U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu"

Transkript

1 DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran pouze vztahy mezi napětími a proudy na vstupních a výstupních svorkách, tj. mezi vnějšími veličinami. Nezajímají nás napětí a proudy ve větvích uvnitř dvojbranu. Vnitřní struktura dvojbranu může být libovolně složitá. U, vnější napětí dvojbranu I, vnější proudy dvojbranu Budeme vyšetřovat chování dvojbranu v harmonickém ustáleném stavu, použijeme SKM, tzn., že budeme pracovat s fázory napětí a proudů. Při návrhu přenosové cesty od zdroje ke spotřebiči pro přenos energie nebo signálu pracujeme s těmito typickými dvojbrany: vedení (dvouvodičové nebo koaxiální kabel) modelované T článkem nebo Π článkem ideální transformátor dělič napětí derivační, integrační členy elektrické filtry zesilovače a útlumové články apod. Rozdělení dvojbranů a) podle fyzikální struktury lineární (obsahují pouze lineární prvky), nelineární (obsahují i nelineární prvky: diody, transistory, operační zesilovače) aktivní ( se zdroji), pasivní (pouze R,L,C) aktivní dále dělíme na: autonomní x neautonomní autonomní (obsahují pouze nezávislé zdroje napětí a proudu) neautonomní (s řízenými zdroji tranzistory, op. zesil.) neautonomní nemůže trvale dodávat činný výkon autonomní s nezávislými zdroji může trvale dodávat činný výkon b) podle topologické struktury články : T, Π, Γ(levý, pravý), X, přemostěný T článek atd. T-článek Π-článek Γ-článek

2 Dále rozlišujeme dvojbrany podélně a příčně symetrické podélně symetrický příčně symetrický Nesymetrické např. Γ článek Rovnice neautonomního dvojbranu autonomní dvojbran převedeme na neautonomní, jestliže zdroje připojíme k vnějším svorkám rovnice dvojbranu vyjadřují vztahy mezi vstupními a výstupními veličinami Dosud jsme pracovali s dvojpóly, vztahy mezi fázorem napětí a proudu bylo možno vyjádřit dvěma rovnicemi s komplexními parametry Z, Y (komplexní impedance a admitance) U Z I I Y U Dvojbran: je definován 2 vstupními a 2 výstupními veličinami, existuje celkem 6 možností pro vyjádření vztahů mezi nimi. Každé přiřazení lze vyjádřit pomocí charakteristických matic dvojbranu, jsou to čtvercové matice řádu (2, 2) Např.: U, U 2 f (I, I 2 ) U, I f ( U 2, I 2 ) CHARAKTERISTICKÉ MATICE DVOJBRANU. impedanční matice dvojbranu Z {z ij } vyjadřuje napětí pomocí proudů U, U 2 f (I, I 2 ) U z z2 I U z 2 2 z 22 I 2 2. admitanční matice dvojbranu z Z z 2 z2 z 22 y Y y 2 y2 y 22 Y {y ij } vyjadřuje proudy pomocí napětí I, I 2 f ( U, U 2 ) I y I y 2 2 y 2 U y 22 U 2 Impedanční a admitanční matice nazýváme IMITANČNÍ MATICE Y Z -

3 3. postupná (přímá) kaskádní matice A {a ij } vyjadřuje vstupní veličiny pomocí výstupních U, I f (U 2, I 2 ) U a a2 U 2 I a 2 a 22 I 2 U kaskádní matice orientujeme proud na výstupních svorkách opačně (ve směru toku energie) 4. zpětná kaskádní matice B {b ij } (vyjadřují výstupní veličiny pomocí vstupních) U 2, I 2 f ( U, I ) U 2 b b2 U I b 2 2 b 22 I Kaskádní matice nazýváme PŘENOSOVÉ MATICE 5. sériově paralelní matice B A - H {h ij } U, I 2 f ( I, U 2 ) G {g ij } I, U 2 f ( U, I 2 ) U h h2 I I h 2 2 h 22 U 2 6. paralelně sériová matice I g U g 2 2 g2 U g 22 I 2 G H - Sériově paralelní a paralelně sériovou rčování charakteristických maticmatici nazýváme HYBRIDNÍ MATICE

4 Určování charakteristických matic Prvky charakteristických matic lze vyšetřit několika způsoby: z rovnic obvodu ze stavu naprázdno nakrátko (výpočtem nebo i měřením) ze vzájemných vztahů mezi charakteristickými maticemi z tabulek dvojbranů. Určování charakteristických matic z rovnic obvodu Postup: formulujeme rovnice dvojbranu některou ze známých metod analýzy a upravíme je do tvaru charakteristických rovnic. Prvky charakteristické matice dostaneme jejich porovnáním Stanovte impedanční matici T článku Formulujeme rovnice pro smyčky s a s2: s: s2: I ( Z Z 3 ) I 2 Z 3 U IZ 3 I 2 ( Z 2 Z 3 ) U 2 Z3 Z Z3 Z Z 2 Z 3 Z3 Pro symetrický dvojbran platí Z Z 2 z z 22 Určete admitanční matici π článku Formulujeme rovnice metodou uzlových napětí pro uzly A a B: A: B: U U U 2 0 Z U 2 U U 2 0 Z3 I Upravíme je do tvaru U 2 I U Z Z 2 I 2 U U 2 Z3 Z Z 2 Y Z 2 Y2 Z 2 Y Y2 Y2 Y2 Y3 Z 2 Z 3 Pro symetrický dvojbran platí Z Z 3 y y 22 Y Y2

5 Dvojbrany složené pouze z pasivních prvků jsou reciprocitní, mezi prvky imitančních matic pak platí následující vztahy: z2 z 2 y2 y 2 Reciprocitní dvojbrany splňují princip reciprocity, který lze formulovat následovně a) připojíme-li zdroj napětí na vstupní (resp.) výstupní svorky a určíme-li proud mezi výstupními (resp. vstupními) svorkami spojenými nakrátko, pak pro dvojbrany splňující princip reciprocity platí: pokud jsou napětí zdroje shodná u0 u02, pak se shodují i proudy i i2 b) připojíme-li zdroj proudu na vstupní (resp.) výstupní svorky a určíme-li napětí naprázdno mezi výstupními (resp. vstupními) svorkami, pak pro dvojbrany splňující princip reciprocity platí: pokud jsou proudy zdroje i i2 shodné, pak se shodují i napětí u u2 Princip reciprocity (možnost záměny vstupních a výstupních svorek) splňují všechny pasivní dvojbrany V obvodu dle obrázku byly pro zdroj U0 0 V změřeny proudy: I 7 A, 3 A. Určete celkový proud procházející odporem R, připojíme-li na výstupní svorky dodatečně zdroj U02 4 V. Hledaný proud vypočteme pomocí principu reciprocity zdroj napětí U0 0 V (resp. U02 4 V zdroj napětí je připojen ke vstupním svorkám připojen na výstup působí-li v obvodu oba zdroje, pak proud I 7 -,2 5,8 A

6 Určete kaskádní matici Γ článku s: A: A Z Z U U 2 Z 2 ( I 2 ) I [U 2 ( I 2 )] ( I 2 ) Z I Z U 2 2 ( I 2 ) Z Z I 2 Z 2 U 2 U 0 U I I 2 0 Z Z Z det A 2 2 Z Z pro kaskádní matice reciprocitních dvojbranů platí det A Obecný dvojbran má charakteristickou matici řádu (2,2) je třeba určit 4 prvky Je-li dvojbran reciprocitní (tj. složený pouze z pasivních prvků), pak vztah mezi prvky charakteristické matice lze vyjádřit pomocí rovnice postačí určit pouze 3 prvky je-li dvojbran symetrický, pak platí další rovnice vyjadřující vzájemný vztah mezi prvky charakteristické matice postačí určit pouze 2 prvky reciprocita z2 charakteristických z2 y2 y2 h2 - h2 gdvojbranů det A reciprocitních det B a symetrických 2 - g2 Vztahy mezi prvky matic symetrie z z22 y y22 a a22 b b22 det H det G Pro symetrický T článek určete hybridní matici H Dvojbran je symetrický a reciprocitní 2 prvky určíme z rovnic obvodu, další 2 z tabulky Sérioparalelní rovnice jsou ve tvaru U hi h2 U 2 I 2 h 2I h 22 U 2 Rovnice pro smyčku s: I 2 ( Z Z 2 ) I Z 2 U 2 I 2 I h 2 Z Z 2 h 22 reciprocita: h2 h 2 symetrie: Z Z 2 Z Z 2 Z Z 2 Z Z 2

7 det H h Z ( Z 2 Z 2 ) Z Z 2 h Z Z 2 2 h Z Z 2 Z Z 2 ( Z Z 2 ) 2 Z Z 2 Z ( Z 2 Z 2 ) Z Z Z Z 2 2 H Z Z 2 Z Z 2 2. Určování charakteristických matic dvojbranu z chodu naprázdno a nakrátko Tento postup je založen na myšlence, že vtahy mezi vnějšími napětími a proudy lze snadno vyšetřit (vypočítat nebo změřit) pro následující stavy dvojbranu vstup resp. výstup naprázdno (vstupní resp. výstupní svorky jsou rozpojeny) vstup resp. výstup nakrátko (vstupní resp. výstupní svorky jsou spojeny dokrátka) Matematicky tyto stavy vyjadřujeme takto: stav naprázdno podmínkou I0 stav nakrátko podmínkou U0 Dosadíme-li tuto podmínku do charakteristických rovnic dvojbranu, zůstane na pravé straně obou rovnic pouze jeden člen, z takto upravených rovnic lze přímo určit příslušné prvky charakteristických matic. Přitom často používáme následující označení: vstupní impedance (naprázdno, nakrátko) jako poměr napětí a proudu na vstupních svorkách při výstupu dvojbranu(naprázdno, nakrátko) výstupní impedance (naprázdno, nakrátko) jako poměr napětí a proudu na výstupních svorkách při vstupu dvojbranu (naprázdno, nakrátko) komplexní přenos napětí jako poměr výstupního a vstupního napětí (pro stav naprázdno) komplexní přenos proudu jako poměr výstupního a vstupního proudu (pro stav nakrátko) Naznačený postup ukážeme na vyšetření prvků impedanční a kaskádní matice, pro další dvě často používané (admitanční a serioparalelní) jsou příslušné vztahy uvedeny v tabulce. Stanovení prvků impedanční matice

8 Impedanční rovnice jsou U z I z2 I 2 U 2 z 2I z 22 I 2 a) Je-li výstup naprázdno, pak platí I 2 0 U z I U 2 z 2 I z z 2 U I I 2 0 I I 2 0 vstupní impedance naprázdno přenosová impedance naprázdno b) Je-li výstup naprázdno, pak platí I 0 U z2 I 2 U 2 z 22 I 2 z 2 z 22 U I 0 I 0 přenosová impedance nakrátko výstupní impedance naprázdno Stanovte prvky impedanční matice pro T-článek složený z odporů z 60 Ω z 2 reciprocitní z2 z 2 I z Ω I I 40 Ω I 60 Z Stanovení prvků kaskádní matice A U a U 2 a2 ( I 2 ) I a 2 U 2 a 22 ( I 2 ) U a U 2 výstup naprázdno 0 a U výstup nakrátko 0 I 2 0 přenos napětí a I 2 (zpětný) U a2 ( I 2 ) I a 2 U 2 přenosová admitance I 2 0 I a 22 ( I 2 )

9 a 22 I I 2 U 2 0 přenos proudu (zpětný) a2 U I 2 přenosová impedance U 2 0 Pasivní symetrický dvojbran je sestaven pouze z odporů. Z údajů ampérmetru A a voltmetrů V, V2 stanovte prvky kaskádní matice A. odpor voltmetru, výstup naprázdno U I 0,2 a 2 0, 2 a reciprocitní a a 22 det A 2 a2 4 0, a2 a2 30 0, 2 Určete prvky admitanční matice Γ článku (viz tabulka) I Z I 2 U 2 Z Z 2 y2 y 22 y I U Z y 2 U Z Z Y Z Z Z Z 2 Dvojbran je složen pouze z odporů, měřením byly zjištěny následující hodnoty: výstup naprázdno I ma, U 2 V, 0,5 V vstup naprázdno ma, U 0,5 V, V Stanovte jeho impedanční matici a určete, z jakých odporů je složen, je-li to T článek. 0 I 0 z U 2000 Ω I z2 U 500 Ω z Ω I z Ω

10 R R 3 ZT R R 2 R R3 R Ω R Ω R Ω Stanovte prvky hybridní matice T článku (hodnoty odporů jsou udány v Ω) Výstup nakrátko: U h I U h2 I 2 0 I ( ) 4Ω I U Vstup naprázdno: h22 h H U I 0 I 0 S 9I 2 9 6I 2 2 9I 2 3 reciprocitní h2 h2 Pro obvod s řízeným zdrojem napětí určete prvky kaskádní matice A. výstup naprázdno 0 30 I U s: 3I U 2 20 I 0 s2: U 2 7 I a U 30 I 30 U 2 7 I 7 a2 I U 2 7 výstup nakrátko 0 0 I 3I U s: U 3 I (proudový dělič)

11 s2: a A 7 U 3I I I a22 U I 7 I 2 I I I I 20 I 2 7

12 Ekvivalentní dvojbrany Dva dvojbrany jsou ekvivalentní, jsou-li na jejich vstupních a výstupních svorkách stejná napětí a proudy, tj, mají-li shodné charakteristické matice Postup pro určení ekvivalentního dvojbranu Pro daný dvojbran vyšetříme některou jeho charakteristickou matici. Tutéž charakteristickou matici určíme pro náhradní dvojbran. Pro ekvivalentní dvojbrany platí rovnost mezi jejich charkteristickými maticemi. Porovnáním stejnolehlých prvků obou charakteristických matic dostaneme soustavu čtyř algebraických rovnic, jejichž vyřešením nalezneme hodnoty prvků náhradního dvojbranu. Náhrada platí jen za určitých omezujících předpokladů, např. pro určitý kmitočet. Nahraďte ideální transformátor ekvivalentním T článkem rovnice transformátoru jω LI jω MI 2 U jω MI jω L 2 I 2 U 2 jω L Z jω M upravíme do tvaru impedančních rovnic jω M jω L 2 Z3 Z Z3 ZT Z 2 Z 3 Z3 porovnáním dostaneme Z 3 jω M Z jω L jω M jω ( L-M ) Z 2 jω L 2 jω M jω ( L 2 -M ) 0 j 20 j Dvojbran s impedanční maticí Z je realizován Z 30 j 20 j a) T článkem b) π článkem Určete, z jakých prvků bude sestaven a jaká podmínka musí být splněna. Z3 Z Z3 ZT Z 2 Z 3 Z3 a) j ωc Z 0 j Z 3 30 j jω L Z 3 20 j Z 2 30 j Z 3 50 j jω L 2 např.: ω000 s L 30 mh L 2 50 mh C 50 μf Prvky T-článku jsou frekvenčně závislé, ekvivalence dvojbranů bude platit pouze pro zvolenou frekvenci

13 b) Oba dvojbrany T-článek i Π jsou frekvenčně závislé, neboť obsahují reaktanční prvky L a C, ekvivalence dvojbranů bude platit pouze pro zvolenou frekvenci

TEORIE ELEKTRICKÝCH OBVODŮ

TEORIE ELEKTRICKÝCH OBVODŮ TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Symetrické stavy v trojfázové soustavě

Symetrické stavy v trojfázové soustavě Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý

Více

ZÁKLADY ELEKTROTECHNIKY pro OPT

ZÁKLADY ELEKTROTECHNIKY pro OPT ZÁKLADY ELEKTROTECHNIKY pro OPT Přednáška Rozsah předmětu: 24+24 z, zk 1 Literatura: [1] Uhlíř a kol.: Elektrické obvody a elektronika, FS ČVUT, 2007 [2] Pokorný a kol.: Elektrotechnika I., TF ČZU, 2003

Více

Základní vztahy v elektrických

Základní vztahy v elektrických Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární

Více

Přenos pasivního dvojbranu RC

Přenos pasivního dvojbranu RC Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání

Více

elektrické filtry Jiří Petržela filtry se syntetickými bloky

elektrické filtry Jiří Petržela filtry se syntetickými bloky Jiří Petržela nevýhoda induktorů, LCR filtry na nízkých kmitočtech kvalita technologická náročnost výroby a rozměry cena nevýhoda syntetických ekvivalentů cívek nárůst aktivních prvků ve filtru kmitočtová

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů s neregulárními prvky

teorie elektronických obvodů Jiří Petržela analýza obvodů s neregulárními prvky Jiří Petržela za neregulární z hlediska metody uzlových napětí je považován prvek, který nelze popsat admitanční maticí degenerovaný dvojbran, jedná se především o různé typy imitančních konvertorů obecný

Více

Základy elektrotechniky (ZELE)

Základy elektrotechniky (ZELE) Základy elektrotechniky (ZELE) Studijní program Technologie pro obranu a bezpečnost, 3 leté Bc. studium (civ). Výuka v 1. a 2. semestru, dotace celkem 72h (24+48). V obou semestrech zkouška, zápočet zrušen.

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony

12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Kirchhoffovy zákony Při řešení elektrických obvodů, tedy různě propojených sítí tvořených zdroji, odpory (kapacitami a indukčnostmi)

Více

ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY

ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY EEKTOTECHNK TEMTCKÉ OKHY. Harmonický ustálený stav imitance a výkon Harmonicky proměnné veličiny. Vyjádření fázorů jednotlivými tvary komplexních čísel. Symbolický počet a jeho využití při řešení harmonicky

Více

Rezonanční obvod jako zdroj volné energie

Rezonanční obvod jako zdroj volné energie 1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA Transformátor Měření zatěžovací a převodní charakteristiky. Zadání. Změřte zatěžovací charakteristiku transformátoru a graficky znázorněte závislost

Více

20ZEKT: přednáška č. 3

20ZEKT: přednáška č. 3 0ZEKT: přednáška č. 3 Stacionární ustálený stav Sériové a paralelní řazení odporů Metoda postupného zjednodušování Dělič napětí Dělič proudu Metoda superpozice Transfigurace trojúhelník/hvězda Metoda uzlových

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

Osnova kurzu. Základy teorie elektrických obvodů 3

Osnova kurzu. Základy teorie elektrických obvodů 3 Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie

Více

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v rně Fakulta elektrotechniky a komunikačních technologií Kolejní 906/4 6 00 rno http://www.utee.feec.vutbr.cz ELEKTOTECHNK (EL) lok nalýza obvodů - speciální metody doc. ng. Jiří

Více

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3? TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36 Fyzika I. p. 1/36 Fyzika I. Obvody Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Zdroj napětí Fyzika I. p. 2/36 Zdroj proudu Fyzika I. p. 3/36 Fyzika I. p. 4/36 Zdrojová a spotřebičová orientace

Více

Grafické zobrazení frekvenčních závislostí

Grafické zobrazení frekvenčních závislostí Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost

Více

TEMATICKÝ PLÁN PŘEDMĚTU

TEMATICKÝ PLÁN PŘEDMĚTU Střední škola - Centrum odborné přípravy technické Kroměříž TEMATICKÝ PLÁN PŘEDMĚTU ELEKTRONIKA Obor (kód a název): 26-43-M/004 Slaboproudá elektrotechnika Ročník: Vyučující : IngStoklasa František Hodin:

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více

ELEKTRONIKA. Maturitní témata 2018/ L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY

ELEKTRONIKA. Maturitní témata 2018/ L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY ELEKTRONIKA Maturitní témata 2018/2019 26-41-L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY Řešení lineárních obvodů - vysvětlete postup řešení el.obvodu ohmovou metodou (postupným zjednodušováním) a vyřešte

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů

teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů Jiří Petržela analýza obvodů metodou orientovaných grafů podstata metod spočívá ve vjádření rovnic popisujících řešený obvod pomocí orientovaných grafů uzl grafu odpovídají závislým a nezávislým veličinám,

Více

U 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu

U 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu DVOJBRAN Definice rodělení dvojbrnů Dvojbrn libovolný obvod, který je s jinými částmi obvodu spojen dvěm pár svorek (vstupní výstupní svork). K nlýe cování obvodu postčí popst dný dvojbrn poue vt mei npětími

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU

Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta elektrotechniky a informatiky Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU Garant předmětu:

Více

I 3 =10mA (2) R 3. 5mA (0)

I 3 =10mA (2) R 3. 5mA (0) Kirchhoffovy zákony 1. V obvodu podle obrázku byly změřeny proudy 3 a. a. Vypočítejte proudy 1, 2 a 4, tekoucí rezistory, a. b. Zdroj napětí = 12 V, = 300 Ω, na rezistoru jsme naměřili napětí 4 = 3 V.

Více

Přenosový kanál dvojbrany

Přenosový kanál dvojbrany STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Přenosový kanál dvojbrany PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

1.1 Měření parametrů transformátorů

1.1 Měření parametrů transformátorů 1.1 Měření parametrů transformátorů Cíle kapitoly: Jedním z cílů úlohy je stanovit základní parametry dvou rozdílných třífázových transformátorů. Dvojice transformátorů tak bude podrobena měření naprázdno

Více

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω B 9:00 hod. Elektrotechnika a) Definujte stručně princip superpozice a uveďte, pro které obvody platí. b) Vypočítejte proudy větvemi uvedeného obvodu metodou superpozice. 0 = 30 V, 0 = 5 V R = R 4 = 5

Více

elektrické filtry Jiří Petržela aktivní filtry

elektrické filtry Jiří Petržela aktivní filtry Jiří Petržela postup při návrhu filtru nové struktury analýza daného obvodu programem Snap získání symbolického tvaru přenosové funkce srovnání koeficientů přenosové funkce s přenosem obecného bikvadu

Více

Harmonický průběh napětí a proudu v obvodu

Harmonický průběh napětí a proudu v obvodu Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3

D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3 atum narození Otázka. Kolik z následujících matic je singulární? 4 A. B... 3 6 4 4 4 3 Otázka. Pro která reálná čísla a jsou vektory u = (,, 3), v = (3, a, ) a w = (,, ) lineárně závislé? A. a = 5 B. a

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah

PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah PŘEDNÁŠKA 2 - OBSAH Přednáška 2 - Obsah i 1 Bipolární diferenciální stupeň 1 1.1 Dif. stupeň s nesymetrickým výstupem (R zátěž) napěťový zisk... 4 1.1.1 Parametr CMRR pro nesymetrický dif. stupeň (R zátěž)...

Více

4 DIELEKTRICKÉ OBVODY ZÁKLADNÍ POJMY DIELEKTRICKÝCH OBVODŮ Základní veličiny a zákony Sériový a paralelní

4 DIELEKTRICKÉ OBVODY ZÁKLADNÍ POJMY DIELEKTRICKÝCH OBVODŮ Základní veličiny a zákony Sériový a paralelní Bohumil Brtník TEORETICKÁ ELEKTROTECHNIKA Praha 2017 Bohumil Brtník Teoretická elektrotechnika Recenzovali: David Matoušek, Fakulta elektrotechniky a informatiky Univerzity Pardubice Miroslav Stehlík,

Více

Bipolární tranzistory

Bipolární tranzistory Bipolární tranzistory h-parametry, základní zapojení, vysokofrekvenční vlastnosti, šumy, tranzistorový zesilovač, tranzistorový spínač Bipolární tranzistory (bipolar transistor) tranzistor trojpól, zapojení

Více

Přechodné jevy v elektrizačních soustavách

Přechodné jevy v elektrizačních soustavách vičení z předmětu Přechodné jevy v elektrizačních soustavách Další doporučená literatura: 1. Beran, Mertlová, Hájek: Přenos a rozvod elektrické energie. Hájek: Přechodné jevy v elektrizačních soustavách

Více

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod

Více

Přednáška v rámci PhD. Studia

Přednáška v rámci PhD. Studia OBVODY SE SPÍNANÝMI KAPACITORY (Switched Capacitor Networks) Přednáška v rámci PhD. Studia Doc. Ing. Lubomír Brančík, CSc. UREL FEKT VUT v Brně ÚVOD DO PROBLEMATIKY Důsledek pokroku ve vývoji (miniaturizaci)

Více

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými

Více

Měření transformátoru naprázdno a nakrátko

Měření transformátoru naprázdno a nakrátko Měření u naprázdno a nakrátko Měření naprázdno Teoretický rozbor Stav naprázdno je stavem u, při kterém je I =. řesto primárním vinutím protéká proud I tzv. magnetizační, jenž je nutný pro vybuzení magnetického

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

teorie elektronických obvodů Jiří Petržela citlivostní a toleranční analýza

teorie elektronických obvodů Jiří Petržela citlivostní a toleranční analýza Jiří Petržela citlivostní a toleranční analýza motivace pasivní prvky obvodů jsou prodávány v sortimentních řadách hodnotu konkrétního prvku neznáme, zjistíme měřením s jistotou známe pouze interval, ve

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra aplikované elektroniky a telekomunikací BAKALÁŘSKÁ PRÁCE Pasivní útlumové členy František Kordík 2017 Abstrakt Bakalářská práce je zaměřena

Více

2.6. Vedení pro střídavý proud

2.6. Vedení pro střídavý proud 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Měření výkonu jednofázového proudu

Měření výkonu jednofázového proudu Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.

Více

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9

Více

Studium tranzistorového zesilovače

Studium tranzistorového zesilovače Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor

Více

Obvodové prvky a jejich

Obvodové prvky a jejich Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

2. Měření parametrů symetrických vedení

2. Měření parametrů symetrických vedení . ěření parametrů symetrických vedení. Úvod V praxi používáme jak nesymetrická vedení (koaxiální kabel, mikropáskové vedení) tak vedení symetrická (dvouvodičové vedení). Aby platila klasická teorie vedení,

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = =

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = = B 4:00 hod. Elektrotechnika Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něho byl ze zdroje dodáván maximální výkon. Vypočítejte pro tento případ napětí, proud a výkon rezistoru.

Více

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů

Více

2.3. Maticové algoritmické metody se zaměřením na MMUN

2.3. Maticové algoritmické metody se zaměřením na MMUN 3 Maticové algoritmické metody se zaměřením na MMN V té to kapitole se seznámíme jednak s klasickou metodou uzlových napětí (MN), jednak s třemi základními typy její modifikace, které se označují jako

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ Třída: A4 Školní rok: 2010/2011 1 Vlastnosti měřících přístrojů - rozdělení měřících přístrojů, stupnice měřících přístrojů, značky na stupnici - uložení otočné

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.

CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4. CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného

Více

Operační zesilovač (dále OZ)

Operační zesilovač (dále OZ) http://www.coptkm.cz/ Operační zesilovač (dále OZ) OZ má složité vnitřní zapojení a byl původně vyvinut pro analogové počítače, kde měl zpracovávat základní matematické operace. V současné době je jeho

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu

Více

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY 2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový

Více

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu 4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Pavel Brožek stud.

Více

7 Měření transformátoru nakrátko

7 Měření transformátoru nakrátko 7 7.1 adání úlohy a) změřte charakteristiku nakrátko pro proudy dané v tabulce b) vypočtěte poměrné napětí nakrátko u K pro jmenovitý proud transformátoru c) vypočtěte impedanci nakrátko K a její dílčí

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

Petr Myška Datum úlohy: Ročník: první Datum protokolu:

Petr Myška Datum úlohy: Ročník: první Datum protokolu: Úloha číslo 1 Zapojení integrovaného obvodu MA 785 jako zdroje napětí a zdroje proudu Úvod: ílem úlohy je procvičit techniku měření napětí a proudu v obvodové struktuře, měření vnitřní impedance zdroje,

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Hrozba nebezpečných rezonancí v elektrických sítích. Ing. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink

Hrozba nebezpečných rezonancí v elektrických sítích. Ing. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink Hrozba nebezpečných rezonancí v elektrických sítích Ing. Jaroslav Pawlas ELCOM, a.s. Divize Realizace a inženýrink 1. Rezonance v elektrické síti - úvod Rezonance je jev, který nastává v elektrickém oscilačním

Více

- + C 2 A B V 1 V 2 - U cc

- + C 2 A B V 1 V 2 - U cc RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady Třída : K4 Název tématu : Metodický list z elektroenergetiky řešené příklady

Více