a řadí se mezi typické nemoci z povolání v kanceláři. 1 Ergonomický = obvykle tvarově přizpůsobený pro lepší komfort při použití, minimalizaci únavy a zdravotních potíží

Vyjma odlišného tvaru se od klasické horizontální myši neliší principem (optické, laserové) ani způsobem připojení k počítači (drátové, bezdrátové). Významné parametry myši 1. Systém snímání pohybu: mechanický (kulička s optoelektrickými snímači) optický (viditelné spektrum světla, infračervené spektrum) laserový 2. Rozlišení (DPI) citlivost senzoru, nebo také jemnost snímání pohybu senzorem 3. Doba odezvy (ms, Hz) udává počet vyhodnocených snímků za 1 sekundu. Kvalitní herní myši dokáží odečíst svou polohu až 1000 za sekundu (1000 Hz). Doba odezvy je pak 1 ms. 4. Ergonomie myši, způsob uchopení myši (horizontální, vertikální) 5. Rozhraní pro připojení k počítači + dosah signálu / délka kabelu 6. Způsob napájení myši: přímo z rozhraní (např. USB) akumulátory (vyměnitelné, nevyměnitelné) napájení založené na principu elektromagnetické indukce 7. Počet tlačítek, programovatelná tlačítka 8. Rozměry a hmotnost 9. Interní paměť (kb) pro uložení maker pro jednotlivá tlačítka. 10. Nastavitelné vyvážení hmotnosti pomocí sady závaží (kvalitní herní myši)

2. Trackball Trackball je vstupní polohovací zařízení podobné myši. Jde o kuličku zabudovanou v podložce, jíž se dá pohybem prstů pohybovat - kulička je nahoře, nikoliv zespodu jako v případě myši. Buď bývá zabudován v notebooku, nebo se jedná o samostatné zařízení. Trackball se používá v případě, kdy standardní myš není vhodná (průmyslové použití, veřejné informační stánky), nebo pro odvětví, kde je potřeba velmi přesného polohování kurzoru. Například pro použití v počítačové grafice, aplikacích typu CAD, nebo DTP. Naopak se příliš nehodí pro rychlý pohyb s vysokou přesností, který je požadován například v počítačových hrách. Také je nezbytnou pomůckou pro mnoho postižených lidí, kteří nemohou pro dysfunkci motoriky používat běžnější polohovací zařízení, jakým je myš. 3. Touchpad Touchpad je polohovací zařízení používané především u přenosných počítačů jako náhrada počítačové myši. Jeho úkolem je převádět pohyb prstu po specializovaném povrchu na pohyb kurzoru na obrazovce. Touchpad pracuje na principu změny elektrické kapacity v místě doteku prstu. A Dotyková plocha B Rolovací plocha (vertikální posuvník) C Levé (potvrzovací) tlačítko D Pravé tlačítko Princip touchpadu

Princip je založen na sérii vodičů, které jsou umístěny ve dvou vrstvách, oddělených velmi tenkou vrstvou dielektrika (izolantu). Vodiče v těchto dvou vrstvách jsou orientovány kolmo na sebe (maticové uspořádání). Mezi těmito vrstvami (jednotlivými uzly sítě vodičů) prochází vysokofrekvenční proud, jehož velikost je přímo úměrná elektrické kapacitě uzlu. Pokud na plochu touchpadu přiložíme prst (tedy připojíme potenciál země), dojde v dané oblasti k okamžité změně kapacity (vybití = nulové napětí). Tyto stavy dále vyhodnocuje elektronika, která se nachází pod spodní vrstvou vodičů a je na ni přímo napojena. Počáteční dotek (změna kapacity) je tedy vždy vyhodnocena jako výchozí bod, od kterého se dále odvíjí směr pohybu kurzoru. Další akce jako poklepání, rolování atd. jsou už řešeny řídícím obvodem, který tyto akce v závislosti na změnách kapacity v síti vodičů rozpoznává. Pro snadnější ovládání je touchpad doplněn dvojící tlačítek, jako u běžné počítačové myši. Některé touchpady mívají i zařízení pro scrollování, které nahrazuje kolečko myši. U moderních notebooků lze využít také tzv. hotspotů, což jsou místa na touchpadu, která mohou mít definované vlastní uživatelsky modifikovatelné funkce. (například rychlé spuštění prohlížeče / přehrávače, kopírování do schránky, vložení ze schránky apod.) 4. Trackpoint Jako další způsob ovládání kurzoru na panelu notebooků lze využít trackpoint. Jedná se v podstatě o miniaturní joystick. Jeho nakláněním do stran pohybujeme kurzorem po pracovní ploše. Samotný trackpoint nemá funkci tlačítek. Ta jsou umístěna pod klávesnicí. 5. Grafický tablet Tablet je polohovací zařízení skládající se z pevné podložky s aktivní, zpravidla obdélníkovou či čtvercovou plochou a z pohyblivého snímacího zařízení v podobě bezdrátového pera. Pero umožňuje uživateli kreslit volnou rukou (obdoba kreslení tužkou na papíře). Obraz je přes pracovní plochu digitalizován a přenesen do počítače. Tablet pracuje na principu snímání tlaku pera na aktivní podložku. Mezi parametry tabletu řadíme: - rozměr pracovní (aktivní) plochy - rozlišení: udává se v jednotce LPI (Lines Per Inch počet řádků na anglický palec) - citlivost přítlaku pera: rozlišení míry přítlaku pera k podložce (obvykle 1024 úrovní tlaku) - rozhraní, počet tlačítek

6. 3D polohovací zařízení Využívají se především v aplikacích pro 3D modelování objektů. Umožňují snadno natáčet, přibližovat (zoomovat) 3D model objektu. Ve spolupráci s klasickou myší, kterou se provádí např. výběr položek z menu, či úprava 3D modelu velmi usnadňují práci designéra. Připojují se k počítači přes rozhraní USB. SpacePilot zefektivňuje práci v 3D aplikacích jako jsou Autodesk Inventor, 3Ds MAX popř. Catia zapojením druhé ruky. Intuitivním pohybem lze plynule ovládat polohu a přiblížení (zoom) 3D objektů. 21 programovatelných kláves může automaticky přizpůsobovat svou okamžitou funkci kontextu aplikace a aktuálně přiřazené funkce jsou zobrazovány na LCD displeji. Podobnou funkci v 3D aplikacích mají také tyto 3D polohovací zařízení: SpaceExplorer

Pro mobilní uživatele, použití v domácnosti atd. lze využít SpaceTraveler, popř. SpaceNavigator. Ovládání se provádí prostřednictvím ovládací čepičky (tzv. puku) a ovládacích tlačítek. SpaceTraveler SpaceNavigator 7. Dotyková plocha displeje (zjednodušeně dotykový displej) Slouží k ovládání zařízení, např. mobilního komunikátoru, PDA, tabletu, notebooku, GPS navigace apod. dotekem prstu nebo ovládací tyčinky (tzv. stylus) na určité místo zobrazovací jednotky. a. Rezistivní (odporový) dotykový displej Rezistivní (odporový) panel dotykové obrazovky se skládá z několika vrstev, z nichž nejdůležitější jsou dvě tenké elektricky vodivé vrstvy, odděleny úzkou mezerou. Když objekt (prst nebo stylus) stlačí místo na vnějším povrchu panelu, dvě vodivé vrstvy se v tomto místě spojí - panel se pak chová jako pár napěťových děličů. Mezi vrstvami začne procházet elektrický proud, z jehož velikosti řadič vyhodnotí pozici dotyku.

Výhodou tohoto řešení je nízká cena a k dotyku lze použít prakticky cokoli (elektricky vodivý i nevodivý předmět). Nevýhoda těchto displejů spočívá v malé citlivosti a v možném poškození horní pružné vrstvy. Časem se na více používaných místech objeví prohyby, které poškodí tenkou vodivou vrstvu. Výsledkem je zhoršená přesnost určení místa dotyku. Dále hrozí poškození takového displeje ostrými předměty. Propustnost světla z obrazovky je spíše průměrná, uvádí se 70 až 80 %. b. Kapacitní dotykový displej Kapacitní dotykový displej je složen ze dvou průhledných vodivých vrstev nanesených na skle. Tyto dvě vrstvy tvoří kondenzátor s definovanou kapacitou. Na jedné vrstvě jsou v rozích vytvořeny celkem čtyři elektrody, v každém rohu jedna. Vnější elektroda je z důvodů ochrany před poškozením překryta ještě další ochrannou vrstvou. Na elektrody je přivedeno malé napětí. V klidu je odběr proudu z elektrod velmi malý. Při dotyku (nebo dostatečnému přiblížení) dojde ke vzniku parazitní kapacity mezi vrchní průhlednou elektrodou a předmětem (např. prstem uživatele). Tím se zvětší odběr proudu z elektrod, který je vyhodnocován. Velikost proudu odebíraného z jednotlivých elektrod je přitom úměrná jejich vzdálenosti od místa dotyku. Výhodou této technologie je, že propouští téměř 90% světla vyzařovaného monitorem. Mezi klady se také řadí vysoká mechanická odolnost (umožňuje 300 milionů dotyků v jedné oblasti) a velmi malá náchylnost na poruchy funkce vlivem ušpinění (mastnota, prach apod.). Naopak nevýhodou a omezením je to, že dotyk displeje funguje jen v případě, že se obrazovky dotýká elektricky vodivý předmět.

c. Dotykový displej s infračerveným zářením Systém je tvořený hustou sítí infračervených paprsků emitovaných pomocí infraled diod, které se vsunutím jakéhokoliv předmětu v určitelném místě přeruší. Přerušení infračervených paprsků v horizontálním a vertikálním směru je snímáno pomocí fototranzistorů, umístěných na protějších stranách displeje. Technologie je určena pro náročné aplikace. Pro aktivaci některého bodu displeje není nutné se dotýkat přímo podkladu a opotřebení dotekového skla je výrazně nižší. Další výhodou je 100 % propustnost světla a také to, že diody a fototranzistory jsou umístěné za okraji displeje a jsou tak chráněny proti poškození. Životnost samotného snímacího mechanismu je neomezená. Nevýhodou je vysoká cena a menší rozlišovací schopnost. d. Displej s povrchovou akustickou vlnou Panel s povrchovou akustickou vlnou (SAW Surface Acoustic Wave) je složen ze čtyř piezoelektrických měničů. Dva jsou určeny pro vysílání a dva pro přijímání signálu. Elektrický signál přivedený na vysílací měniče je přeměněn na ultrazvukový signál s frekvencí přibližně 5 MHz. Signál se šíří polem reflektorů, které část akustického signálu propustí a část odrazí do kolmého směru. Na druhé straně panelu je opět pole reflektorů a přijímací piezoelektrický měnič. Signál se v poli reflektorů soustředí do jednoho směru, dopadne na tento přijímací piezoelektrický měnič a ten jej přemění zpět na signál elektrický (elektrické napětí). V místě dotyku dojde u útlumu akustického signálu. Poloha dotyku je získána porovnáním změřeného referenčního signálu získaného při kalibraci bez dotyku a aktuálního změřeného signálu v době dotyku.

Protože je panel celoskleněný a nejsou na něm přidány žádné vrstvy, které se dají mechanicky poškodit, je tato technologie mnohem odolnější než technologie odporová. Čistě skleněný povrch dotykového panelu umožňuje technologii 100 % propustnost světla. Výhodou je také větší rozlišovací schopnost snímání dotyků. Nevýhodou je pak nutnost použít k dotyku jen měkké předměty, protože tvrdá ukazovátka nefungují. Problematická je na této technologii také vysoká citlivost na znečištění, protože i malá nečistota dokáže způsobit útlum akustického vlnění. Uváděná životnost je 50 milionů dotyků v jednom místě.