Operační zesilovač, jeho vlastnosti a využití:

Podobné dokumenty
Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

Fyzikální praktikum 3 Operační zesilovač

- + C 2 A B V 1 V 2 - U cc

Elektronické praktikum EPR1

7. Určete frekvenční charakteristiku zasilovače v zapojení jako dolní propust. U 0 = R 2 U 1 (1)

Studium tranzistorového zesilovače

Operační zesilovač je integrovaný obvod se dvěma vstupy (invertujícím a neinvertujícím) a jedním výstupem.

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

Teoretický úvod: [%] (1)

Měření vlastností střídavého zesilovače

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je operační zesilovač. Pro měření byla použita souprava s operačním zesilovačem, kde napájení bylo 5V

Měření na nízkofrekvenčním zesilovači. Schéma zapojení:

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je operační zesilovač. Pro měření byla použita souprava s operačním zesilovačem, kde napájení bylo 5V

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Operační zesilovač (dále OZ)

Návrh frekvenčního filtru

1.6 Operační zesilovače II.

TRANZISTOROVÝ ZESILOVAČ

Petr Myška Datum úlohy: Ročník: první Datum protokolu:

Elektrická měření pro I. ročník (Laboratorní cvičení)

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs

Měření vlastností stejnosměrných tranzistorových zesilovačů

Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita?

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

ISŠ Nova Paka, Kumburska 846, Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

OPERAČNÍ ZESILOVAČE. Teoretický základ

1.Zadání 2.POPIS MĚŘENÉHO PŘEDMĚTU 3.TEORETICKÝ ROZBOR

Obr. 1 Činnost omezovače amplitudy

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

Měření na bipolárním tranzistoru.

Teoretický rozbor : Postup měření : a) Neinvertující zesilovač napětí (Noninverting Amplifier)

OPERA Č NÍ ZESILOVA Č E

Operační zesilovače. U výst U - U +

PRAKTIKUM II Elektřina a magnetismus

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

Zesilovače. Ing. M. Bešta

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1

2. NELINEÁRNÍ APLIKACE OPERAČNÍCH ZESILOVAČŮ

1.1 Pokyny pro měření

Zpětná vazba a linearita zesílení

Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů

Obvod střídavého proudu s kapacitou

Fyzikální praktikum...

Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů operačních zesilovačů, část 3-7-3

13 Měření na sériovém rezonančním obvodu

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů operačních zesilovačů, část 3-7-5

Základní zapojení s OZ. Vlastnosti a parametry operačních zesilovačů

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU NÁVRH A ANALÝZA ELEKTRONICKÝCH OBVODŮ

Experiment s FM přijímačem TDA7000

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

PRAKTIKUM II Elektřina a magnetismus

Název: Měření paralelního rezonančního LC obvodu

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 2

Zesilovače biologických signálů, PPG. A6M31LET Lékařská technika Zdeněk Horčík, Jan Havlík Katedra teorie obvodů

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou

Teorie elektronických

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.

Operační zesilovač. 1 Teoretická část

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů operačních zesilovačů část Teoretický rozbor

Studium klopných obvodů

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Přenos pasivního dvojbranu RC

6 Algebra blokových schémat

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

Pracoviště 1. Vliv vnitřního odporu voltmetru na výstupní napětí můstku. Přístroje: Úkol měření: Schéma zapojení:

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S /10

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.5 Název: Měření osciloskopem. Pracoval: Lukáš Ledvina

PŘECHODOVÝ JEV V RC OBVODU

Návod k přípravku pro laboratorní cvičení v předmětu EO.

2 Přímé a nepřímé měření odporu

Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1

Úloha 1: Zapojení integrovaného obvodu MA 7805 jako zdroje napětí a zdroje proudu

Střední průmyslová škola elektrotechnická a informačních technologií Brno

NÍZKOFREKVENČNÍ ZESILOVAČ S OZ

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství

ČVUT FEL. Obrázek 1 schéma zapojení měřícího přípravku. Obrázek 2 realizace přípravku

Zvyšování kvality výuky technických oborů

PRAKTIKUM II Elektřina a magnetismus

Odporový dělič napětí a proudu, princip superpozice

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu

PRAKTIKUM II Elektřina a magnetismus

Fyzikální praktikum...

Impedanční děliče - příklady

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Děliče napětí a zapojení tranzistoru

Automatizační technika Měření č. 6- Analogové snímače

Transkript:

Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost vztahu () Na vstup téhož zesilovače přiveďte střídavé napětí o amplitudě V a určete vstupní napětí a změřte frekvenční závislost zesilovače. Zapojte zesilovač v neinvertujícím režimu a opět nastavte zesílení. Ověřte platnost vztahu (). Zapojte rozdílový zesilovač a ověřte platnost vztahu (4). Zapojte sčítací zesilovač. Ověřte platnost vztahu (5) Zapojte operační zesilovač jako komparátor. Ke každé hodnotě referenčního napětí uveďte hodnotu vstupního napětí. Zapojte operační zesilovač jako dolní propust a určete její frekvenční charakteristiku. Naměřte frekvenční charakteristiku pásmové propusti v oblasti frekvencí až Hz Přeměňte předchozí zapojení na oscilátor. rčete pomocí osciloskopu frekvenci, na které oscilátor kmitá a tuto porovnejte s frekvencí vypočtenou podle vztahu (6) Teorie: Operační zesilovač je elektronický obvod využívaný v měřící, regulační a výpočetní technice. Jeho idealizovaný model má nekonečně velké zesílení A u, nekonečně velký vstupní odpor R vst a nulový odpor výstupní R vyst. Dále u ideálního zesilovače předpokládáme taky nekonečnou šířku zesilovaného pásma a možnost zesilovat stejnosměrné proudy. Schématická značka operačního zesilovače je na obr.. a) Schéma zapojení invertujícího zesilovače je na obr.. Vstupní napětí je přes rezistor R přivedeno na invertující vstup, druhý vstup je uzemněn. Napětí na vstupu je zesíleno a na výstupu se objeví s opačnou polaritou. Výstupní napětí je přivedeno přes rezistor opět na vstup a svou opačnou polaritou zmenšuje napětí vstupní. Protože operační zesilovač má velké zesílení, ustálí se obvod ve stavu, kdy je v bodě A téměř nulové napětí. Protože vstupní odpor operačního zesilovače je téměř nekonečný a teče jím zanedbatelný proud, můžeme z rovnosti proudů v uzlu A napsat podmínku pro výstupní napětí: R = () R b) Schéma zapojení neinvertujícího zesilovače je na obr. 3. Vstupní napětí je přivedeno na neinvertující vstup. Invertující vstup je spojen se zemí přes rezistor R a zpětná vazba je přivedena přes rezistor R. Pro zesílení neinvertujícího zesilovače můžeme odvodit vztah: R = + R () c) Kombinace invertujícího a neinvertujícího zesilovače podle obr. 4, vytvoříme zesilovač rozdílový. Pro jeho vstupní napětí platí vztah: R4 ( R + R ) R = (3) R R + R R ( 3 4 ) který volbou rezistorů R = R3 = kω a R = R4 = kω zjednodušíme na tvar: =, ( ) (4) d) Sčítací zesilovač vytvoříme jednoduchou obměnou základního invertujícího zesilovače. Jeho schéma je na obr. 5. Pro výstupní napětí odvodíme vztah:

R R = + (5) R R e) Komparátor využívá velkého zesílení operačních zesilovačů. Tento obvod porovnává dvě různá napětí a jeho činnost můžeme odvodit z chování rozdílového zesilovače. Zapojení komparátoru je na obr. 6. Výstupní napětí bude v kladné saturaci při menší než, a v záporné saturaci při větším než. Neurčitost mezi kladnou a zápornou saturací je vzhledem k vlastnostem zesilovače velmi malá a pohybuje se kolem mv. To znamená, položíme-li referenci napětí rovno nule, potom vstupní napětí můžeme nastavit rovněž rovno nule s přesností mv. f) Jestliže ve vstupní nebo zpětnovazební větvi operačního zesilovače použijeme kombinaci RLC prvků, změní se jeho frekvenční charakteristika. Zesilovač zapojený podle obr. 7, tvoří dolní propust. Pro zesílení A platí vztah: Z RF A = = (6) Z RA + jω CF RF g) Nahradíme-li v předchozím zapojení zpětnovazební RC člen přemostěným T článkem podle obr. 8, získáme pásmovou propust. h) Pokud předchozí zapojení přeměníme na oscilátor podle obr. 9. Pomocí osciloskopu pak určíme frekvenci, na které oscilátor kmitá a tato frekvence pak může být porovnána se vztahem: f = (7) π RC

Měření: Invertující a neinvertující vstup: a) vstupní napětí: = 5, + 5 V R = 9, 8kΩ R =, 6 kω n 3 4 5 6 7 8 9,7,99,97 3,94 5,4 -,6 -, -3,9-4, -5,7 ' -,8-4,34-6,5-8,64 -,9,8 4,9 7, 7,74 7,6 -,794-4,378-6,534-8,668 -,38,77 4,884 7,8 8,8,54 [ V ],6 -,38 -,4 -,8 -,8 -,8 -,6,8,8 3,554 Kde je naměřená hodnota výstupního napětí a je teoretická hodnota spočítaná dle vztahu (). b) vstupní napětí: = 5, + 5 V R = 9, 8kΩ R =, 6 kω n 3 4 5 6 7 8 9,8,9 3,,45 3,49 -,8 -, -3,3-4, ' 4,9 7,3 8,5 7,85 8,45-4, -6,78 -,34 -,96 4,96 7,38 9,664 7,84,68-4,96-6,784 -,336-3,44 [ V ],6,8,44 -,,78,4 -,4,4 -,48 Kde je naměřená hodnota výstupního napětí a je teoretická hodnota spočítaná dle vztahu (). Zesilovač s invertujícím vstupem Zesilovač s neinvertujícím vstupem * kde t je směrnice přímky lineární regrese naměřených hodnot. Pro zapojení invert. a neinvert. vstupu byli použity rezistory R = 9, 8kΩ R =, 6 kω podle vztahu () a () by měly být směrnice rovny v případě invertujícího vstupu t =, a v případě neinvertujícího vstupu t = 3,. Naměřeny byli údaje t =, a t = 3,. Jak přesně se shodují naměřené a teoretické výsledky lze ověřit z údaje [ V ] v tabulce, nebo z grafu. Je vidět, že v oblasti nejvyššího výstupního napětí jsou odchylky největší. Tyto odchylky lze přisoudit tomu, že zdroj byl při vyšších napětí nevyvážený. Pro konstrukci lineární regrese a výpočet směrnice byly tyto hodnoty vypuštěny. Poté můžeme porovnat teoreticky spočítané hodnoty směrnice s hodnotami změřenými, které jsou vyznačeny v grafech. Můžeme vidět, že výsledky se docela dobře zhodují. 3

c) vstupní napětí: =, + V R = R3 = 9, 8 kω R = R4 =, 6 kω n 3 4 5 6 7 8 9 -,6 -,6 -,3 -,96-3,95-3,9-5,68-6,96-8,49-9,54 -,5 -,5 -,8 -,7 -,6-3,4-3,3-4,3-5, -7,8 ',4,76 -,8, 4,,5 5,46 6,5 7,6 5,43,,78 -,,958 4,58,496 5,39 6,6 7,436 5,4 [ V ],8 -,,3,5 -,38,4,7,4 -,76,8 n 3 4 5 6 7 8 9,7,65 3,4 4,83 5,85 6,8 7,64 8,9,5 8,36,5,5,49,8 4,9 4,54 5,34 6,9 7,96 7,93 ' -,4 -,85-3,34-4,4-3,87-4,95-5,6-4,4-5, -,96 -,44 -,88-3,4-4,4-3,87-4,97-5,6-4,4-5,38 -,946 [ V ],4,3,7,,, -,,38 -,4 Kde je naměřená hodnota výstupního napětí a je teoretická hodnota spočítaná dle vztahu (4). Pro zapojení rozdílového zesilovače byli použity rezistory R = R3 = 9, 8 kω R = R4 =, 6 kω, tedy můžeme vzorec (3) zjednodušit na vzorec (4). Z tabulky je patrné, že naměřené a teoretické hodnoty se poměrně dobře shodují, jak lze zjistit podle hodnoty. d) vstupní napětí: =, + V R = 9, 8 kω R =, 6 kω R =, 6 kω n 3 4 5 6 7 8 9,7,94 3, 3,77 3,77 5,3 6,3 6,74 6,7 6,7 -,5 -,54 -,536 -,3-3,96-3,85-4,3-5,6-6, -7,7 ' -,7 -,3 -,4 -,73 -, -3,47-4,4-4,4-4, -3,3 -,7 -,4 -,4 -,7 -,97-3,48-4,39-4,39-3,98-3, [ V ], -, -,4, -, -, -, -, n 3 4 5 6 7 8 9 -,95-4,8-5,9-5,83-6, -7,4-4,5-3,3 -,6 -,8 -,4 -,78-3,4-3,78-4,4-4,43 -,55 -,54 -,37 -,35 ' 3,85 5,49 6, 5,98 5,87 5,67 5,7 4,3 3,6 3,37 3,59 5,44 6,66 7,55 8,8 9,5 4,95 4, 3,4 3,35 [ V ],6,5 -,56 -,57 -, -3,48,,3,, Kde je naměřená hodnota výstupního napětí a je teoretická hodnota spočítaná dle vztahu (5). Pro zapojení sčítacího zesilovače byli použity rezistory R = Ω R = Ω R = Ω. Pro výpočet teoretických hodnot lze použít vzorec (5). Z tabulky lze z hodnoty [ V ] odečíst, že naměřené a teoretické hodnoty se opět docela dobře shodují, až na oblast vyšších napětí. Tyto odchylky lze opět přičíst nevyváženosti zdroje. 4

e) vstupní napětí: =, V referenční napětí: =, + V ref Hodnoty referenčního napětí a napětí přepnutí a b LED je téměř stejné (odečteme z tabulky). Lze,94,89,87,88 teda tvrdit, že komparátor pracoval dobře.,48,43,45,44 3,3 3,8 3,3 3,5 4, 4,8 4,5 4,5 5, 4,99 5, 5,5 5,85 8,83 8,87 8,85 f) [ Hz ] f,5 9, 48,8 99, 88, 475, 96,5 93, 4888, 73,,8,,8,3,8,3,8,8,3,34,4,7,88 3,4,84,88,84,8 3,4 3, Au,4,7,88 3,4,84,88,84,8 3,4 3, [ khz] f,5, 5,4, 8, 88, 53, 46,7 56,8 699,3,38,3,3,36,4,3,3,3,3, 3,8,9,9,88,48,,56,,88,68 Au 3,8,9,9,88,48,,56,,88,68 Přenosová oblast je tvořena frekvencemi, pro něž se zesílení oproti maximu max Amax = = 3,8 nezmenší o více než 3 i db, tj. nezmenší se -krát, tedy pod A min = A 3,8,78 max = =. Tato nejzazší hodnota je vyznačena v grafu. Odečtem bylo určeno, že přenosová oblast končí přibližně frekvencemi kolem ν 88kHz max 5

g) rozsah frekvencí: f =, Hz C = nf R F = kω R A = 9, 8 kω f [ khz],984,483,8,93 4,5 5,95 8,3,9,,3,3,3,8,3,8,3,3,3, 4,,,,56,4,56,4,8 Au 8,6 3,3,6,88,43,3,,7,9 Frekvence nelze přesně určit z naměřených hodnot. Neměřili jsme pro nízké hodnoty. Neznáme proto maximum. Pokud by jsme ale připustili námi naměřené hodnoty, bude platit: Nejnižší hodnota zesílení byla A = max 8, 6. Šířka pásma je dána jako v předchozím případě, tedy jako oblast, kde zesílení neklesne pod A 6,95. Pásmo frekvencí tedy končí min = přibližně kolem ν 98,4Hz. max Závěr: Ověření funkčnosti zesilovače s invertujícím či neinvertujícím vstupem, a rozdílového zesilovače bylo založeno na měření přímé úměrnosti vstupního a výstupního napětí. Jak lze vidět z přiložených tabulek a grafů, bylo ověření závislostí docela úspěšné. sčítacího zesilovače byly porovnány naměřené hodnoty napětí s vypočítanými. Byla zjištěna dobrá shoda mezi těmito dvěmi údaji. Ve všech případech bylo zjištěno, že vzorce odpovídají naměřeným hodnotám, tato měření se tedy podařila. zesilovačů s invert. a neinvert. vstupem bylo zjištěno, že pro signál s vyššími frekvencemi zesílení silně klesá. Také bylo zjištěno, že zdroj byl při vyšších napětích nevyvážený, což způsobovalo pokles výstupního napětí. V dalších měřeních pak byli opět zdárně ověřeny platnosti vztahů. Závěrů z prvních měření (klesání zesílení pro vyšší frekvence) bylo použito u měření dolní propusti. Frekvenci nemůžeme určit, protože jsme neměřili pro malé hodnoty frekvence, a tedy neznáme maximum. 6